
THE R+-TREE: A DYNAMIC INDEX FOR
MULTI-DIMENSIONAL OBJECTS+

Timos Sellis’v2, Nick Roussopoulos1~2 and Christos Faloutsos2

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract

The problem of indexing multidimensional objects
is considered. First, a classification of existing
methods is given along with a discussion of the
major issues involved in multidimensional data
indexing. Second, a variation to Guttman’s R-
trees (R+-trees) that avoids overlapping rectangles
in intermediate nodes of the tree is introduced.
Algorithms for searching, updating, initial packing
and reorganization of the structure are discussed in
detail. Finally, we provide analytical results indi-
cating that R+-trees achieve up to 50% savings in
disk accesses compared to an R-tree when search-
ing files of thousands of rectangles.

’ Also with University of Maryland Systems Research Center.

2 Also with University of Maryland Institute for Advanced

Computer Studies (UMIACS).

’ This research wsa sponsored partialy by the National Science

Foundation under Grant CDR-85-00108.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

1. Introduction

It has been recognized in the past that existing
Database Management Systems (DBMSs) do not
handle efficiently multi-dimensional data such as
boxes, polygons, or even points in a multi-
dimensional space. Multi-dimensional data arise in
many applications, to name the most important:

(1) Cartography. Maps could be stored and
searched electronically, answering efficiently
geometric queries [Choc84, Rous85].

(2) Computer-Aided Design (CAD). For example,
VLSI design systems need to store many
thousands of rectangles [Oust84,Gutt84b],
representing electronic gates and higher level
elements.

(3) Computer vision and robotics.

(4) Rule indexing in expert database systems
[StorMI. In this proposal rules are stored as
geometric entities in some multi-dimensional
space defined over ‘the database. Then, the
problem of searching for applicable rules is
reduced to a geometric intersection problem.

Since database management systems can be
used to store one-dimensional data, like integer or
real numbers and strings, considerable interest has
been developed in using DBMSs to store multi-
dimensional data as well. In that sense the DBMS
can be the single means for storing and accessing
any kind of information required by applications
more complex than traditional business applica-
tions. However, the underlying structures, data
models and query languages are not sufficient for
the manipulation of more complex data. The
problem of extending current data models and
languages has been considered by various people in
the past [ChanSl, Ston83, Gutt84b,Rous85]. In
this paper we focus on the problem of deriving
efficient access methods for multi-dimensional
objects.

507

The main operations that have been addressed
in the past are:

Point Queries: Given a point in the space,
find all objects that contain it

Region Queries: Given a region (query win-
dow), find all objects that intersect it

Of course these operations can be augmented with
additional constraints on simple one-dimensional
(scalar) data. In addition, operations like inser-
tions, deletions and modifications of objtcts should
be supported in a dynamic environment.

The purpose of this paper is to describe a new
structure, the R+-tree. Section 2 surveys existing
indexing methods and classifies them according to
some criteria. Then, in sections 3 and 4 we
describe R+-trees and the algorithms for searching,
updating and packing the structure. Section 5
presents some preliminary analytical results on the
searching performance of the R+-tree, especially as
it compares to the corresponding performance of
R-trees [Gutt84a]. Finally, we conclude in Section
6 by summarizing our contributions and giving
hints for future research in the area of multi-
dimensional data indexing structures.

2. Survey

In this section we classify and briefly discuss
known methods for handling multi-dimensional
objects. Our main concern is the storage and
retrieval of rectangles in secondary store (disk).
Handling more complex objects, such as circles,
polygons etc., can be reduced to handling rectan-
gles, by finding the minimum bounding rectangle
(MBR) of the given object. In our discussion, we
shall first examine methods for handling multi-
dimensional points, because these suggest many
useful ideas applicable to rectangles as well.

2.1. Methods for multi-dimensional points

The most common case of multi-dimensional
data that has been studied in the past is the case of
points. The main idea is to divide the whole space
into disjoint sub-regions, usually in such a way
that each sub-region contains no more than C
points. C is usually 1 if the data is stored in core,
or it is the capacity of a disk page, that is the
number of data records the page can hold.

Insertions of new points may result in further
partitioning of a region, known As a split. The
split is performed by introducing one (or more)
hyperplanes that partition a region further, into

disjoint sub-regions. The following attributes of
the split help to classify the known methods:

PO8itiOfl

The position of the splitting hyperplane is pre-
determined, e.g., it cuts the region in half
exactly, as the grid file does [Niev84]. We shall
call these methods fized. The opposite is to let
the data points determine the position of the
hyperplane, as, e.g., the k-d trees [Bent751 or
the K-D-B-trees [Robi81] do. We shall call
these methods adaptable. Nievergelt et al.
[Niev84) made the same distinction, using dif-
ferent terminology: what we call “fixed”
methods are those methods that organize the
embedding space, from which the data is
drawn, while they call the “adaptable” methods
as methods that organize the data to be stored.

