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Abstract

There has recently been an explosion of interest in the analy-
sis of data in data warehouses in the �eld of On-Line Analyt-
ical Processing (OLAP). Data warehouses can be extremely
large, yet obtaining quick answers to queries is important.
In many situations, obtaining the exact answer to an OLAP
query is prohibitively expensive in terms of time and/or stor-
age space. It can be advantageous to have fast, approximate
answers to queries.

In this paper, we present an I/O-e�cient technique based
upon a multiresolution wavelet decomposition that yields an
approximate and space-e�cient representation of the data
cube, which is one of the core OLAP operators. We build
our compact data cube on the logarithms of the partial sums
of the raw data values of a multidimensional array. We get
excellent approximations for on-line range-sum queries with
limited space usage and computational cost. Multiple data
cubes can be handled simultaneously. Each query can gener-
ally be answered, depending upon the accuracy supported, in
one I/O or a small number of I/Os. Experiments show that
our method performs signi�cantly better than other approxi-
mation techniques such as histograms and random sampling.

1. Introduction

Computing multiple related group-bys and aggregates is one
of the core operations of On-Line Analytical Processing
(OLAP) applications. Data warehouses often represent data
in the form of several multidimensional databases (MDDB),
also known as data cubes [7].

Consider a very simple multidimensional model, in which
we have the dimensions age, income, and education level and
the \measure" population. The raw data are stored as a
three-dimensional array A. For example, one \cell" of the
array A may correspond to (age = 30, income = $45K,
education level = 5) with a population value of 5000, where
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education level 5 corresponds to high school graduate. Thus,
an MDDB can be viewed as a d-dimensional array A, indexed
by the values of the d dimensions (or functional attributes),
whose cells contain the values of the measure attribute for
the corresponding combination of the functional attributes.
In this paper we shall call this kind of multidimensional ar-
ray A the raw data cube (or just data cube) to distinguish it
from the extended data cube and the partial sum data cube,
which will be de�ned later.

Gray et al. [7] propose that the domain of each dimension
be augmented with an additional value for each aggregation
operation, denoted by all , to store aggregated values of the
measure attribute among all the cells along that dimension,
and this results in the extended data cube. In the above ex-
ample, if we consider the aggregation operation SUM, any
range-sum query of (age, income, education level), in which
each attribute is either a singleton value or all, can be an-
swered by accessing a single cell in the extended data cube.
For example, the total population of 30-year-olds having an
income of $45K is a query speci�ed by (30, $45K, all), which
can be answered by one cell access.

An important class of queries on the data cube are the
so-called range-sum queries, which are de�ned by applying
the SUM operation over a selected contiguous range in the
domains of some of the attributes [12]. For instance, in the
data cube described above, an example of a range-sum query
is to determine the total population for people with age from
25 to 45 and with income from $50K to $70K. Range-sum
queries are important because several other classes of queries
on the data cube are special cases, such as singleton queries
and slice queries.

Several e�cient algorithms for Relational OLAP (RO-
LAP) have been developed to compute the extended data
cube [10, 1]. Zhao et al. [26] propose an array-based algo-
rithm to compute the extended data cube for Multidimen-
sional OLAP (MOLAP) systems. Given appropriate com-
pression techniques, the MOLAP algorithm can be signi�-
cantly faster than the ROLAP algorithms.

Previous work on data cube computation has concen-
trated on how to compute the exact data cube. But in reality,
a data warehouse usually has more than one table (in a RO-
LAP system) or data cube (in a MOLAP system), and each
of these tables or cubes contains a very large number of tuples
or entries. A user can query on any element in an extended
data cube computed from any of those relations/cubes in an
OLAP query. Computing all the extended data cubes and
storing and retrieving them on disk becomes infeasible when
the number of underlying relations/cubes is large since no
enough disk storage is available. On the other hand, even



with a huge amount of storage space, a range-sum query on
a data cube may need to access all the cells covered by that
range so that they can be summed. In an interactive explo-
ration of multiple data cubes, which is a dominant OLAP
application area, it is imperative to have a system with fast
response time.

Ho et al. [12] present an e�cient algorithm to speed up
range-sum queries on a single data cube. The main idea is to
preprocess the (raw) data cubeA and precompute all the mul-
tidimensional partial sums, which can be represented in what
we call the partial sum data cube P . Any range-sum query
can be answered by accessing and computing 2d

0
entries from

the partial sum data cube, where d0 is the number of dimen-
sions for which ranges have been speci�ed in the query. For
example, in one dimension, the answer to a range-sum query

l1 � D1 � h1 (1)

(for which d0 = 1) can be answered either as
P

l1�i�h1
A[i]

in terms of the extended data cube or more e�ciently as

P [h1]� P [l1 � 1]

in terms of the partial sum data cube. In two dimensions,
the range-sum query

l1 � D1 � h1 AND l2 � D2 � h2

(for which d0 = 2) can be answered either asX
l1�i1�h1

X
l2�i2�h2

A[i1; i2]

in terms of the extended data cube or more e�ciently as

P [h1; h2] � P [l1 � 1; h2]� P [h1; l2 � 1] + P [l1 � 1; l2 � 1]

in terms of the partial sum data cube. If query (1), for which
d0 = 1, is given in a two-dimensional setting, the answer can
be computed either as

P
l1�i1�h1

A[i1; all ] in terms of the

extended data cube or more e�ciently as

P [h1; jD2j � 1]� P [l1 � 1; jD2j � 1]

in terms of the partial sum data cube.
The problem with this partial sum approach is that the

partial sums are typically more dense in terms of storage rep-
resentation than the original data. The resulting storage re-
quired can be proportional to the size of the raw data cube,
which is very large. The appropriate 2d

0

partial sum values
for a given range-sum query might be stored in di�erent disk
blocks in the external memory and accessing them may re-
quire up to 2d

0
disk I/Os, which can be very expensive in

terms of I/O for high dimensions.
There are a number of scenarios in which a user may pre-

fer an approximate answer in a few seconds over an exact
answer that requires tens of minutes or more to compute. An
example is a drill-down query sequence in data mining [11].
Another consideration is that the extended data cube may
be remote and currently unavailable, so that �nding an exact
answer is not an option, until the data again become avail-
able [6].

