
THE R+-TREE: A DYNAMIC INDEX FOR 
MULTI-DIMENSIONAL OBJECTS+ 

Timos Sellis’v2, Nick Roussopoulos1~2 and Christos Faloutsos2 

Department of Computer Science 
University of Maryland 

College Park, MD 20742 

Abstract 

The problem of indexing multidimensional objects 
is considered. First, a classification of existing 
methods is given along with a discussion of the 
major issues involved in multidimensional data 
indexing. Second, a variation to Guttman’s R- 
trees (R+-trees) that avoids overlapping rectangles 
in intermediate nodes of the tree is introduced. 
Algorithms for searching, updating, initial packing 
and reorganization of the structure are discussed in 
detail. Finally, we provide analytical results indi- 
cating that R+-trees achieve up to 50% savings in 
disk accesses compared to an R-tree when search- 
ing files of thousands of rectangles. 

’ Also with University of Maryland Systems Research Center. 

2 Also with University of Maryland Institute for Advanced 

Computer Studies (UMIACS). 

’ This research wsa sponsored partialy by the National Science 

Foundation under Grant CDR-85-00108. 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the 
VLDB copyright notice and the title of the publication 
and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. 
To copy otherwise, or to republish, requires a fee and/or 
special permission from the Endowment. 

Proceedings of the 13th VLDB Conference, Brighton 1987 

1. Introduction 

It has been recognized in the past that existing 
Database Management Systems (DBMSs) do not 
handle efficiently multi-dimensional data such as 
boxes, polygons, or even points in a multi- 
dimensional space. Multi-dimensional data arise in 
many applications, to name the most important: 

(1) Cartography. Maps could be stored and 
searched electronically, answering efficiently 
geometric queries [Choc84, Rous85]. 

(2) Computer-Aided Design (CAD). For example, 
VLSI design systems need to store many 
thousands of rectangles [Oust84,Gutt84b], 
representing electronic gates and higher level 
elements. 

(3) Computer vision and robotics. 

(4) Rule indexing in expert database systems 
[StorMI. In this proposal rules are stored as 
geometric entities in some multi-dimensional 
space defined over ‘the database. Then, the 
problem of searching for applicable rules is 
reduced to a geometric intersection problem. 

Since database management systems can be 
used to store one-dimensional data, like integer or 
real numbers and strings, considerable interest has 
been developed in using DBMSs to store multi- 
dimensional data as well. In that sense the DBMS 
can be the single means for storing and accessing 
any kind of information required by applications 
more complex than traditional business applica- 
tions. However, the underlying structures, data 
models and query languages are not sufficient for 
the manipulation of more complex data. The 
problem of extending current data models and 
languages has been considered by various people in 
the past [ChanSl, Ston83, Gutt84b,Rous85]. In 
this paper we focus on the problem of deriving 
efficient access methods for multi-dimensional 
objects. 
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The main operations that have been addressed 
in the past are: 

Point Queries: Given a point in the space, 
find all objects that contain it 

Region Queries: Given a region (query win- 
dow), find all objects that intersect it 

Of course these operations can be augmented with 
additional constraints on simple one-dimensional 
(scalar) data. In addition, operations like inser- 
tions, deletions and modifications of objtcts should 
be supported in a dynamic environment. 

The purpose of this paper is to describe a new 
structure, the R+-tree. Section 2 surveys existing 
indexing methods and classifies them according to 
some criteria. Then, in sections 3 and 4 we 
describe R+-trees and the algorithms for searching, 
updating and packing the structure. Section 5 
presents some preliminary analytical results on the 
searching performance of the R+-tree, especially as 
it compares to the corresponding performance of 
R-trees [Gutt84a]. Finally, we conclude in Section 
6 by summarizing our contributions and giving 
hints for future research in the area of multi- 
dimensional data indexing structures. 

2. Survey 

In this section we classify and briefly discuss 
known methods for handling multi-dimensional 
objects. Our main concern is the storage and 
retrieval of rectangles in secondary store (disk). 
Handling more complex objects, such as circles, 
polygons etc., can be reduced to handling rectan- 
gles, by finding the minimum bounding rectangle 
(MBR) of the given object. In our discussion, we 
shall first examine methods for handling multi- 
dimensional points, because these suggest many 
useful ideas applicable to rectangles as well. 

2.1. Methods for multi-dimensional points 

The most common case of multi-dimensional 
data that has been studied in the past is the case of 
points. The main idea is to divide the whole space 
into disjoint sub-regions, usually in such a way 
that each sub-region contains no more than C 
points. C is usually 1 if the data is stored in core, 
or it is the capacity of a disk page, that is the 
number of data records the page can hold. 