Dimeneionality
the split is done with only one hyperplane (l-d
cut), as in the k-d trees. The opposite is to
split in all k dimensions, with k hyperplanes
(k-d cut), as the quad-trees [Fink741 and oct-
trees do.

Locality
The splitting hyperplane splits not only the
affected region, but all the regions in this direc-
tion, as well, like the grid file does. We shall
call these methods grid methods. The opposite
is to restrict the splitting hyperplane to extend
solely inside the region to be split. These
methods will be referred to aa brickwall
methods. The brickwall methods usually do a
hierarchical decomposition of the space, requir-
ing a tree structure. The grid methods use a
multi-dimensional array.

The usefulness of the above classification is two-
fold: For one, it creates a general framework that
puts all the known methods “on the map”. The
second reason is that it allows the design of new
methods, by choosing the position, dimensionality
and locality of the split, which might be suitable
for a given application. Table 2.1 illustrates some
of the most well-known methods and their attri-
butes according to the above classification.

Notice that methods based on binary trees or
quad-trees cannot be easily extended to work in
secondary storage based systems. The reason is
that, since a disk page can hold of the order of 50
pointers, trees with nodes of large fanout are more
appropriate; trees with two- or four-way nodes
usually result in many (expensive) page faults.

508 Proceedings of the 13th VLDB Conference, Brighton 1987

Table 2.1: Illustration of the classification.

2.2. Methods for rectangles

Here we present a classification and brief dis-
cussion of methods for handling rectangles. The
main classes of methods are the following:

(1) Methods that transform the rectangles into
points in a space of higher dimensionality
[Hinr83]. ’ l?or example, a 2-d rectangle (with
sides parallel to the axes) is characterized by
four coordinates, and thus it can be considered
as a point in a 4-d space. Therefore, one of the
prev?ously mentioned methods for storing
points can be chosen. Lauther [Laut78] and
Rosenberg [Rose851 used k-d trees. Hinrichs
and Nievergelt [Hinr83] suggested using the
grid file, after a rotation of the axes. The rota-
tion is necessary, in order to avoid non-uniform
distribution of points, that would lead the grid
file to poor performance.

(2) Methods that use space filling curves, to map a
k-d space onto a l-d space. Such a method,
suitable for a paged environment, has been sug-
gested, among others, by Orenstein [Oren86].
The idea is to transform k-dimensional objects
to line segments, using the so-called Z-
transform. This transformation tries to
preserve the distance, that is, points that are
close in the k-d space are likely to be close in
the l-d transformed space. Improved
distance-preserving transformations have been
proposed [Falo87b], which achieve better clus-
tering of nearby points, by using Gray codes.
The original z-transform induces an ordering of
the k-d points, which is the very same one that
a (k-dimensional) quad-tree uses to scan pixels
in a k-dimensional space. The transformation
of a rectangle is a set of line segments, each
corresponding to a quadrant that the rectangle
completely covers.

(3) Methods that divide the original space into
appropriate sub-regions (overlapping or dis-
joint). If the regions are disjoint, any of the
methods for points that we mentioned before,

Proceedings of the 13th VLDB Conference, Brighton 1987

can be used to decompose the space. The only
complication to be handled is that a rectangle
may intersect a splitting hyperplane. One solu-
tion is to cut the offending rectangle in two
pieces and tag the pieces, to indicate that they
belong to the same rectangle. Recently, Gun-
ther [Gunt86] suggested a relevant scheme for
general polygon data, either convex or concave.
He suggests that the splitting hyperplanes can
be of arbitrary orientation (not necessarily
parallel to the axes). The first who proposed
the use of overlapping sub-regions was Gutt-
man with his R-Trees [Gutt84a]. R-trees are
an extension of B-trees for multi-dimensional
objects that are either points or regions. Like
B-trees, they are balanced (all leaf nodes
appear on the same level, which is a desirable
feature) and guarantee that the space utiliza-
tion is at least 5070. However, if R-Trees are
built using the dynamic insertion algorithms,
the structure may provide excessive space over-
lap and Hdead-spaceY in the nodes that result
in bad performance. A packing technique pro-
posed in [Rous85] alleviates this problem for
relatively static databases of points. However,
for update-intensive spatial databases, packing
cannot be applied on every single insertion. In
such an environment, the structure to be
described in the next section (R+-trees) avoids
the performance degradation caused by the
overlapping regions.

Space and time comparison of the above
approaches is an interesting problem, which we are
currently studying. As a first step, in section 5 we
provide some analysis for the R- and R+- tree
structures.

3. R+-Trees

In this section we introduce the R+-tree and
discuss the algorithms for searching and updating
the data structure.

3.1. Description

As mentioned above, R-trees are a direct exten-
sion of B-trees in k-dimensions. The data struc-
ture is a height-balanced tree which consists of
intermediate and leaf nodes. Data objects are
stored in leaf nodes and intermediate nodes are
built by grouping rectangles at the lower level.
Each intermediate node is associated with some
rectangle which completely encloses all rectangles
that correspond to lower level nodes. Figure 3.1
shows an example set of data rectangles and Figure

509

3.2 the corresponding R-tree built on these rectan-
gles (assuming a branching factor of 4).