In this paper, we present an I/O-e�cient technique based
upon a multiresolution wavelet decomposition that yields a
compact and accurate representation of the data cube. We
build a data cube on the logarithms of the partial sums of the
raw data values. The resulting multidimensional wavelet de-
composition, after normalization and thresholding to reduce
storage cost, provides fast and accurate answers to on-line
range-sum queries.

The idea of using wavelet techniques in database approx-
imation was �rst proposed by Matias, Vitter, and Wang [16].
Some of the new contributions in this paper are the following:

1. We design I/O e�cient algorithm to compute the par-
tial sum cube and multidimensional wavelet decompo-
sition when the raw data cube is huge and can not �t
in internal memory. In [16], the data arrays considered
are low-dimensional and small in size, and thus the I/O
e�ciency of the wavelet decomposition operation is not
addressed.

2. We propose a new thresholding method based on the
logarithm transform that dramatically reduces the rel-
ative error and even the absolute error in the approxi-
mation of high-dimensional data.

3. By applying the new thresholding method in build-
ing wavelet-based histograms as proposed in [16], we
can achieve much better accuracy even for the low-
dimensional data, especially when reducing relative er-
rors in the approximation becomes important.

Our method is designed to accommodate the approxima-
tion of several data cubes. Each query can generally be an-
swered, depending upon the accuracy supported, in one I/O
or a small number of I/Os. For example, we get a very good
approximation of the partial sum data cube by storing one
disk block's worth of wavelet coe�cients. In such a case, any
set of queries on that data cube can be answered collectively
with a total of only one I/O. The accuracy of the resulting ap-
proximation, as a function of the storage used, is noticeably
better than those of other approximation techniques based
upon histograms and random sampling.

In the next section, we discuss the construction of the
approximate partial sum data cube and the analysis of I/O
performance. The I/O complexity is often O(N=B), which is
best possible, and is never more than the I/O bound for sort-
ing, namely, O(N

B
logM=B

N
B
), where M is the size of internal

memory and B is the disk block size [25]. The on-line query
phase, which requires only a constant number of I/Os in total
for an arbitrary number of queries, is explained and analyzed
in Section 3. Our experimental results in Section 4 demon-
strate a competitive advantage of our wavelet technique over
histograms and random sampling in many cases, while while
it is comparable to the histogram method for other types of
queries.

2. Our Compact Data Cube Construction

Algorithm

We adopt the notations in [12] to formulate the problem.
Let D = fD1; D2; : : : ; Ddg denote the set of dimensions,
where each dimension corresponds to a functional attribute.
We represent the d-dimensional (raw) data cube A by a d-
dimensional array of size jD1j � jD2j � � � � � jDdj, where jDij

is the size of dimension Di. We assume without loss of gen-
erality that each array has starting index 0. For convenience,
we call each array element a cell. We let N =

Q
1�i�d

jDij

denote the total size (number of cells) of data cube A.
The problem of computing a range-sum query in a d-

dimensional data cube can be formulated as follows:

Sum(l1 : h1; : : : ; ld : hd) =
X

l1�i1�h1

� � �

X
ld�id�hd

A[i1; : : : ; id]:

The partial sum data cube P is a d-dimensional array of size
jD1j � jD2j � � � � � jDdj (which is the same as the size of A).
Its cells are de�ned as

P [x1; : : : ; xn] = Sum(0 : x1; : : : ; 0 : xd)

=
X

0�i1�x1

� � �

X
0�id�xd

A[i1; : : : ; id]:



At a high level, our approximate data cube construction al-
gorithm works as follows:

1. In a preprocessing step, we form the partial sum data
cube P from the (raw) data cube A. (In our method,
we further process P by replacing each cell value by its
natural logarithm.)

2. We compute the wavelet decomposition of P , obtaining
a set of N coe�cients, where N is the size of array A.

3. We keep only the C most signi�cant wavelet coe�cients,
for some C that corresponds to the desired storage usage
and accuracy. The choice of which C coe�cients to
keep depends upon the particular thresholding method
we use.

In the on-line phase, a query is answered by using the C
wavelet coe�cients to reconstruct approximations of the nec-
essary values in P . Details of the on-line phase are given in
Section 3.

Steps 1, 2, and 3, respectively, are discussed in the follow-
ing three subsections. We show in particular that the total
I/O complexity of Steps 1 and 2 is often linear in O(N=B),
which is optimal, and is never worse than O(N

B
logM=B

N
B
),

which is the number of I/Os required for sorting [2, 25, 24].
If we have (M=B)c � N=B for small c, which is typically the
case, then the I/O time is O(N=B). If not, it is still possible
to get an O(N=B)-I/O algorithm by proper use of \chunk-
ing." Step 3 uses only O(N=B) I/Os. The thresholding in
Step 3 is interesting in that it takes advantage of the loga-
rithm transform of Step 1 to achieve extremely good relative
errors in its approximation of the partial sum data cube P .

