Describing and Manipulating XML Data

Sudarshan S. Chawathe
Department of Computer Science
University of Maryland
College Park, MD 20904
chaw@cs.umd.edu

Abstract

This paper presents a brief overview of data management using the Extensible Markup Language
(XML). It presents the basics of XML and the DTDs used to constrain XML data, and describes metadata
management using RDF. It also discusses how XML data is queried, referenced, and transformed using
stylesheet language XSLT and referencing mechanisms XPath and XPointer.

1 Describing XML Data

The Extensible Markup Language (XM[BPSM98] models data as a tree @Ementghat containcharacter
dataand haveattributescomposed of hame-value pairs. For example, here is an XML representation of catalog
information for a book:

<book>
<titte>The spy who came in from the cold</title>
<author>John <lastname>Le Carre</lastname></author>
<price currency="USD">5.59</price>
<review><author>Ben</author>Perhaps one of the finest...</review>
<review><author>Jerry</author>An intriguing tale of...</review>
<bestseller authority="NY Times"/>

</book>

Text delimited by angle brackets.(.>) is markup while the rest ixharacter data (Here, and in the rest of this

paper, we introduce concepts informally as needed for our discussion; for formal specifications, see [W3C99].)
Elements may contain a mix of character data and other elements; e.g., the book element contains the text “Here
are some...” in addition to elements suchtiie andprice . The element nametitle contains charac-

ter data denoting the book title and is contained intihek element. Similarly, the elemeptice contains
character data denoting the book’s price. This element also has an attribute cuameety ~ with valueUSD
represented using the syntattribute-name="attribute-value" within the element’s start-tag. In
general, element names are not unique; e.g., the book element in our example contains two review elements.
However, attribute names are unique within an element; e.g., the price element cannot have another attribute
named currency. The syntax permits an empty elembastseller></bestseller> to be represented

more concisely asbestseller/> . XML documents are calledrell-formedif they satisfy simple syntactic
constraints, such as proper delimiting of element names and attributes and proper nesting of start and end tags.

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1.1 DTD

As described above, XML provides a simple and general markup facility which is useful for data interchange.
The simple tag-delimited structure of well-formed XML makes parsing extremely simple. However, applications
that operate on XML data often need additional guarantees on the structure and content of such data. For example,
a program that calculates the tax on the sale of a book may need to assume that each book element in its XML
input includes a price subelement with a currency attribute and a numeric content. Such constraints on document
structure can be expressed usingacument Type Definition (DTDA DTD defines a class of XML documents

using a language that is essentially a context-free grammar with several restrictions. For example, one may use
the following DTD declaration to constrain XML documents such as those ibook example:

<IELEMENT book (title, author+, price, review*, bestseller?)>

<IELEMENT title ~(#PCDATA)>

<IELEMENT author (#PCDATA|lastnamelfirstname|fullname)*>

<I[ELEMENT price (#PCDATA)>

<IATTLIST price currency CDATA "USD"

source (listlregular|sale) list
taxed CDATA #FIXED "yes">

<I[ELEMENT bestseller EMPTY>

<IATTLIST bestseller authority CDATA #REQUIRED>
The first line of this declaration is axlement type declaratiotimat constrains the contents of theok element.
Following common convention, the declaration syntax uses commas for sequencing, parentheses for grouping,
and the operatorg, *, and+ to denote, respectively, zero or one, zero or more, and one or more occurrences
of the preceding construct. Note that the declaration requires every book element to have a price sub-element.
The second line declares the type for thle ~ element to bearsed character datémplying an XML pro-
cessor will parse the contents looking for markup). Note that the use of some element namesv{ew.,,
lasthname) without a corresponding declaration is not an error; such elements are simply not constrained by
this DTD. The last two lines declafgestseller to be an entity that must be empty and that must have an
authority attribute of typecharacter data . The declaration also indicates that lrece element may
have attributesurrency , of type character data and default vali8D source , with one of the three values
shown (an enumerated type) and default véilste ; andtaxed , with the fixed valug/es . The fixed attribute
type is a special case of the default attribute type; it mandates that the specified default value not be changed by
an XML document conforming to the DTD. Fixed-value attributes are convenient for ensuring that data critical
to processing an element type is available with the desired value without requiring it to be explicitly specified for
each element of that type. Our example DTD specifies that the book in our XML example must be taxed.

