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Motivation: New Multidimensional Data 
Intensive Applications

� Multidimensional data sets: (w/ dimension & measure)
� Remote sensory date (from JPL): 
<latitude, longitude, altitude, time, temperature>

� Sensor readings from GPS ground stations (from NASA):
<lat, long, t, velocity>

� Petroleum sales (from Digital-Government research center): 
<location, product, year, month, volume>

� ACOUSTIC data (from UCLA sensor-network project):
<IPAQ-id, volume-id, event#, time, value>

� Market data (from NCR): <store-location, product-id, date, price, sale>

� Large size, e.g., current (toy!) NASA/JPL data set: 
� Past 10 years, sampling twice a day, at a lat-long-alt grid of 64 * 128 

* 16, recording 8 bytes of temperature & 16 bytes of dimensions
� This is 6 MB of data per day; a total of 21 GB for 10 years
� Increase: twice an hour sampling, 1024 * 4096 * 128 grid, …
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Motivation: Multidimensional Applications

� I/O and computationally complex queries
� Range-aggregate queries (w/ aggregate function)

• Average temperature, given an area and time interval
• Average velocity of upward movement of the station
• Total petroleum sales volume of a given product in a given 

location and year
• Number of jackets sold in Seattle in Sep. 2001

� Tougher queries:
• Covariance of temperature and altitude (correlation) 
• Variance of sale of petroleum in 2002 in CA

� Quick response-time (interactive):
� the results can be approximate and/or 

progressively become exact
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Recap! 

� Multidimensional data
� Large data
� Aggregate queries
� Approximate answers
� Progressive answers

� Multi-resolution compression

� Wavelets!
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Data Cube Approximation and Histograms 
via Wavelets

J. S. Vitter, M. Wang and B. Iyer
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Outline

� Motivation
� Technique
� Complexity Analysis
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Motivation

� There are a number of scenarios in which 
a user may prefer an approximate answer 
in a few seconds over an exact answer 
that requires tens of minutes or more to 
compute. 

� Another consideration is that the data 
cube may be remote and currently 
unavailable, so that finding an exact 
answer is not an option, until the data 
again become available.
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Technique

1. In a preprocessing step, they form the partial 
sum data cube P from the (raw) data cube A. (In 
their method, they further process P by 
replacing each cell value by its natural 
logarithm.)

2. They compute the wavelet decomposition of P, 
obtaining a set of N coefficients, where N is the 
size of array A.

3. They keep only the C most significant wavelet 
coefficients, for some C that corresponds to the 
desired storage usage and accuracy. The 
choice of which C coefficients to keep depends 
upon the particular thresholding method they 
use.
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1. Computing the Partial Sum Datacube

� Why wavelet decompose P and not A?
� P is monotone nondecreasing, and a compact 

data cube built on P seems to give a better 
approximation than one built directly on A.

� To answer a range-sum query using the 
compact data cube built on P, all they need to 
do in the on-line phase is to reconstruct the 
values corresponding to the boundaries of the 
ranges (instead of reconstructing all the 
values covered by the query, as in an 
extended data cube).
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2. Wavelet Decomposition of the Partial Sum 
Data Cube P

� Wavelet basis function: Haar wavelets:
� h=[ ½ ½]
� g=[ -½ ½]

� One dimensional “signal”: [2, 2, 7, 11]
Resolution Averages Detail Coefficients

4 [2, 2, 7, 11]
2 [2, 9] [0, 2]
1 [5½ ] [3½]
� Wavelet transform of the original signal is the 

overall average of the original signal followed by 
the detail coefficients in the order of increasing 
resolutions: [5½ , 3½ , 0, 2]
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2. Wavelet Decomposition of the Partial Sum 
Data Cube P

� Loss less: the original signal can be 
reconstructed

� If signal correlated, lots of zeros in details 
� General: other filters, convolution, down-

sampling
� Multidimensional transform: 