2.1. Computing the Partial Sum Data Cube P

There are two reasons why we choose to do the wavelet de-
composition on the partial sum data cube P instead of on the
(raw) data cube A. The �rst reason is that P is monotone
nondecreasing, and a compact data cube built on P seems
to give a better approximation than one built directly on A.
This interesting observation was made in our previous paper
on wavelet-based histograms for selectivity estimation [16]
and is con�rmed by a series of experiments using di�erent
types of data in building compact data cubes. The second
reason is that in order to answer a range-sum query using
the compact data cube built on P , all we need to do in the
on-line phase is to reconstruct the values corresponding to
the boundaries of the ranges (instead of reconstructing all the
values covered by the query, as in an extended data cube).

Computing the partial sum data cube P from the (raw)
data cube A in a naive manner can be expensive in terms of
I/O when the size of A is very large and cannot �t in internal
memory (which is likely in many OLAP applications). Thus,
it is important to design I/O-e�cient algorithms.

To compute the partial sum data cube P , we need to do
a series of partial sum operations along each of the d dimen-
sions of A. The standard programming language technique of
storing a multidimensional array in a certain dimension order
(such as row-major order or column-major order in the case
of two-dimensional arrays) may not be e�cient in terms of
I/O when used with virtual memory. For example, in a row-
major representation of a two-dimensional array, the partial
sums along each row can be computed e�ciently, but access-
ing the array column-wise will cause almost one page fault
per element accessed.

To achieve optimal I/O e�ciency even when virtual mem-
ory is used, we can \chunk" the array, as suggested by [20, 19]
and implemented in [23, 26] for other applications. Chunking
is a way to divide a d-dimensional array into d-dimensional
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Figure 1: A chunked three-dimensional array with each chunk
consisting of 2 � 2 � 2 array cells. The number in each cell
indicates its position in the one-dimensional array represen-
tation. In this example, cells numbered 1{8 form one chunk,
cells 9{16 form the second chunk, and so on. Cells 1{32 form
a \hyperplane of chunks" along dimensions D1 and D2; cells
33{64 form another hyperplane of chunks.

chunks in which each chunk is stored as one block on disk.
Figure 1 shows a chunked three-dimensional array.

The size of a d-dimensional chunk is c1�� � ��cd = B where
ci is the chunk size along dimension Di and B is the size of
a disk block. To implement the chunked array, we could use
an approach similar to those of [23, 26], in which the disk
layout is explicitly managed. For example, the high-level yet
e�cient TPIE system is used in [23] to do the chunking for
matrix multiplication. In this paper, for simplicity, we avoid
the need for a separate disk management system like TPIE
and use the virtual memory system to our advantage. Instead
of forming the chunks and storing them as disk blocks, we
form logical chunks. We store the multidimensional array
as a one-dimensional array, with the order of the array cells
speci�ed as in Figure 1. All the cells in the same chunk
are put into the same segment of the array. The solid lines
are the boundaries between di�erent chunks while the dashed
lines separate di�erent cells in the same chunk.

The I/O cost per chunk access is just one I/O, since the
virtual memory system will handle the paging. The mapping
between the indices of a cell in the logical multidimensional
array and the index in the one-dimensional array is very easy
to compute as long as the sizes of the dimensions and the size
of a chunk along each dimension are known.

Theorem 1 Consider multidimensional data cube A in
chunked form of size N =

Q
1�i�d

jDij, where jDij is the

size of dimension Di and jD1j � jD2j � � � � � jDdj. The
total amount of internal memory required to compute the
the partial sum data cube P in one linear scan of A is
O(
Q

1�i�d�1
jDij).

Proof Sketch: To minimize the memory needed, we use
chunks with cd = 1. For k = 0, 1, . . . , jDdj � 1, we do
the following:

1. Read into internal memory the (d� 1)-dimensional hy-
perplane for which the value of Dd is k.

2. Compute the partial sums along each of those d � 1
dimensions.

3. If k 6= 0, add the previous hyperplane values to those of
the current hyperplane in a cell-by-cell manner along di-
mension Dd. Then write the resulting hyperplane back
to disk. If k = jDdj � 1, also write the current hyper-
plane back to disk.

We de�ne the dimension order (Di1 ; : : : ; Did) of the data



cube chunks in d dimensions to be the ordering of the chunks
that changes most rapidly along the rightmost dimensionDid ,
next most rapidly along dimension Did�1

, and so on. Di�er-
ent dimension orders correspond to di�erent orders of access-
ing the data cube chunks. In the example in Figure 1, the
chunks are ordered with respect to one another according to
the dimension order (D3; D2; D1).

1

Theorem 2 In the case of general internal memory size M ,

we consider a data cube A in chunked form of size
N =

Q
1�i�d

jDij, where jDij is the size of dimension Di.
The I/O complexity of computing the partial sum data cube P
is O(N

B
logM=B

N
B
), where B is the disk block size.