Considering the performance of R-tree search-
ing, the concepts of coverage and overlap (Rous85]
are important. Coverage of a level of an R-tree is
defined as the total area of all the rectangles asso-
ciated with the nodes of that level. Overlap of a
level of an R-tree is defined as the total area con-
tained within two or more nodes. Obviously,
efficient R-tree searching demands that both over-
lap and coverage be minimized. Minimal coverage
reduces the amount of dead space (i.e. empty
space) covered by the nodes. Minimal overlap is
even more critical than minimal coverage. For a
search window falling in the area of k overlapping
nodes at level h-l, with h being the height of the
tree, in the worst case, k paths to the leaf nodes
have to be followed (i.e. one from each of the

I
c M

N

1 1 . . .i..

C _:

cl K B

q
III

Figure 3.1: Some rectangles organized into an R-tree

A B C

D E F G H I J K L h4 N 1

Figure 3.2: R-tree for the rectangles of Figure 3.1

overlapping nodes), therefore slowing down the
search from 1 to lk page accesses. For example, for
the search window W shown in Figure 3.3, both
subtrees rooted at nodes A and B must be searched
although only the latter will return a qualifying
rectangle. The cost of such an operation would be
one page access for the root and two additional
page accesses to check the rectangles stored in A
and B. Clearly, since it is very hard to control the
overlap during the dynamic splits of R-trees,
efficient search degrades and it may even degen-
erate the search from logarithmic to linear.

It has been shown, that zero overlap and cover-
age is only achievable for data points that are
known in advance and, that using a packing tech-
nique for R-trees, search is dramatically improved
[Rous85]. In the same paper it is shown that zero
overlap is not attainable for region data objects.
However, if we allow partitions to split rectangles
then zero overlap among intermediate node entries
can be achieved. This is the main idea behind the
R+-tree structure. Figure 3.4 indicates a different
grouping of the rectangles of Figure 3.1 and Figure
3.5 shows the corresponding R+-tree.

Notice that rectangle G has been split into two
sub-rectangles the first contained in node A and
the second in P. That is, whenever a data rectan-
gle at a lower level overlaps with another rectan-
gle, we decompose it into a collection of non-
overlapping sub-rectangles whose union makes up

q K B

Figure 3.3: An example of a “bad” search window

510 Proceedings of the 13th VLDB Conference, Brighton 1987

:. _.: :.
.i

Figure 3.4: The rectangles of Figure 3.1
grouped to form an R+-tree ,

Figure 3.5: The R+-tree built for Figure 3.4

the original rectangle. The term “data rectangle”
denotes a rectangle that is the minimum bounding
rectangle of an object (as opposed to rectangles
that correspond to intermediate nodes of the tree).
Avoiding overlap is achieved at the expense of
space which increases the height of the tree. How-
ever, because the space increase is logarithmically
distributed over the tree, the indirect increment of
the height is more than offset by the benefit of
searching multiple shorter paths. For example, if
we consider again the cost for a search operation
based on the window W of Figure 3.3 we notice
that only the root of the tree and ‘node P need be
accessed, thus saving us one out of three page
accesses.

R+-trees can be thought as an extension of K-
D-B-trees to cover non-zero area objects (i.e. not
only points but rectangles as well). An improve-
ment over the K-D-B-trees is the reduced

Proceedings of the 13th VLDB Conference, Brighton 1987

coverage; the nodes of a given level do not neces-
sarily cover the whole initial space. Moreover,
compared to R-trees, R+-trees exhibit very good
searching performance, especially for point queries,
at the expense of some extra space. See section 5
for analytical results supporting the above discus-
sion.

After this brief discussion to motivate the intro-
duction of R+-trees we move now to formally
describe the structure. A leaf node is of the form

(oid, RECT)

where oid is an object identifier and is used to refer
to an object in the database. RECT is used to
describe the bounds of data objects. For example,
in a 2-dimensional space, an entry RECT will be of
the form

(Z~ow,Shish,YIor,Yhigh)

which represents the coordinates of the lower-left
and upper-right corner of the rectangle. An intet-
mediate node is of the form

where p is a pointer to a lower level node of the
tree and RECT is a representation of the rectangle
that encloses.

The R+-tree has the following properties:

(1) For each entry (p, RECT) in an intermediate
node, the subtree rooted at the node pointed to
by p contains a rectangle R if and only if R is
covered by RECT. The only exception is when
R is a rectangle at a leaf node; in that case R
must just overlap with RECT.

(2) For any two entries (pI,REcT,) and (p&EC&)
of an intermediate node, the overlap between
REGT, and REClIz is zero.

(3) The root has at least two children unless it is a
leaf.

(4) All leaves are at the same level.