An XML document that satisfies the constraints of a DTD is said taddiel with respect to that DTD. The
DTD associated with an XML document may be specified using several methods, one of which is the inclusion
of adocument type declaratiohboCTYPE BOOKCATALOG SYSTEM “http:/tt.com/bookcatalog.dtd"> . in a special
section near the beginning of a document, callegiitdog. This declaration indicates that the XML document
claims validity with respect to thBOOKCATALOBTD which may be found at the indicated location.

The data modeling facilities provided by DTDs are insufficient for many applications. For example, we can-
not use DTDs to require that the value of the elenmitte be a fixed-precision real number in the range zero
through 10000 with two digits after the point. Thus our tax-calculation application cannot rely on XML validity
with respect to its DTD for such simple error-checking. The XML Schema proposal [BA9VIBM99] defines
facilities that address these needs.

1.2 RDF

TheResource Description Framework (RDIES99, BG99] provides a general method to describe metadata for
XML documents. More specifically, RDF describresourceswhich are objects (not necessarily Web-accessible)
identified usingUniform Resource Identifiers (URIEBLFM98]. The attributes that are used to describe re-
sources are callgotoperties RDFstatementassociate a property-value pair with a resource; they are thus triples
composed of aubject(resource), redicate(property), and awbject(property value).

For example, suppose we associate the bd://tt.com/books with the XML document in our
book example above. We may indicate that the XML document is owned by “Jane Doe” using an RDF state-
ment with the following triple: (Subject: http://tt.com/books; Predicate:Owner; Object: "Jane Doe")
Such RDF statements are graphically represented using ovals for resources, rectangles for literal values, and di-
rected arcs for properties:

http://tt.com/books Owner Jane Doe

The value of a property is not required to be a literal such as the string “Jane Doe” above; it may be another re-
source. For example, the following RDF graph indicates that the owner of the books data is the resource identified
by URI http://ssn.gov/12345 , Which has the name Jane Doe and title Editor.

http://tt.com/books Owner http://ssn.gov/12345 name

Wects
-t) Jane Doe
rdf:Bag lype title
espionage” rdf:_1 rd& mystery Editor

The above example also illustrates the R&aftainerfacility. The subjects property of the books resource has
the bag{espionage, mystery} as its value. RDF also provides container types sequence and alternative.
Note that, like all RDF properties, the subjects property in our example has a single value (the bag). To make a
statement about each member of a container, one mustistebutive referenattribute that intuitively modifies
the meaning of the description element from a single statement to a container of statements (one for each element
of the referenced container) [LS99].
RDF also specifies a concrete syntax based on XML for expressing RDF statements. For example, here is a
complete XML document representing the above RDF graph:
<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://w3.0rg/TR/1999/PR-rdf-syntax#"
xmins:bs="http://myschemas.org/books-schema#">
<rdf:Description about="http://tt.com/books">
<bs:Owner rdf:resource="http://ssn.gov/12345"/>
</rdf:Description>
<rdf:Description about="http://ssn.gov/12345">
<bs:Name>Jane Doe</bs:Name>
<bs:Title>Editor</bs:Title>
</rdf:Description>
<rdf:Description about="http://tt.com/books">
<bs:Subjects>
<rdf:Bag><rdf:li>espionage</rdf:li><rdf:li>mystery</rdf:li></rdf:Bag>
</bs:Subjects>
</rdf:Description>
</rdf:RDF>