� Perform a series of one-dimensional decompositions. 
� For example, in the two-dimensional case, we first 

apply the one-dimensional wavelet transform to each 
row of the data. Next, we treat these transformed rows 
as if they were themselves the original data, and we 
apply the one-dimensional transform to each column.
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3. Thresholding and Error Measures
� Keeping only C << N coefficients
� Question: Which are the “best” C coefficients to 

keep, so as to minimize the error of 
approximation

� It is well-known that thresholding by choosing 
the C largest (in absolute value) wavelet 
coefficients after normalization is provably 
optimal in minimizing the 2-norm (Euclidian 
distance) of the absolute errors, among all 
possible choices of C nonzero coefficients, 
assuming that the wavelet basis functions are 
orthonormal.

� The C wavelet coefficients together with their C 
indices (in the one-dimensional order of cells), 
form the compact data cube. 
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Complexity Analysis

� Storage: 2C
� Off-line Transformation of P: 

O(N/B  logM/B N/B) where B is the disk 
block size, N is the total cube size, and M 
is the internal memory size

� Partial sum value for a given cell can be 
computed using O(dC) space in 
O(ΣΣΣΣ1<=i<=d min{C, log|Di|}) where |Di| is the 
size of dimension i of the cube (out of d 
dimensions)
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ProPolyne: A Fast WaveletProPolyne: A Fast Wavelet--based Algorithm based Algorithm 
for Progressive Evaluation offor Progressive Evaluation of

Polynomial RangePolynomial Range--Sum QueriesSum Queries

Rolfe Schmidt and Cyrus Shahabi
University of Southern California

Dept. of Computer Science
Los Angeles, CA 90089-0781

shahabi@usc.edu
http://infolab.usc.edu
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Approach: 
Enabling Data Manipulation, Query & Analysis 

in the WAVELET Domain 

� Everybody else’s idea: let’s compress data
� Reason: save space? No not really!

� Implicit reason: queries deal with smaller data sets and 
hence faster (not always true!)

� More problems: not only query results can never be 100% 
accurate anymore, but also different queries can have very 
different error rates given their areas of interest

� Why? At the data population time, we don’t know which 
coefficients are more/less important to our queries! (also 
observed by [Garofalakis & Gibbons, SIGMOD’02], but they proposed 
other ways to drop coefficients assuming a uniform workload)

• Different than the signal-processing objective to reconstruct 
the entire signal as good as possible
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Approach: 
Enabling Data Manipulation, Query & Analysis 

in the WAVELET Domain 

� Our idea/distinction: storage is cheap and 
queries are ad-hoc; let’s keep all the wavelet 
coefficients! (no data compression)

� Opportunity: At the query time, however, we 
have the knowledge of what is important to 
the pending query

� ProPolyne: Progressive Evaluation of 
Polynomial Range-Aggregate QueryQuery
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Outline

� ProPolyne: Overview and Features
� ProPolyne: Details
� Comparison Table
� Performance Results
� Conclusion
� How to Evaluate Multiple Range-Sum 

Queries Progressively
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Overview of ProPolyne

� Define range-sum query as dot product of query 
vector and data vector

� Offline: Multidimensional wavelet transform of data
� At the query time: “lazy” wavelet transform of 

query vector (very fast) 
� Dot product of query and data vectors in the 

transformed domain ���� exact result in O(2 log N)d

� Choose high-energy query coefficients only ���� fast 
approximate result (90% accuracy by retrieving < 10% of data)

� Choose query coefficients in order of energy ����
progressive result
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ProPolyne Features

� “Measure” can be any polynomial on any 
combination of attributes
� Can support COUNT, SUM, AVERAGE
� Also supports Covariance, Kurtosis, etc.
� All using one set of pre-computed aggregates

� Independent from how well the data set can be 
compressed/approximated by wavelets
� Because: We show “range-sum queries” can always be 

approximated well by wavelets (not always HAAR though!) 