Let us assume that A4 is the maximum number of
entries that can fit in a leaf or intermediate node.
Notice that one property satisfied by an R-tree but
not an R+-tree is that in the former every leaf
node contains between M/2 and M entries and
each intermediate node contains between M/2 and
M nodes unless it is the root. K-D-B-trees do not
satisfy this property either. However, Robinson
showed with his experimental results that storage
utilization in K-D-B-trees remains in acceptable
levels (SO%, which is only 10% below the average
B-tree utilization). Although, R-trees achieve
better space utilization at the expense of search

511

performance we believe that 10% degradation is a
minimal price to pay for the the search improve-
ment obtained in R+-trees (see section 5).

Another interesting comment here is due to the
fact that populating the nodes as much as possible
will result to a decrease in the height of the tree at
the expense of more costly updates. Therefore
another parameter of the problem should be the
initial packing algorithm used to populate an R+-
tree and its reorganization techniques. In the fol-
lowing we discuss the algorithms for searching and
updating an R+-tree. Section 4 presents the pack-
ing algorithm.

3.2. Searching

The searching algorithm is similar to the one
used in R-trees. The idea is to first decompose the
search space into disjoint sub-regions and for each
of those descend the tree until the actual data
objects are found in the leaves. Notice that a
major difference with R-trees is that in the latter
sub-regions can overlap, thus leading to more
expensive searching. The searching algorithm is
shown in Figure 3.6.

Input:

Algorithm Search (R,W)

An R+-tree rooted at node R and a search win-
dow (rectangle) W

Output:
All data objects overlapping W

Method:
Decompose search space and recursively search
tree

Sl. [Search Intermediate Nodes]
If R is not a leaf, then for each entry (p,RECT)
of R check if RECT overlaps W. If so,
Search(CHILD,Sfl RECTJ, where CHILD is
the node pointed to by p.

S2. [Search Leaf Nodes]
If R is a leaf, check all objects RECT in R and
return those that overlap with W.

Figure 3.8: Searching algorithm

3.3. Insertion

Inserting a new rectangle in an R+-tree is done
by searching the tree and adding the rectangle in
leaf nodes, The difference with the corresponding

algorithm for R-trees is that the input rectangle
may be added to more than one leaf node, the rea-
son being that it may be broken to sub-rectangles
along existing partitions of the space. Finally,
overflowing nodes are split and splits are pro-
pagated to parent as well as children nodes. The
latter must be updated because a split to a parent
node may introduce a space partition that affects
the children nodes as well. This is very similar to
the downwards split that Robinson introduced to
K-D-B-trees. We discuss this problem in a later
subsection in the context of the node splitting algo
rithms. Figure 3.7 illustrates the insertion algo-
rithm.

Input:

Algorithm Insert (RJR)

An R+-tree rooted at node R and an input rec-
tangle IR

output:
The new R+-tree that results after the inser-
tion of IR

Method:
Find where IR should go and add it to the
corresponding leaf nodes

Il. [Search Intermediate Nodes]
If R is not a leaf, then for each entry (p,RECT)
of R check if RECT overlaps IR. If so,
Insert(CHILD,IR), where CHILD is the node
pointed to by p.

12. [Insert into Leaf Nodes]
If R is a leaf, add IR in R. If after the new rec-
tangle is inserted R has more than M entries,
SplitNode to re-organize the tree (see sec-
tion 3.5).

Figure 3.7: Insertion algorithm

3.4. Deletion

Deletion of a rectangle from an R+-tree is done
as in R-trees by first locating the rectangle(s) that
must be deleted and then removing it(them) from
the leaf nodes. The reason that more than one rec-
tangles may have to be removed from leaf nodes is
that the insertion routine outlined above may
introduce more than one copies for a newly
inserted rectangle. Figure 3.8 shows the deletion
algorithm.

512 Proceedings of the 13th VLDB Conference, Brighton 1987

Input:

Algorithm Delete (RJR)

An R+-tree rooted at node R and an input rec-
tangle IR

Output:
The new R+-tree that results after the deletion
of IR

Method:
Find where IR is and remove it from the
corresponding leaf nodes.

Dl.

D2.

[Search Intermediate Nodes]
If R is not a leaf, then for each entry
(p,RECT) of R check if RECToverlaps IR. If
so, Delete(CHILD,IR), where CHILD is the
node pointed to by p.

[Delete from Leaf Nodes]
If R is a leaf, remove IR from R and adjust
the parent rectangle that encloses the remain-
ing children rectangles.

Figure 3.8: Deletion algorithm

Clearly after a lot of deletions the storage utiliza-
tion deteriorates significantly. In similar situations
with K-D-B-trees Robinson suggests that subtrees
should be periodically re-organized to achieve
better performance. Guttman also suggests a simi-
lar procedure where under-utilized nodes are emp-
tied and the “orphaned” rectangles are re-inserted
at the top of the tree. For brevity we will not give
in detail an algorithm for tree re-organization. In
[Falo87c] we suggest some algorithms which we
plan to test in the near future.

3.6. Node Splitting

When a node overflows some splitting algorithm
is needed to produce two new nodes. Since we
require that the two sub-nodes cover mutually dis-
joint areas, we first search for a “good” partition
(vertical or horizontal) that will decompose the
space into two sub-regions. The procedure of
finding a good partition is very similar to the one
used by the packing algorithm and will thus be
described in more detail in the next section. For
reference, we call this procedure Partition.