Proof Sketch: We partition the d dimensions into g groups so
that for the ith group Gi = fDi1 , Di2 , : : : ; Diki

g, we haveY
1�j�ki

jDij j

Y
1�l�d
Dl =2Gi

cl �M: (2)

If (2) cannot be met, that is, if the size of dimension Di1

satis�es jDi1 j
Q

l6=i1
cl > M , we putDi1 into a singleton group

containing only itself.
To compute the partial sums, at the ith pass of our al-

gorithm, we read the chunks computed in the previous pass
in dimension order (�; : : : ; �; Di1 ; Di2 ; : : : ; Diki

), where � de-
notes the dimensions that are not in Gi. If the ith group Gi

satis�es (2), we successively read in a ki-dimensional hyper-
plane of chunks along dimensions Di1 , Di2 , . . . , Diki

(as
de�ned in Figure 1). The size of each such ki-dimensional
hyperplane of chunks is given by the left-hand size of (2),
and thus it �ts in internal memory. For each hyperplane of
chunks, after it is brought into internal memory, we compute
the partial sums along each of those dimensions Di1 ; : : : ; Diki
and write the resulting hyperplane of chunks back to disk,
chunk by chunk.

For a singleton group Gi, each hyperplane of chunks along
dimension Di1 (which because of the one-dimensionality is
a \line" of chunks) may not �t in internal memory. How-
ever, because of its single dimension, we can read each line of
chunks along dimension Di1 and compute its partial sums in
one pass using O(N=B) I/Os.

When we are done with the gth pass, we have the partial
sum data cube P . By algebraic manipulation we can show
that g = O(logM=B

N
B
). The I/O cost of each of the g passes

is O(N
B
). The desired time bound follows.

All choices of the chunk sizes ci yield the upper bound
result of Theorem 2. But some choices can do much better
than others. Let us consider the example B = M=2, N =
1
2
M3, d = (logM) + 1, jDij = 2 (for 1 � i � d � 2), and

jDd�1j = jDdj = M . The smart choice ci = 2 (for 1 � i �
d�2) and cd�1 = cd = 1 yields g = 3, and thus the algorithm
runs inO(N=B) I/Os, even though Theorem 1 does not apply.
However, the alternate choice ci = 1 (for 1 � i � d� 1) and
cd = M=2 = B yields g = d = (logM) + 1, and thus the
algorithm runs in O(N

B
logM) I/Os.

2.2. Wavelet Decomposition of the Partial Sum
Data Cube P

Wavelets are a mathematical tool for the hierarchical decom-
position of functions. Wavelets represent a function in terms
of a coarse overall shape, plus details that range from coarse
to �ne. Regardless of whether the function of interest is an

1The de�nition of dimension order in our paper corresponds
to the C programming language array declaration syntax and is
di�erent from that of [26].

image, a curve, or a surface, wavelets o�er an elegant tech-
nique for representing the various levels of detail of the func-
tion in a space-e�cient manner.

The raw data cube A is often sparse in terms of the num-
ber of nonzero elements, but the partial sum data cube P
tends to be dense. For that reason we con�ne ourselves in
this paper to wavelet decompositions of dense data cubes,
especially since the I/O processing is very e�cient in terms
of the dense representation. (Some possible compression ap-
proaches for computing the wavelet decomposition are men-
tioned in Section 5 and are the subject of continuing work.)

To start the wavelet decomposition procedure, �rst we
need to choose the wavelet basis functions. Haar wavelets
are conceptually the simplest wavelet basis functions, and for
purposes of exposition in this paper, we focus our discussion
on Haar wavelets. They are fastest to compute and easiest
to implement.

To illustrate how Haar wavelets work, we start with a
simple example. A detailed treatment of wavelets can be
found in any standard reference on the subject (e.g., [13, 21]).
Suppose we have a one-dimensional \signal":

[2, 2, 7, 11]:

We perform a wavelet transform on it. We �rst average the
signal values, pairwise, to get the new lower-resolution signal
with values

[2, 9]:

That is, the �rst two values in the original signal (2 and 2)
average to 2, and the second two values 7 and 11 average to 9.
Clearly, some information is lost in this averaging process. To
recover the original signal from the two averaged values, we
need to store some detail coe�cients, which capture the miss-
ing information. Haar wavelets store the pairwise di�erences
of the original values as detail coe�cients. In the above ex-
ample, the two detail coe�cients are 2�2 = 0 and 11�7 = 4.
It is easy to see that the original values can be recovered from
the averages and di�erences.

We have succeeded in decomposing the original signal into
a lower-resolution version of half the number of entries and
a corresponding set of detail coe�cients. By repeating this
process recursively on the averages, we get the full decompo-
sition:

Resolution Averages Detail Coe�cients

4 [2, 2, 7, 11]
2 [2, 9] [0, 4]
1 [5 1

2
] [7]

We de�ne the wavelet transform (also called wavelet decom-
position) of the original four-value signal to be the single co-
e�cient representing the overall average of the original signal,
followed by the detail coe�cients in the order of increasing
resolution. Thus, for the one-dimensional Haar basis, the
wavelet transform of our original signal is given by

[5 1
2
, 7, 0, 4]: (3)

The individual entries are called the wavelet coe�cients. The
wavelet decomposition is very e�cient computationally, re-
quiring only O(N) time and O(N=B) I/Os to compute for a
signal of N values.

No information has been gained or lost by this process.
The original signal has four values, and so does the trans-
form. Given the transform, we can reconstruct the exact
signal by recursively adding and subtracting one half of the
detail coe�cients from the next-lower resolution.