This example also introduces some more XML concepts. Although technically not required, XML documents
should begin with aXML declaration similar to the one on the firstline of our example, identifying the version of
XML used. Element and attribute names appearing in an XML document may be qualifiekdHimgpmespace
declarations|[BHL99] such as those on lines 3—4 above. Our example introduces two namespaces. The first is
identified using the URMttp://w3.0rg/TR/1999/PR-rdf-syntavahd is assigned a shorthardf . This namespace
contains the elements and attributes defined in [LS99]. The second is an imagdaks/ schemaamespace
containing properties that describe books (e€wne); it is assigned the shortharis. Namespaces are an
important addition to the base XML recommendation because they permit distributed, autonomous development
of XML schemas without fear of name clashes. URIs are used in namespaces only for convenience in generating
unigue names and are not required to identify any Web resource.

5

RDF permits an intensional definition of bags using URIs. Such a definition is implicit in the usdiof a
tributive referentof typeforEachPrefix . For example, théorEachPrefix attribute below intensionally
defines a bag containing all resources whose URIs have the specified prefix and establishes the Creator and Pub-
lisher of each resource in the bag.

<rdf:RDF xmins:rdf="http://w3.0rg/TR/1999/PR-rdf-syntax#"
xmins:DC="http://purl.org/DC#">
<rdf:Description aboutEachPrefix="http://cs.umd.edu/ chaw">
<DC:Creator>Sudarshan S. Chawathe</DC:Creator>
<DC:Publisher>Dept. Computer Science, Univ. of Maryland</DC:Publisher>
</rdf:Description>
<rdf:RDF/>
The above example uses terms from heblin Corecontent description model which is described at the URI

shown. This model predates RDF and the RDF Schema recommendation [BG99] includes a schema for it.

One often needs to make statements about other statements (e.g., “Foo believes that the creator of Bar is
Baz"). For this purpose, RDF allows a statement tadied It can be transformed into a resource of type
statement , with propertiesubject , predicate , andobject ,to which additional properties (e.g.,
authority andPGP-signature below) may be attached:

<rdf:Description>
<rdf:subject>Bar</rdf:subject>
<rdf:predicate resource="http://purl.org/DC#Creator"/>
<rdf:object>Baz</rdf.object>
<rdf:type resource="http://w3.0rg/TR/1999/PR-rdf-syntax#Statement"/>
<authority>Foo</authority>
<PGP-signature>XmdkA093cDks...</PGP-signature>
</rdf:Description>

2 Manipulating XML Data

Given an XML document, one often needs to transform it to better suit the needs of an application. For instance,
we may wish to generate a printed catalog containing information about all the books in our running example. In
one printed catalog, we may wish to include only the title, authors, and price of each book, skipping other details
such as reviews. We may also wish to generate a smaller catalog containing only bestsellers. Further, we may
wish to automatically generate a table of contents for these catalogs. Of course, one can implement such applica-
tions by writing procedural programs that access the required parts of the source XML document, perhaps using
a convenient object interface such asEreeument Object Model (DOMA T98]. However, XML applications,

like database applications, stand to benefit from a declarative languages. Note that the languages described in
this section, like RDF in the previous section, operate on the logical tree structure of an XML document (e.g., as
supported by DOM), not on its serialization syntax.

2.1 XSL

The Extensible Stylesheet Language (X8La language for transforming and formatting XML. Recently, the
transformation and formatting parts of XSL were separated. In this paper, we focus X8ltheansformation
language calledXSLT[8], and the relate&KPath[7] and XPointerproposals [DJ99].

An XSLT stylesheet is a collection tfansformation ruleshat operate (non-destructively) on a source XML
document (source tree) to produce a new XML document (result tree). Each rule consigatgfraand a
template During rule processing, patterns are matched against the nodes of the source tree, and the template
is instantiated (typically using references to the matched nodes) to produce part of the result tree. Templates
may contain, in addition to literals and references to matched nodes, explicit instructions for creating result tree
fragments. Rule processing starts by instantiating the template of the rule that matches the root element of the
source tree. (XSLT uses a conflict resolution mechanism when several rules match a node and default rules when
no rules match a node.) Additional elements are processed only when they have been selected for processing by
the template of some previously processed element.