Notice that, contrary to the R-tree splitting
algorithm, downward propagation of the split may
be necessary. For example, in Figure 3.9, suppose
A is a parent node of B which in turn is a parent

node of C. Then, if node A has to be split, lower
level nodes B and C have to be split as well.

: . .,

i.~ .._.. i

j

i

:, .__._ ._:
i : ,c.. L . ..__ ____ j ; j

jA
,_.___....._______.............: :

t .
a-------

Partition line

Figure 3.9: Recursive node splitting

This is due to property (1) of an R+-tree which
requires that a rectangle R should not be found in
a subtree rooted at a node A unless the rectangle
associated with A covers R completely. Hence,
nodes intersected by the partition must be split
recursively. The only exception is with leaf nodes.
Objects in the leaf nodes are not split; this is just
for efficiency reasons since rectangles in the leaf
pages cannot account for further downward splits.
In [Falo87c], we discuss some additional optimiza-
tion tactics that can be used to increase the space
efficiency of the tree regarding splitting of nodes.
The node splitting algorithm is illustrated in Fig-
ure 3.10.

Input:

Algorithm SplitNode (R)

A node R (leaf or intermediate)

output:
The new R+-tree

Method:
Find a partition for the node to be split, create
two new nodes and, if needed, propagate the
split upward and downward

SNl. [Find a Partition]
Partition R using the Partition routine of
the Pack algorithm (see next section). Let
RECT and p be the rectangle and pointer
respectively associated with node R. Also, let
S, and S, denote the two sub-regions result-
ing after the partition. Create

~~=(PI,REG) and n2=(p2,REcT2), the two
nodes resulting from the split of R, where
REm;=RECTn Si, for i=1,2.

Proceedings of the 13th VLDB Conference, Brighton 1987 513

SN2. [Populate New Nodes]
Put in ni all nodes (p,,REcT,) of R such that
RECT, lies completely in RECTi, for i=1,2.
For those nodes that
RECTJl REmi#RECTk (i.e. they just over-
lap with the sub-region)
a) if R is a leaf node, then put RECTk in
both new nodes
b) Otherwise, use SplitNode to recursively
split the children nodes along the partition.
Let (ph1,REC7’kl) and (p~,REcTk,) be the
two nodes after splitting (pk,REC&), where
RECT, lies completely in REmi, i=1,2.
Add those two nodes to the corresponding
node ni.

SN3. [Propagate Node Split Upward]
If R is the root, create a new root with only
two children, ni and n2.
Otherwise, let PR be R’s parent node.
Replace R in PR with ni and n2. If PR has
now more than M entries, invoke
SplitNode(

Figure 3.10: Node splitting algorithm

The above operations are the only ones needed
to keep the R+-tree in a valid form. However, as
mentioned above another significant operation is
the initial packing of the tree. This is especially
useful when a file with data rectangles is given and
the system is required to build an R+-tree on top
of that file. In this case “good” (with respect to
some criteria) initial set up can be achieved by
carefully grouping the rectangles at the leaf level.
This problem is the subject of the next section.

4. Packing Algorithm

This section describes the Partition and Pack
algorithms. They are described for a 2-
dimensional space, although the generalization is
straightforward. Partition divides the total space
occupied by N f-dimensional rectangles by a line
parallel to either the s-axis (z-cut) or the y-axis
(y-cut). The selection of the Z- or y cut is based -
on one or more of the following criteria:

(1) nearest neighbors

(2) minimal total x- and y-displacement

(3) minimal total space coverage accrued by the
two sub-regions

(4) minimal number of rectangle splits.

The first three criteria reduce search by reducing
the coverage of “dead-space”. Minimization of
splits in the fourth confines the height expansion of
the R+-tree. The criteria are used at each step to
find a space partitioning which groups the rectan-
gles in a way that locally improves search.
Although it is possible to use the above criteria in
a computationally exponential algorithm that glo-
bally minimizes coverage and height, we gear the
discussion toward a practical locally optimized
(suboptimal) organization of the R+-tree.

Partition uses the Sweep routine that sweeps
the space in a fashion parallel to the x- or y- axis.
The sweep stops when ff (fill-factor) rectangles
have been encountered, where ff is either the capa-
city of a node or some predefined fraction of it
according to some desired loading factor. Suppose
that the sweep was performed along the x-axis and
let a be the distance from the origin when the fill-
factor along the s-axis is reached. The first sub-
region will contain rectangles whose x coordinate is
less than a and the second sub-region will contain
the rest of the rectangles. Since the sweep line at a
may cut some of the rectangles, those will have to
be split into two smaller rectangles to agree with
the disjointness property of the R+--trees.

The algorithm requires that the rectangles are
sorted once along the x dimension and once along
the y dimension. Therefore, the complexity is on
the order of NlogN. The partition algorithm is
shown in Figure 4.1. The routine Sweep is used
to scan the rectangles and identify points where
space partitioning is possible. This routine is very
similar to the one described in [Prep851 and is
shown in Figure 4.2.