For compression reasons, the detail coe�cients at each
level of the recursion are often normalized; the coe�cients
at the lower resolutions are weighted more heavily than the
coe�cients at the higher resolutions. One advantage of the
normalized wavelet transform is that in many cases a large
number of the detail coe�cients turn out to be very small
in magnitude. Truncating these small coe�cients from the
representation (i.e., replacing each one by 0) introduces only
small errors in the reconstructed signal. We can approximate
the original signal e�ectively by keeping only the most signif-
icant coe�cients.

The one-dimensional wavelet decomposition and recon-
struction procedure can be extended naturally to the multi-
dimensional case. One way to do a multidimensional wavelet
decomposition is by a series of one-dimensional decomposi-
tions. For example, in the two-dimensional case, we �rst
apply the one-dimensional wavelet transform to each row of
the data. Next, we treat these transformed rows as if they
were themselves the original data, and we apply the one-
dimensional transform to each column.

In terms of the I/O involved, the procedure for doing the
multidimensional wavelet decomposition on the partial sum
cube P is similar to that of computing A from P , since they
both perform certain kinds of operations along each dimen-
sion of a d-dimensional array:

Theorem 3 Consider a multidimensional partial sum data
cube P having size N =

Q
1�i�d

jDij, where jDij is the size
of dimension Di and jD1j � jD2j � � � � � jDdj. The
total amount of internal memory required to compute the
wavelet decomposition of P in one linear scan of P is
O(
Q

1�i�d�1
jDij).

Theorem 4 In the case of general internal memory size M ,

we consider a multidimensional partial sum data cube P in
chunked form of size N =

Q
1�i�d

jDij, where jDij is the size
of dimension Di. The I/O complexity of computing the mul-
tidimensional wavelet decomposition of P is O(N

B
logM=B

N
B
),

where B is the disk block size.

The proofs of the above theorems are similar to those
of Theorem 1 and Theorem 2, respectively, except that we
perform a one-dimensional wavelet decomposition instead of a
one-dimensional partial sum operation along each dimension.

2.3. Thresholding and Error Measures

Our motivation in this paper is a compact, yet accurate rep-
resentation of the partial sum data cube. Given the storage
limitation for the compact data cube, we can only \keep"
a certain number of the N wavelet coe�cients. Let C de-
note the number of wavelet coe�cients that we have room
to keep; the remaining wavelet coe�cients are implicitly set
to 0. Typically we have C � N . The goal of thresholding is
to determine which are the \best" C coe�cients to keep, so
as to minimize the error of approximation.

We can measure the error of approximation in several
ways. Let vi be the actual answer of a query qi and let bvi be
the approximate answer. We use the following four di�erent
error measures for the error ei of approximating query qi:

Notation De�nition

absolute error eabsi jvi � bvij
relative error ereli

jvi � bvij
maxf1; vig

modi�ed relative error em rel
i

jvi � bvij
maxf1;minfvi; bvigg

combined error ecomb
i minf�� eabsi ; � � ereli g

The parameters � and � are positive constants.

Our de�nition of relative error is slightly di�erent from
the traditional one, which is not de�ned when vi = 0. The
modi�ed relative error treats over-approximation and under-
approximation in a uniform way. The combined error re
ects
the importance of having either a good relative error or a good
absolute error for each approximation. For example, for very
small vi it may be good enough if the absolute error is small
even if the relative error is large, and for large vi the absolute
error may not be as meaningful as the relative error.

Once we choose which of the above measures to represent
the errors of the individual queries, we need to choose a norm
by which to measure the error of a collection of queries. Let
e = (e1, e2, . . . , eQ) be the vector of errors over a sequence
of Q queries. We assume that one of the above four error
measures is used for each of the individual query errors ei. For
example, for absolute error, we can write ei = eabsi . We de�ne
the overall error for theQ queries by one of the following error
measures:

Notation De�nition

1-norm average error kek1
1

Q

X
1�i�Q

ei

2-norm average error kek2

s
1

Q

X
1�i�Q

ei2

in�nity-norm error kek1 max
1�i�Q

feig

These error measures are special cases of the p-norm av-
erage error, for p > 0:

kekp =
�
1

Q

X
1�i�Q

ei
p
�1=p

:

The �rst step in thresholding is normalizing the coe�-
cients in a certain way (which corresponds to using a par-
ticular basis, such as an orthonormal basis, for example). It
is well-known that thresholding by choosing the C largest
(in absolute value) wavelet coe�cients after normalization is
provably optimal in minimizing the 2-norm of the absolute er-
rors, among all possible choices of C nonzero coe�cients, as-
suming that the wavelet basis functions are orthonormal [21].
With proper normalization, which we use, the Haar basis
is orthonormal. As a result, normalization and threshold-
ing perform well in practice on other norms of absolute er-
ror, such as the p-norms, for p > 0. There are no known
computationally e�cient methods for minimizing these other
norms, although some approximation techniques have been
studied [5].

In many circumstances, we want to minimize the relative
error of our approximation. We use the following method
to convert a method for achieving good absolute error into a
method for achieving good relative error: We take the natural
logarithm of each element in P before we do the wavelet de-
composition, and we apply the inverse (i.e., exponentiation)
after reconstruction in the on-line phase. The intuition for
this preprocessing is based on the following fact: If we denote
the function we want to approximate by f(x), where x varies
over some domain, let us consider its logarithm

g(x) = ln f(x):

If we approximate the function g using wavelets with normal-
ization and thresholding, then we can expect that the result-
ing approximation bg has small absolute error. In particular
we have bg(x) = g(x) + �(x);



where j�(x)j is typically small. The approximation bf(x) of
f(x) can be obtained by

bf(x) = e
bg(x) = f(x)� e

�(x)
:

The relative error
���f(x)� bf(x)�=f(x)�� is thus given by����f(x)� f(x)e�(x)

f(x)

���� = ��1� e�(x)
�� � ���(x)��+O

�
�(x)2

�
;

which is small when j�(x)j is small. The last approximation

follows from the Taylor expansion of e�(x) for small j�(x)j.
In the wavelet decomposition step, in order to avoid values

of �1 or large negative values, we further modify the partial
sum data cube by adding a small constant c to each cell before
doing the multidimensional wavelet decomposition. In our
experiments, we use c = 1. The value c is then subtracted in
the on-line phase after the reconstruction is done.