� Low update cost: O(logd N)
� Can be used for exact, approximate and progressive

range-sum query evaluation
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Outline

� ProPolyne: Overview and Features
� ProPolyne: Details

� Polynomial Range-Sum Queries as Vector Queries
� Naive Evaluation of Vector Queries
� Fast Evaluation of Vector Queries 
� Progressive/Approximate Evaluation of Vector Queries

� Comparison Table
� Performance Results
� Conclusion
� How to Evaluate Multiple Range-Sum Queries 

Progressively



21

CSCI585CSCI585

C. Shahabi

Polynomial Range-Sum Queries
� Polynomial range-sum queries: Q(R,f,I)

� I is a finite instance of schema F
� R SubSetOf Dom(F), is the range
� f : Dom(F) ���� R is a polynomial of degree δδδδ
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� Example: F = (Age, Salary)
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Polynomial Range-Sum Queries as “Vector 
Queries”

� The data frequency distribution of I is the function             
∆∆∆∆I : Dom(F) ���� Z that maps a point x to the number of times 
it occurs in I

� To emphasize the fact that a query is an operator on the 
data frequency distribution, we write

� Example: ∆∆∆∆(25,50)=∆∆∆∆(28,55)=…=∆∆∆∆(57,120)=1 and ∆∆∆∆(x)=0 
otherwise.

),,(),,( IfRQIfRQ ∆=

Age   Salary

25 $50k
28 $55k
30 $58k
50 $100k
55 $130k
57     $120k
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Ha[i]’s Ga[i]’s

a[i]’sji 20 <≤

120 −<≤ ji

H2a [i]’s GHa[i]’s

H3a[i]’s GH2a[i]’s

220 −<≤ ji

320 −<≤ ji

H operator: computes a 
local average of array a at 
every other point to 
produce an array of 
summary coefficients: Ha

Example (Haar) h=[1/2,1/2]

G operator: measures how 
much values in the array a
vary inside each of the 
summarized blocks to 
compute an array of detail 
coefficients: Ga

Example (Haar) g=[1/2,-1/2]

Overview of Wavelets

â

DWT of a

Summary coefficients
of a at level 2Detail coefficients

of a at level 2

aka wavelet coefficients of a

∑ ∑= ][ˆ][ˆ][][ ηη baibia
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Naive Evaluation of Vector Queries Using 
Wavelets

� Hence, vector queries can be computed in the wavelet-
transformed space as:

� Algorithm:
� Off-line transformation of data vector (or “data distribution 

function”, i.e., ∆∆∆∆, to be exact)
• O (|I|ldlogdN) for sparse data, O (|I|) = Nd for dense data

� Transform the query vector at submission
• O (Nd) !

� Sum-up the products of the corresponding elements of data 
and query vectors

• Retrieving elements of data vector: O (Nd) !
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Fast Evaluation of Vector Queries Using 
Wavelets

� Main intuitions: 
� “query vector” can be transformed quickly because 

most of the coefficients are known in advance
� “Transformed query vector” has a large number of 

negligible (e.g., zero) values (independent on how well 
data can be approximated by wavelet)

� Example: Haar filter & COUNT function on R=[5,12] on 
the domain of integers from 0 to 15:

}0,
2

1,0,0,0,
2

1,0,0,
2
1,0,

2
1,0,

22
3,

22
3,

2
1,2{ˆ

}0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0{
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R

R

χ

χ

GaGHaGH2aGH3aH4a At each step, you 
know the zeros
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The Lazy Wavelet Transform

Computing Summary 
Coefficients (Haar Filter, 
COUNT function)

Outside the 
range, summary 
coeffs are 

½ *0 + ½ * 0 = 0.

At boundary of range, 
summary coeff is     
½ *0 + ½ * 1 = ½

Inside range, summary 
coeffs are ½ * 1 + ½ * 1 = 1

All summary 
coefficients 
computed in 
CONSTANT time!

The only 
“interesting”
activity happens 
on the boundary.