Input:

Algorithm Partition (S, ff)

A set of S rectangles and the fill-factor ff of
the first sub-region

output:
A node R containing the rectangles of the first
sub-region and the set S’ of the remaining rec-
tangles

Method:
Decompose the total space into a locally
optimal (in terms of search performance) first
sub-region and the remaining sub-region

PAl. [No Partition Required]
If total space to be partitioned contains less
than or equal to ff rectangles, no further

514 Proceedings of the 13th VLDB Conference, Brighton 1987

PA2.

PA3.

PA4.

PA5.

decomposition is done; a node R storing the
entries is created and the algorithm returns
(R0 1.
[Compute Lowest z- and y- Values]
Let Ox and Oy be the lowest x- and y-
coordinates of the given rectangles.

[Sweep Along the x-dimension]
(Cx,x-cut) = Sweep(“x”,Os,ff). Cx is the
cost to split on the x direction.

[Sweep Along the y-dimension]
(Cy,y-cut) = .Sweep(“y”,Oy,ff). Cy is the
cost to split on the y direction.

[Choose a Partition Point]
Select the cut that gives the smallest of Cx
and Cy, divide the space, and distribute the
rectangles and their splits. A node R that
stores all the entries of the first sub-region is
created. Let S’ denote the set of the rectan-
gles falling in the second sub-region. Return
(RF).

Figure 4.1: Partition algorithm

Algorithm Sweep (axis,Oxy,ff)

Input:
The axis on which sweeping is performed, the
point Oxy on that axis where the sweep starts
and the fill-factor If

output
Computed properties of the first sub-region and
the x or y cut - -

Method:
Sweep from Oxy and compute the property
until the ff has been reached

SWl. [Find the First ff Rectangles]
Starting from Oxy, pick the next fj rectan-
gles from the list of rectangles sorted on the
input axis.

SW2. [Evaluate Partitions]
Compute the total value Cost of the meas-
ured property used to organize the rectangles
(nearest neighbor, minimal coverage, minimal
spilts, etc.). Return (Cost,largest x or y coor-
dinate of the ff rectangles).

Figure 4.2: Sweep algorithm

Step SW2 evaluates the partition according to

proceedings of the 13th VLDB Conference, Brighton 1987

some (or perhaps all) of the criteria mentioned in
the beginning of the section. For example, for cri-
terion 3, Cost is the total area covered by the rec-
tangles returned by step SWl, while for criterion 4,
Cost is the number of the input rectangles that are
split by the sweep line.

The Pack algorithm is basically the same with
that of [Rous85] but adapted to accept any of the
grouping selection criteria discussed earlier in this
section. The fill-factor determines how much
packed (populated) the R+-tree will be. The more
packed it is, the faster the search. Therefore, if the
database is relatively static, it is highly desirable
to pack the tree to capacity.

The packing algorithm is shown in Figure 4.3.

Input:

Algorithm Pack (SJj)

A set S of rectangles to be organized and the
fill-factor jj of the tree

Output:
A “good” R+--tree

Method:
Recursively pack the entries of each level of the
tree

Pl. [No Packing Needed]
If N= Id is less than or equal to fj, then build
the root R of the R+--tree and return it.

P2. [Initialization]
Set AN=@. AN holds the set of next level
rectangles to be packed later.

P3. [Partition Space]
(R,S’) = Partition(S,ff)
if we are partitioning non-leaf nodes and some
of the rectangles have been split because of the
chosen partition, recursively propagate the split
downward and if necessary propagate the
changes upward also.
AN=append(AN,R).
Continue step P3 until S’= 0.

P4. [Recursively Pack Intermediate Nodes]
Return Pack(AIV,ffl

Figure 4.3: Pack algorithm

Notice that step P3 can be expensive due to recur-
sive splits (see also algorithm SplitNode in section
3.5). That is one strong incentive to make the
fourth property mentioned in the beginning of the

515

section (i.e. minimal number of splits) the basic cri-
terion for good partitions.

In summary, the packing algorithm attempts to
set up an R-+--tree with good search performance.
It is a matter of experimental work to discover
which of the above mentioned criteria for space
partitioning are the best to use. However, some
preliminary work has been already done on analyz-
ing the search performance of R- and R+-trees.
The next section briefly presents these results.

6. Analysis

An approach that simplifies the analysis
[Falo87a] is to transform the objects into points in
a space of higher dimensionality [Hinr83]. For a
rectangle aligned with the axes, four coordinates
are enough to uniquely determine it (the x and y
coordinates of the lower-left and upper-right
corners). Since 4-d spaces are impossible to illus-
trate, we examine segments on a line (l-d space)
instead of rectangles in the plane (2-d space), and
we transform the segments into points in a 2-d
space. Each segment is uniquely determined by
(%tWt~ x,,d), the coordinates of its start and end
points. Obtaining formulas and results for line
segments is a first step to the analysis of 2-d rec-
tangles, or even objects of higher dimensionality.
However, there are applications for line segments,
also: Orenstein [Oren86] suggests the z-transform
to map a multi-dimensional space to a l-d space.
Each rectangle is thus mapped to a set of line seg-
ments; the point- and region- queries in the
multi-dimensional space directly correspond to
point- and region- queries in the l-d space.