This logarithm transformation has one remarkable prop-
erty that we discuss further in Section 4: Not only does it
dramatically lower the relative error of the approximation in
our experiments, it also lowers the absolute error, no matter
which norm we use to measure the error. Such a phenomenon
does not occur when the logarithm transform is used with
histogram methods, such as MaxDi� histogram [18], for ex-
ample; the MaxDi� relative error shows some improvement
(compared with when the logarithm transform is not used),
but its absolute error increases substantially.

Using the standard thresholding method, we need to pick
the C largest (in absolute value) wavelet coe�cients, which
can be done in O(N=B) I/Os by using a recursive distribu-
tion (or bucketing) method [2]. We can possibly combine the
thresholding with the last pass of the wavelet decomposition
procedure to further reduce the actual I/O cost.

The C wavelet coe�cients together with their C indices
(in the one-dimensional order of cells), form the compact data
cube. The table storage is thus 2C numbers in size. Further
compression may be possible by quantization and entropy en-
coding, but for simplicity we do not consider further improve-
ments in this paper. As a result, our experimental conclusions
in Section 4 are conservative.

3. Answering Range Queries in the On-Line

Phase

Each range-sum query can be expressed as sums and di�er-
ences of a certain set of cell values from the multidimensional
partial sum data cube P [12]. The set of cells are the ones
on the corners of the query hyperplane:

Theorem 5 ([12]) The answer for the d-dimensional range-
sum query

l1 � D1 � h1 AND : : : AND ld � Dd � hd

is

v =
X

ik2flk�1;hkg

for each 1�k�d

� Y
1�k�d

s(ik)
�
� P [i1; i2; : : : ; id]; (4)

where

s(k) =

�
1 if ik = hk;
�1 if ik = lk � 1.

By convention, we de�ne P [i1; i2; : : : ; id] = 0 if ij = �1
for any 1 � j � d.

We make use of Theorem 5 to compute our approxima-
tion bv of the query value v by computing an approximate re-
construction of each needed cell value P [i1; i2; : : : ; id] in (4).
Each reconstruction is based on the inverse wavelet transform
of the C wavelet coe�cients; the other N �C coe�cients are
implicitly set to 0.

The time for reconstruction is crucial for the query per-
formance.

Theorem 6 In a d-dimensional partial sum data cube with
dimension sizes jD1j, . . . , jDdj, the partial sum value for a
given cell can be reconstructed from the C wavelet coe�cients
using O(dC) space in time O(

P
1�i�d

minfC; log jDijg).

The proof of this theorem is an extension of the proof for the
one-dimensional case [16].

If the C coe�cients correspond to one disk block, only one
I/O is needed to approximate any or all of the cells of P . The
CPU time is O(C) for each cell. By Theorem 5 each range-
sum query may require the approximate reconstruction of 2d

cells. However, in typical range-sum queries, where only a
few of the dimensions are speci�ed, fewer cells need to be
reconstructed and our technique is especially e�cient:

Corollary 1 If only d0 of the d dimensions are involved in
the query (and the remaining d�d0 dimensions are implicitly
over their entire domains), we need to reconstruct only 2d

0

cell values in Theorem 5 to answer the range query.

Proof Sketch: For each of the d� d0 dimensions Dj that are
completely spanned by the range-sum query, we have lj = 0
and thus P [i1; i2; : : : ; id] = 0 if ij = lj � 1. Hence, there are
only 2d

0

nonzero values of P [i1; i2; : : : ; id] in the summation
in (4).

4. Experimental Results

In this section we report on some experiments that compare
the e�ectiveness and accuracy of our wavelet-based approxi-
mation technique with histogram-based techniques and ran-
dom sampling.

4.1. Methods Used for Comparison

4.1.1. MaxDiff and Modified MaxDiff Histograms

Histograms approximate the data in one or more attributes
of a relation by grouping attribute values into \buckets" and
approximating the true attribute values and their frequencies
based on summary statistics maintained in each bucket [3].
By replacing the frequencies with the measure attribute val-
ues, we can use histograms to approximate a data cube. Since
the data cube is a multidimensional array, we concentrate on
multidimensional histograms in our discussion.

Muralikrishna and DeWitt [17] use an interesting spatial
index partitioning technique for constructing equidepth his-
tograms for multidimensional data. One drawback with this
approach is that it considers each dimension only once dur-
ing the partition. Poosala and Ioannidis [18] propose e�ective
alternatives. Among the new classes of histograms they pro-
posed, the multidimensional MaxDi�(V,A) histograms com-
puted using the MHIST-2 algorithm are most accurate and
perform better in practice than previous methods [18]. We
compare our wavelet-based compact data cube with this class
of histograms, which we shall refer to simply as MaxDi� his-
tograms.