Here is an XSL stylesheet for transforming an XML document contaiboak elements (from our running
example) to an XHTML [XHT99] document that pretty-prints the title, author, and price of each book, and that
includes only the first review for each book. (XHTML is a reformulation of HTML 4.0 in XML.)

<xsl:stylesheet xmins:xs|="http://w3.org/XSL/Transform/1.0"
xmins="http://w3.org/TR/xhtmI1"
indent-result="yes">
<l-- Rule 1 --> <xsl:template match="/">
<html><head><title>Our New Catalog</title></head>
<body>
<xsl:apply-templates/>
</body>
</html>
</xsl:template>
<I-- Rule 2 --> <xslitemplate match="book/title">
<hl><xsl:apply-templates/></h1>
</xsl:template>
<!-- Rule 3 --> <xslitemplate match="book/author">
<xsl:apply-templates/>
</xsl:template>
<l-- Rule 4 --> <xslitemplate match="book/price">
<xsl:apply-templates/> <xsl:apply-templates select="@*">
</xsl:template>
<!I-- Rule 5 --> <xslitemplate match="book/review[1]" priority="1.0">
<xsl:apply-templates/>
</xsl:template>
<l-- Rule 6 --> <xslitemplate match="book/review" priority="0.5">
</xsl:template>
</xsl:stylesheet>
The first three lines declare the XSL and XHTML namespaces used by the stylesheet. The XHTML namespace
is made the default namespace (by skipping the local shorthand in the declaration); thus, unqualified element
and attribute names (e.¢pead) are implicitly in the XHTML namespace. (In XML, text between gt@mment
delimiters<i-- and--> is ignored by processors.) Eamplate element describes one transformation rule.
Thematch attribute of a template element specifies the rule pattern while its content is the template used to pro-
duce the corresponding portion of the result tree. The pattetof‘the first rule denotes the root of the source
tree. The template contains some standard XHTML header and trailer constructpply®emplates el-
ement is a rule-processing instruction that denotes recursive processing of the contents of the matched element.
(XSLT includes several other instructions which permit templates with constructs such as for-loops, conditional
sections, and sorting.) The second rule’s pattebook/title " matches ditle element if its parent is
abook element. The template calls for recursive processing of the contents, enclosed in XHTML literals for
bold display €b>...). XSL processing includes implicit rules that match elements, attributes, and char-
acter data (text) not matched by any explicit rules; these rules simply copy data from source to result tree. In
our example, all character data (such as the the text “The spy...” in the title) is copied to the result tree. Rule 4,
for processingorice elements, is similar but includes an additional apply-template instruction to extract the
currency attribute using the synta®* Rule 5 matches only the firstview elementin eacbook element
due to the [1] ” specification. The template simply copies the contents to the result tree (using recursive pro-
cessing withapply-templates combined with the default rules). We ensure that the first review for each

book is processed using Rule 5 instead of Rule 6 by assigning Rule 5 a pigbréy
2.2 XPath

XSLT rules contain patterns that are matched against nodes (elements, attributes, etc.) in the XML source tree.

The language for specifying these patternXML Path Language (XPatlY]. Principally, XPath defines the

syntax and semantics path expressionsuch as the following, which matches the lesgport child (in doc-

ument order) of theveather descendants of the node with unique identifieworites "
id(“favorites")/descendant::weather/child::report[position()=last()]

Path expressions are evaluated goatextconsisting of a node called tloentext nodea set of nodes called
the context node lista set of variable bindings, a function library, and the set of namespaces in scope. Path
expressions may helative, selecting nodes by navigating from the current context nodehsulute selecting
nodes by navigating from the document root. A path expression consists of a sequénsepafratedteps
where a step is hasisfollowed by an optional list opredicates Informally, a basis indicates a navigational
selection of nodes based on the current context, while the predicate list narrows the list of selected nodes using
properties such as position and value. A basis is of the faxieBName::NodeTestvhereAxisNameaefers to one
of several inter-node relationship types awmaldeTests a selection condition based on this relationship.