For a given point, let Density D be the number
of segments that contain it. For our analysis, we
have assumed two sets of segments, set 1 with Ni
segments of size u1 and set 2 with N2 segments of
size u2. The segments of each set are uniformly
distributed on the entire space. Due to this unifor-
mity assumption, D is the same for every point in
the space. Allowing more than one size for segents
enables the analysis to account for realistic distri-
butions where not all objects are of the same size.
In [Falo87a] we have shown that the same analyti-
cal results still stand in the case of more than two
sets of segments.

In the following we give some indicative results
of the search performance of both R- and R+-
trees. First, we show the number of disk accesses
required to search an R-tree or R+-tree in case of
a point query. Figure 5.la-b shows the disk
accesses required for searching an R-tree and a

corresponding R+-tree used to index 100,000 seg-
ments with total density of 40. The first figure
(5.la) shows disk accesses required as a function of
the large segment density when the large segments
account for 10% of the total number of segments

(i.e. N,=90,000 and Nz=lO,OOO). Figure 5.lb
illustrates the number of disk accesses as a function
of the number of small segments for a fixed small
segment density (D1=5).

10’

8’

Dbk’
AC-

4’

2’

8

DLsk*
AC-

4

o- o-
0 10 20 80 0 20 40 00 En loo

LBrE*y)hityY (02) l%oussn& of small seqments (N,)
a 0))

Figure 5.1
Disk Accesses for Two-Size Segments: Point Query

(a) As a function of Dg; N,=lO,OOO
(b) As a function of N,; D,=5

These figures show clearly the problem that R-
trees have in handling many small segments but
just a few lengthy ones. In Figure 5.la large den-
sity implies long segments. In such situations, an
R-tree may require more than twice the page
accesses required by an Rf-tree. Notice also that
the performance of the R+--tree is “immune” to
changes in the distribution of the segment sizes.

In the second set of figures, Figures 5.2a-b, we
illustrate the number of disk accesses needed when
performing a segment query on an R- or R+- tree.
The query segment was chosen to be on the order
of 2 small segments. This decision was made based
on the fact that segment queries are mostly per-
formed to isolate a few segments in a given space
(“zooming”). Again, the graphs show that R-trees
suffer in cases where few lengthy segments are
present. Performance improvements (i.e. savings
in disk page accesses) of up to 50% can be
achieved. Of course, when the number of large
segments approaches the total number of segments,
R+-trees will lose since many lengthy segments
cause a lot of splits to sub-segments. However,

516 Proceedings of the 13th VLDB Conference, Brighton 1987

typical distributions do not have this characteris-
tic. On the contrary, lengthy segments are few
compared with small ones (e.g., in a VLSI design).

This concludes our presentation of some analyt-
ical results we have obtained. For a more detailed
description, the reader is referred to [Falo87a]. We
are currently working on the experimental
verification of these results.

o- I
0

Lu&t CZ‘Y (D*)
a0 0 20 40 80 so loa

(a)
TlkxAsmda of sng segm?nta (iv,)

Figure 5.2
Disk Accesses for Two-Size Segments: Segment Query

(a) As a function of DI; N,=lO,OOO
(b) As a function of N,; Dl=5

6. Summary

The contributions of this work can be summar-
ized as follows:

(1) A variation to R-trees, R+-trees, is introduced.
All algorithms needed to search, update and
pack the structure are discussed.in depth. The
main advantage of R+-trees compared to R-
trees is the improved search performance, espe-
cially in the case of point queries, where there
can be even more than 50% savings in disk
accesses. Also, this structure behaves exactly aa
a K-D-B-tree in the case where the data is
points instead of non-zero area objects (rectan-
gles). This is significant in the sense that K-
D-B-trees have been shown (through the exper-
imental results that Robinson obtained) to be
very efficient for indexing point data. There-
fore, a single structure, the R+-tree, can be
used in a database system in order to index any
kind of geometric data.

(2) We provide initial analytical results comparing
the search performance of R- and R+- trees.

Proceedings of the 13th VLDB Conference, Brighton 1987

These are the first results obtained in this direc-
tion. Moreover, the results of the comparison
agree completely with the intuition: R-trees
suffer in the case of few, large data objects,
which force a lot of “forking” during the
search. R+-trees handle these cases easily,
because they split these large data objects into
smaller ones.

Future work in the area includes the following
tasks:

(1) Experimentation through simulation to verify
the analytical results.

(2) Extension of the analysis for rectangles on a
plane (2-d), and eventually for spaces of arbi-
trary dimensionality.

(3) Design and experimentation with alternative
methods for partitioning a node and compact
ing an R+-tree.

(4) Comparison of R- and R+-trees with other
methods for handling multi-dimensional
objects.