In our experiments, we form MaxDi� histograms to ap-
proximate the raw data cube. The range-sum queries are
answered in the on-line phase using the approximate data
cube represented by the histogram.



As we discussed in Section 2.3, combining a logarithm
transformation with the approximation technique can be ef-
fective in reducing the relative error of the approximation.
Our experiments also test a modi�ed MaxDi� histogram that
uses the logarithm transform.

The storage required for each of the b buckets in the his-
togram is three numbers: one to store the index of the front
corner of the bucket (w.r.t. the linear order of the cells), an-
other to store the index of the far corner of the bucket, and a
third to store the (average) value associated with the bucket.
(Poosala and Ioannidis [18] use d + 1 numbers to represent
each bucket, but we instead use just three numbers per bucket
by taking advantage of the one-dimensional order of the cells,
as shown in Figure 1.)

4.1.2. Random Sampling

Several random sampling techniques, in which a large set of
data is represented by a smaller random sample of the data,
have been developed for database optimization [8, 9, 15, 14].
We can approximate the raw data cube by taking a random
sample of a certain size from the nonzero cells of the raw
data cube. When a range-sum query is presented in the on-
line phase, the query is evaluated against the sample, and
the approximate answer is extrapolated in the obvious way:
If the answer to the query using a sample of size t is s, the
approximate answer that will be reported is sT=t, where T is
the total number of the nonzero cells in the raw data cube.

To store the samples as a compact data cube, we need
to keep the indices of the sampled cells in the linear order,
together with the value of the cell. Thus, storing a random
sample of size t requires 2t numbers.

4.2. Data Description

In [16], a series of experimental results on selectivity estima-
tion in low dimensions is presented that compares the accu-
racy of the wavelet-based approximation technique with that
of histograms and random sampling. The data used in [16]
are TPC-D [22] benchmark data and some synthetic data sets
generated using Zipf distribution. Those same data sets are
used in our experiments for approximating low-dimensional
data. We apply our new thresholding method on the wavelet-
based histogram technique to show the signi�cant improve-
ment in accuracy.

In many real OLAP applications, the data have high di-
mension and the correlations among the functional attributes
and the measure are intricate and do not match arti�cial
data models. To make our experimental results meaningful,
we performed our experiments using real-world data as well
as synthetic data. For brevity in this paper, we report our
high-dimensional results on only the real-world data.

Our real-world data are obtained from the U.S. Cen-
sus Bureau databases using their Data Extraction System
(DES) [4]. Our data source is the Current Population Sur-
vey (CPS) and our extracted �le is the March Question-
naire Supplement{Person Data File. This �le contains 372
attributes from which we chose 11. Our measure attribute
is income and the 10 functional attributes are age, marital
status, sex, education attainment, race, origin, family type,
detailed household summary, age group, and class of worker.
In the original data �le, all the attributes are already pre-
processed and have a relatively small dimension size; that is,
the domain of each dimension Di is f0; 1; : : : ; jDij � 1g, for
some small integer jDij. Although the dimension sizes are
generally small, the high dimensionality results in a raw data
cube with more than 16 million cells. The density of the raw
data cube is about 0:001; there are 15,985 nonzero elements.

In this setting we can imagine that several data cubes are ap-
proximated, and each data cube must be approximated using
very little space.

4.3. Experimental Comparisons of Approximation

We compare the e�ectiveness of our compact data cube via
wavelets with those of MaxDi� histogram and random sam-
pling. Di�erent techniques need to store di�erent types of
information. We saw earlier in Sections 2.3 and 4.1 that our
wavelet technique needs to store 2C numbers to represent C
coe�cients, MaxDi� needs 3b numbers to represent b buckets,
and random sampling needs 2t numbers to store a sample of
size t.

In our experiments, all methods are allowed the same
amount of storage. We varied the allowed storage from 400
four-byte numbers to 2000 four-byte numbers. This small
storage space corresponds to the practice in OLAP applica-
tions of handling several data cubes using a limited amount of
storage space. The approximate data cubes can be accessed
in the on-line phase in a single I/O.

For example, a space usage of 800 numbers corresponds
to keeping C = 400 wavelet coe�cients for our wavelet-based
approximation, using b = 267 buckets for the MaxDi� his-
togram, and maintaining a random sample of size t = 400.

We measure the errors of the various approximation tech-
niques in our experiments using �ve types of query predicates.
In each dimension, the range is independently and uniformly
generated according to the speci�ed type:
A: fDi � hi j hi 2 f0; 1; : : : ; jDij � 1gg.
B: fli � Di � hi j li; hi 2 f0; 1; : : : ; jDij � 1g, li < hig.
C: fli � Di � hi j li; hi 2 f0; 1; : : : ; jDij�1g, hi = li+�g,

where � is a positive integer constant.
D: fDi = b j b 2 f0; 1; : : : ; jDij � 1gg.
E: fDi = jDij � 1g.

We applied di�erent combinations of these predicates on
the set of 10 attributes. Our method is more accurate in ap-
proximating most types of on-line queries than the histogram
and random sampling techniques, while it is comparable to
the histogram method and better than random sampling for
other types of queries. We present the results from one exper-
iment of Type A queries. Table 1 gives the detailed compar-
isons using our wavelet technique, the MaxDi� histograms,
and random sampling for a storage size of 800 four-byte num-
bers. Figure 2 plots the e�ect of di�erent storage sizes. For
random sampling, the errors are the averages over several
di�erent runs.