Summary coefficient 
array looks almost 
exactly like original 
array.
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The Lazy Wavelet Transform

Computing Detail 
Coefficients (Haar Filter, 
COUNT function)

Outside the 
range, detail 
coeffs are 

½ *0 - ½ * 0 = 0.

At lower boundary of 
range, detail coeff is     
½ *0 - ½ * 1 = -½

Inside range, detail coeffs
are ½ * 1 - ½ * 1 = 0

At upper boundary of 
range, detail coeff is     
½ *1 - ½ * 0 = ½

All detail 
coefficients 
computed in 
CONSTANT time!

The only 
“interesting”
activity happens 
on the boundary.

All but 2 detail 
coefficients at each 
level are equal to 
zero!
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Fast Evaluation of Vector Queries Using 
Wavelets …

� Technical Requirements:
� Wavelets should have small support (i.e., the shorter 

the filter, the better)
� Wavelets must satisfy a “moment condition”
� Supports any Polynomial Range-Sum up to a degree 

determined by the choice of wavelets
• E.g., Haar can only support degree 0 (e.g., COUNT), while 

db4 can support up to degree 1 (e.g., SUM), and db6 for 
degree 2 (e.g., VARIANCE)

� Standard DWT: ΟΟΟΟ (N)
� Our lazy wavelet transform: ΟΟΟΟ 

  

 (l log N), 

where l is the length of the filter
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Exact Evaluation of Vector Queries

Query:
SUM(salary) when 
(25 < age < 40) & 
(55k < salary < 150k)

# of Wavelet Coefficients: 837# of Nonzero Coordinates: 4380
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Approximate Evaluation of Vector Queries

With 150 
coefficients:
It is as if this 
query is being 
Submitted or 
evaluated
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Progressive Evaluation of Vector Queries
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Name of Technology Research Group Query 
Cost

Update 
Cost Storage Cost

Aggregate 
Function 
Support

Query 
Evaluation 

Support

Measure 
Known at 

Population?

PROPOLYNE
2001

USC
Schmidt & 
Shahabi

lg d N(4δ )d lg d N(2δ )d
N d Polynomial 

Range-Sums 
of degree δ

Exact, 
Approximate, 
Progressive

No

PROPOLYNE-FM
2001

USC
Schmidt & 
Shahabi

2 d lg d-1 N lg d-1 N N d-1
COUNT and 
SUM

Exact, 
Approximate, 
Progressive

Yes

Space-Efficient 
Dynamic Data Cube
2000

UCSB
El-Abbadi & 
Agrawal et. al

2 d lg d-1 N lg d-1 N N d-1 COUNT and 
SUM Exact Yes

Relative Prefix-Sum
1999

UCSB 4 d-1 N (d-1)/2 N d-1
COUNT and 
SUM

Exact Yes

Prefix-Sum
1997

IBM
Agrawal et. al

2 d-1 N d-1 N d-1
COUNT and 
SUM

Exact Yes

pCube/MRATree
2000/2001 UCSB and UC 

Irvine (Mehrota et. 
al)

N d-1 lg N N d COUNT and 
SUM Exact, 

Approximate, 
Progressive

Yes

Compact Data Cube
1998-2000

Duke and IBM
(Vitter et. al)

small ? small COUNT and 
SUM

Approximate Yes

Optimal Histograms
2001

AT&T
(Muthu et. al) small ? small COUNT and 

SUM

Approximate Yes

Kernel Density 
Estimators
1999

Microsoft
(Fayyad et. al) small ? small All efficiently 

computable 
functions

Approximate No
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Conclusion

� A novel  pre-aggregation strategy
� Supports conventional aggregates: COUNT, SUM 

and beyond: multivariate statistics
� First pre-aggregation technique that does not 

require measures be specified a priori
� Measures treated as functions of the attributes at the 

time
� Provides a data independent progressive and 

approximate query answering technique
� With provably poly-logarithmic worst-case query 

and update costs
� And storage cost comparable or better than 

other pre-aggregation methods