Our path expression example above has three steps: (i)a predefined function that selects the (unique) node that
has ariD attribute of value favorites ”; (ii) a basisdescendant and node tesveather thatreturns a list,
in document order, of alveather descendants of the context node; and (iii) navigation from thesgher
nodes, giving a list of theireport children, which are filtered using the predicate in square brackets to yield
only the lastreport child for eachweather node (in document order). The functiposition returns the
position of the current context node (at evaluation time) in the context node list, lasiile returns the number
of nodes in this list. These functions are from the XRadte function library which includes other functions
that return properties of the context node and list as well as common utility functions on numbers, strings, and
booleans. Note that the result of performing a basis step is a list of context nodes, not a set. The list order depends
on the axis. Intuitively, the basis nodes are in ascending order of distance from the context node.

In addition tochild anddescendant , XPath provides the following axes. Tlparent axis contains
the parent, if any, of the context node; the parent of an attribute or namespace node is defined to be the ele-
ment it modifies. Théollowing-sibling axis contains siblings of the context node that precede it in the
document. Thdollowing axis contains only element nodes that strictly follow the context node in the doc-
ument. Descendants of the context node are excludedpfHoeding axis is analogous; it contains element
nodes that strictly precede the context node. aheestor axis contains the proper ancestors of the context
node (based on thearent axis). Theattribute (namespace) axis contains the attribute (respectively,
namespace) nodes attached to the context node if it is an element node, and is empty otherwise. Finally, the
ancestor-or-self anddescendant-or-self axes are defined as their names suggest.

Node tests may also use constraints on attribute nodes. For our books example, the following XPath selects
book nodes whose price child has attribute currency equaBidand attribute source equal to

list: root()/descendant::book/child:price[attribute::currency="USD"
and attribute::source="list")/parent::node()

This syntax for path expressions is verbose. XPath also defingstaaviated syntaky mapping it to this syn-
tax. For example,/foo and.//foo select allfoo children and descendants, respectively, of the context

node;./foo[3] selects the thirdoo child of the context node. Further, ™ and “.. " are abbreviations for
self::node() andparent::node() , respectively. Thus, we may rewrite our two examples as:
id(“favorites")//weather/report[last()] and//book/price[@currency:"USD" and @source="list"]/..

2.3 XPointer

Applications may need to address precise portions within XML documents that cannot be modified, e.g., an XML
tutorial may wish to annotate specific sections, paragraphs, or sentences of the XML recommendation [BPSM98]
without modifying it. (This application is described in [Bra98].) Addressing parts of XML documents is also
important when transforming XML using XSLT and XPath as described above. However, the addressing capa-
bilities of XPath are not sufficient. For example, the above application may wish to highlight a region of the
XML recommendation that is not a well-formed XML fragment. TXL Pointer Language (XPointefpJ99]

extends XPath to support such applications by adding two new axes to specify basis steps in XPath.

Therange axisaddresses the XML region bounded by the locations addressed by its two arguments. For
example, the following XPointer selects the document region between the first and fifth book reviews (inclusive)
for our running example:

/lbook/range::review[1], foIIowrnig sibling::review([4]
The range axis is extremely useful for denoting all regions that are marked using a pair of empty elements such

astA/ -edits- begrn /- end in the following example:
L fragment: ...<Observations>

<Temp> 98 99 101 92 <my-edits-begin/> 76 32 99 </Temp>
<Pressure> 30 31 33 32 </Pressure>
</Observations>
<Conclusion>Interestingly, <my-edits-end/>...
XPointer: /Irange::descendant::my-edits-begin,following::my-edits-end[1]
This XPointer specifies a range beginning at eaghedits-begin element and ending at the next
my-edits-begin element. Itillustrates two restrictions on the range axis: (i) although its first argument may
reference multiple locations, each such location must be followed by exactly one location referenced by the sec-
ond argument; (ii) unlike other axes, a range axis may denote regions that cannot be mapped to well-formed con-
text node lists (e.g., the region between the edit markers above). Hence, range axis results cannot be processed
further using the XPointer mechanism. (They are intended for use by application programs.)