Acknowledgments: The survey section owes much
to Hanan Samet. We are happy to acknowledge
his help, through the examples of his book
[Same86, ch. 8] and through his constructive dis-
cussion.

7. References

[Bent751

[ChanSl]

[Choc84]

[FaloS’la]

[Falo87b]

Bentley, J.L., “Multidimensional Binary
Search Trees Used for Associative
Searching,” CACM, 18(9), pp. 509-517
, Sept. 1975.

Chang, N.S. and K.S. Fu, “Picture
Query Languages for Pictorial Data-
Base Systems,” IEEE Computer,
14(1 l), November 1981.

Chock, M., A.F. Cardenas, and A.
Klinger, “Database Structure and Mani-
pulation Capabilities of a Picture Data-
base Management System (PICDMS),”
IEEE Trans. on Pattern Analysis and
Machine Intelligence, PAMI-6(4), pp.
484-492 , July 1984.

Faloutsos, C., T. Sellis, and N. Rousso-
poulos, “Analysis of Object Oriented
Spatial Access Methods,” PTOC. ACM
SIGMOD , May 27-29, 1987.

Faloutsos, C., “Gray Codes for Partial
Match and Range Queries,” IEEE
Trans. on Software Engineering , 1987.

517

(Falo87cl

[Fink741

[Gunt86]

[Gutt84a]

(Gutt84bl

[Him831

[Laut78]

[Niev84]

[Oren86]

[Oust841

(to appear)

Faloutsos, C., T. Sellis, and N. Rousso-
poulos, “Object Oriented Access
Methods for Spatial Objects: Algo-
rithms and Analysis,” 1987. (in
preparation)

Finkel, R.A. and J.L. Bentley, “Quad-
trees: A data structure for retrieval on
composite keys,” ACTA Informatica,
4(l), pp. l-9) 1974.

Gunther, O., “The Cell Tree: An Index
for Geometric Data,” Memorandum No.
UCB/ERL M86/89, Univ. of Califor-
nia, Berkeley, Dec. 1986.

Guttman, A., “R-Trees: A Dynamic
Index Structure for Spatial Searching,”
Proc. ACM SIGMOD , pp. 47-57 , June
1984.

Guttman, A., “New Features for Rela-
tional Database Systems to Support
CAD Applications,” PhD Thesis,
University of California, Berkeley, June
1984.

Hinrichs, K. and J. Nievergelt, “The
Grid File: A Data Structure to Support
Proximity Queries on Spatial Objects,”
Tech. Report 54, Institut fur Informa-
tik, ETH, Zurich, July 1983.

Lauther, U., “4-Dimensional Binary
Search Trees as a Means to Speed Up
Associative Searches in Design Rule
Verification of Integrated Circuits,”
Journal of Desing Automation and
Fault-Tolerant Computing, 2(3), pp.
241-247 , July 1978.

Nievergelt, J., H. Hinterberger, and
K.C. Sevcik, “The Grid File: An Adapt-
able, Symmetric Multikey File Struc-
ture,” ACM TODS, 9(l), pp. 38-71 ,
March 1984.

Orenstein, J., “Spatial Query Process-
ing in an Object-Oriented Database
System,” Proc. ACM SIGMOD , pp.
326-336 , May 1986.

Ousterhout, J. K., G. T. Hamachi, R.
N. Mayo, W. S. Scott, and G. S. Tay-
lor, “Magic: A VLSI Layout System,”
21st Design Automation Conference
, pp. 152 - 159 , June 1984.

[Prep851

[Robi81]

[Rose851

(Rous85]

[Same861

[Ston83]

[Ston86]

Preparata, F.P. and M.I. Shamos,
Computational Geometry, Springer-
Verlag, New York, 1985.

Robinson, J.T., “The k-D-B-Tree: A
Search Structure for Large Multidimen-
sional Dynamic Indexes,” Proc. ACM
SIGMOD , pp. lo-18 , 1981.

Rosenberg, J.B., “Geographical Data
Structures Compared: A Study of Data
Structures Supporting Region Queries,”
IEEE Trans. on Computer-Aided
Design, 4(l), pp. 53-67 , Jan. 1985.

Roussopoulos, N. and D. Leifker,
“Direct Spatial Search on Pictorial
Databases Using Packed R-Trees,”
Proc. ACM SIGMOD , May 1985.

Samet, H., “Quadtrees and Related
Hierarchical Data Structures for Com-
puter Graphics and Image Processing,”
1986. (under preparation)

Stonebraker, M., B. Rubenstein, and A.
Guttman, “Application of Abstract
Data Types and Abstract Indices to
CAD Data Bases,” Tech. Report
UCB/ERL M83/3, Electronics Research
Laboratory, University of California,
Berkeley, January 1983.

Stonebraker, M., T. Sellis, and E. Han-
son, “Rule Indexing Implementations in
Database Systems,” Proceedings of the
First International Conference on
Expert Database Systems , April 1986.

518 Proceedings of the 13th VLDB Conference, Brighton 1987