From Table 1 and Figure 2, we can see that our compact
wavelet-based data cube is more accurate in approximating
on-line queries than the histogram and sampling techniques.
As an example, let us consider a range-sum query on income
whose exact answer is 10K (dollars). Our compact data cube
with storage size 800 may give an answer of 12.2K (with rel-
ative error 22%). The average relative error can typically be
reduced to about 13% if we increase the storage space from
800 numbers to 2000 numbers.

In [16], the wavelet-based histogram method was proposed
to approximate low-dimensional data for selectivity estima-
tion. The wavelet-based histograms performed best overall in
comparison with MaxDi� histograms and random sampling.
In this paper we demonstrate the e�ectiveness of our new
method against that of the previous wavelet-based histograms
in [16]. We call our new histograms new wavelet-based his-
tograms to distinguish them from the old wavelet-based his-
tograms in [16]. The relative e�ectiveness of the two methods
is constant over a wide variety of low-dimensional data sets



Error Norm Wavelets MaxDi� Modi�ed MaxDi� Random Sampling

keabsk1=S 0.39% 0.84% 2.87% 1.6%
keabsk2=S 1.37% 1.92% 84.5% 4.5%
kerelk1 22% 6400% 580% 90%
kem rel

k1 27% 6400% 1180% 5000%
kecomb

k1, � = 1; � = 100 12 690 98 70
kecomb

k2, � = 1; � = 100 25 2361 155 100
kecomb

k1, � = 1; � = 10 1.7 232 22 10
kecomb

k2, � = 1; � = 10 3.1 904 54 10

Table 1: Errors of various methods with storage size 800 on queries of Type A. The absolute errors are normalized by the
largest value S = 907; 589 in the multidimensional partial sum data cube.
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(d) 1-norm average modi�ed rela-
tive error
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Figure 2: E�ect of storage space for various methods on range-sum queries of Type A.

that we used. We present results for Type A queries using the
synthetic data described in [16]. Table 2 shows various types
of errors for four data sets. In the experiments, all data sets
are generated using Zipf distribution with di�erent Zipf pa-
rameters. Data sets A and B are one-dimensional data. Their
value set size is n = 500, the domain size is N = 4096, and
the relation size is T = 105. We keep 21 wavelets coe�cients
in the experiments. Data sets C and D are two-dimensional
data. Their value set size is n = 2500, the domain size is
N = 65536, and the relation size is T = 106. We keep 70
wavelets coe�cients in the experiments. The new method
dramatically reduces the relative error and combined errors of
the approximation, while keeping other error measurements
roughly the same.

5. Conclusions

In this paper, we present an I/O-e�cient technique based
upon a multiresolution wavelet decomposition that yields an
approximate and space-e�cient representation of the data
cube. We build our compact data cube on the logarithms of
the partial sums of the raw data values of a multidimensional
array. We get excellent approximations for on-line range-
sum queries with limited space usage and computational cost.
Our new thresholding method of taking the logarithmic trans-
form also provides signi�cant improvement for wavelet-based
histograms used in selectivity estimation of low-dimensional
data.

One drawback of our current approach is that the con-



Error Norm Data Set A Data Set B Data Set C Data Set D

New Hist. Old Hist. New Hist. Old Hist. New Hist. Old Hist. New Hist. Old Hist.

keabsk1=T 1.2% 0.8% 2.0% 1.2% 1.0% 1.3% 1.0% 1.5%
keabsk2=T 3.2% 1.1% 2.5% 1.6% 1.4% 1.7% 1.4% 1.8%
kerelk1 6.9% 246% 4.6% 8.8% 3.0% 8.3% 5.5% 15%
kem rel

k1 7.7% 585% 4.9% 9.2% 3.1% 12835% 5.8% 24187%
kecomb

k1, � = 1; � = 100 6.8 177 4.7 8.1 3.1 8.4 5.5 15.2
kecomb

k2, � = 1; � = 100 10.5 313 6.5 64 4.1 20.3 10.4 18.6
kecomb

k1, � = 1; � = 10 0.7 24 0.5 0.9 0.3 0.8 0.8 1.5
kecomb

k2, � = 1; � = 10 1.1 47 0.7 8.8 0.4 2.0 1.0 1.8

Table 2: Errors of the new wavelet-based histogram and that of the old wavelet-based histogram for query Type A using
various low-dimensional data sets.

struction of the wavelet decomposition is performed on the
dense data cube, which may be very large. In fact, if the data
is sparse and the amount of (nonzero) data is very large, then
it may not be feasible to do the wavelet decomposition on the
dense data cube in the process of constructing the approxi-
mation. To further reduce the I/O cost in constructing the
compact data cube, the partial sum data cube can be implic-
itly represented in a more compressed form, and some sparse
techniques may be used to reduce the I/O in computing the
wavelet decomposition. We can also do thresholding at each
level of the wavelet decomposition so that the sparsity of the
data cube is maintained during the course of the construction.
We can also extend the advantages of our approach for Type
A queries to the other types of queries as well. Results along
these important lines of investigation are very promising and
will be reported in a coming paper.

Other ongoing work deals with normalization and thresh-
olding methods based upon more sophisticated probability
distributions of query patterns. To get further improvements
in the space-accuracy tradeo�, we are working on quantizing
the wavelet coe�cients and entropy encoding of the quantized
coe�cients. We are developing dynamic e�cient algorithms
for maintaining the compact data cube, given updates in the
underlying raw data cube. We are also investigating aggre-
gations other than sum, such as min and max .
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