Thestring axis selects regions using character-based matches (in contrast with the node-based matches used
by other axes). The expressiostfing:: n,M,p,l,” wheren, p, andl are integers anifl is a string, selects the
sequence dfcharacters starting at tipgh position following the last character of tl&h occurrence of the pat-
ternM. For our running example, the following selects the tenth occurrence of “spy” within a book review element
or its descendants, along with 20 characters before and after the makdeview//string::10,"spy",23,43 .

XPointer also adds two functions that specify absolute location paths (similartcettieid() expressions
used by XPath). Theere() function locates the element that directly contains (as content or attribute) the
XPointer itself (instead of a node in the source tree). The absence of such an element is an earigiri{he
function is intended for link-traversal and refers to the resource from which the traversal in context began, the
absence of such a traversal signaling an error.

References

[AT98] V. Apparao et al. Document Object Model (DOM) level 1 specification version 1.0. W3C Recommendation,
October 1998. Available dtttp://www.w3.0rg/TR/REC-DOM-Level-1-19981001

[BG99] D. Brickley and R. Guha. Resource Description Framework (RDF) schema specrfrcatron W3C Proposed
Recommendation, March 1999. Availablendtp://www.w3.org/TR/PR-rdf-schema

[BHL99] T.Bray, D. Hollander, and A. Layman. Namespaces in XML. World Wide Web Consortrum Recommendation.
Available athttp://www.w3.0rg/TR/REC-xml-names ,January 1999.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. IETF (Internet Engineering Task Force) RFC 2396: Uniform
Resource Identifiers (URI): Generic syntax, August 1998. Availabitpt//www.ietf.org/

[BLM T99] D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and H. Thompson. XML schema part 1: Structures.
W3C Working Draft, May 1999. Available &ttp://www.w3.0rg/TR/1999/xmlschema-1/

[BM99] P. Biron and A. Malhotra. XML schema part 2: Datatypes. W3C Working Draft, May 1999. Available at
http://www.w3.0rg/TR/1999/xmlschema-2/

[BPSM98] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensrble markup language (XML) 1.0. World Wide Web Con-
sortium Recommendation. Availablel#tp://www.w3.org/TR/REC-xml , February 1998.

[Bra98] T. Bray. Using XML to build the annotated XML specification, September 1998. Available at
http://www.xml.com/pub/98/09/exexegesis-0.html

[CD99] J. Clark and S. DeRose. XML path language (XPath) version 1. 0 W3C Working Draft, July 1999. Available
athttp://www.w3.org/TR/WD-xpath-19990709

[Cla99] J. Clark. XSL transformations (XSLT) version 1. 0. WsC Working Draft, July 1999. Available at
http://www.w3.0rg/TR/WD-xslt-19990709

[DJ99] S. DeRose and R. Janiel Jr. XML pointer Ianguage (XPointer). W3C Working Draft, July 1999. Available at
http://wvww.w3.0rg/TR/WD-xptr-19990709

[LS99] O. Lassila and R. Swick. Resource Description Framework (RDF) model and syntax specification. W3C Pro-
posed Recommendation, January 1999. Availablgtpt//www.w3.0rg/TR/PR-rdf-syntax

[W3C99] The World-Wide Web Consortiunmttp://www.w3.org/ ,1999.

[XHT99] XHTML 1.0: The extensible hypertext markup language. W3C Working Draft, May 1999. Available at
http://www.w3.0rg/TR/1999/xhtml|1-19990505/