Insertions of new points may result in further 
partitioning of a region, known As a split. The 
split is performed by introducing one (or more) 
hyperplanes that partition a region further, into 

disjoint sub-regions. The following attributes of 
the split help to classify the known methods: 

PO8itiOfl 

The position of the splitting hyperplane is pre- 
determined, e.g., it cuts the region in half 
exactly, as the grid file does [Niev84]. We shall 
call these methods fized. The opposite is to let 
the data points determine the position of the 
hyperplane, as, e.g., the k-d trees [Bent751 or 
the K-D-B-trees [Robi81] do. We shall call 
these methods adaptable. Nievergelt et al. 
[Niev84) made the same distinction, using dif- 
ferent terminology: what we call “fixed” 
methods are those methods that organize the 
embedding space, from which the data is 
drawn, while they call the “adaptable” methods 
as methods that organize the data to be stored. 

Dimeneionality 
the split is done with only one hyperplane (l-d 
cut), as in the k-d trees. The opposite is to 
split in all k dimensions, with k hyperplanes 
(k-d cut), as the quad-trees [Fink741 and oct- 
trees do. 

Locality 
The splitting hyperplane splits not only the 
affected region, but all the regions in this direc- 
tion, as well, like the grid file does. We shall 
call these methods grid methods. The opposite 
is to restrict the splitting hyperplane to extend 
solely inside the region to be split. These 
methods will be referred to aa brickwall 
methods. The brickwall methods usually do a 
hierarchical decomposition of the space, requir- 
ing a tree structure. The grid methods use a 
multi-dimensional array. 

The usefulness of the above classification is two- 
fold: For one, it creates a general framework that 
puts all the known methods “on the map”. The 
second reason is that it allows the design of new 
methods, by choosing the position, dimensionality 
and locality of the split, which might be suitable 
for a given application. Table 2.1 illustrates some 
of the most well-known methods and their attri- 
butes according to the above classification. 

Notice that methods based on binary trees or 
quad-trees cannot be easily extended to work in 
secondary storage based systems. The reason is 
that, since a disk page can hold of the order of 50 
pointers, trees with nodes of large fanout are more 
appropriate; trees with two- or four-way nodes 
usually result in many (expensive) page faults. 

508 Proceedings of the 13th VLDB Conference, Brighton 1987 



Table 2.1: Illustration of the classification. 

2.2. Methods for rectangles 

Here we present a classification and brief dis- 
cussion of methods for handling rectangles. The 
main classes of methods are the following: 

(1) Methods that transform the rectangles into 
points in a space of higher dimensionality 
[Hinr83]. ’ l?or example, a 2-d rectangle (with 
sides parallel to the axes) is characterized by 
four coordinates, and thus it can be considered 
as a point in a 4-d space. Therefore, one of the 
prev?ously mentioned methods for storing 
points can be chosen. Lauther [Laut78] and 
Rosenberg [Rose851 used k-d trees. Hinrichs 
and Nievergelt [Hinr83] suggested using the 
grid file, after a rotation of the axes. The rota- 
tion is necessary, in order to avoid non-uniform 
distribution of points, that would lead the grid 
file to poor performance. 

(2) Methods that use space filling curves, to map a 
k-d space onto a l-d space. Such a method, 
suitable for a paged environment, has been sug- 
gested, among others, by Orenstein [Oren86]. 
The idea is to transform k-dimensional objects 
to line segments, using the so-called Z- 
transform. This transformation tries to 
preserve the distance, that is, points that are 
close in the k-d space are likely to be close in 
the l-d transformed space. Improved 
distance-preserving transformations have been 
proposed [Falo87b], which achieve better clus- 
tering of nearby points, by using Gray codes. 
The original z-transform induces an ordering of 
the k-d points, which is the very same one that 
a (k-dimensional) quad-tree uses to scan pixels 
in a k-dimensional space. The transformation 
of a rectangle is a set of line segments, each 
corresponding to a quadrant that the rectangle 
completely covers. 

(3) Methods that divide the original space into 
appropriate sub-regions (overlapping or dis- 
joint). If the regions are disjoint, any of the 
methods for points that we mentioned before, 
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can be used to decompose the space. The only 
complication to be handled is that a rectangle 
may intersect a splitting hyperplane. One solu- 
tion is to cut the offending rectangle in two 
pieces and tag the pieces, to indicate that they 
belong to the same rectangle. Recently, Gun- 
ther [Gunt86] suggested a relevant scheme for 
general polygon data, either convex or concave. 
He suggests that the splitting hyperplanes can 
be of arbitrary orientation (not necessarily 
parallel to the axes). The first who proposed 
the use of overlapping sub-regions was Gutt- 
man with his R-Trees [Gutt84a]. R-trees are 
an extension of B-trees for multi-dimensional 
objects that are either points or regions. Like 
B-trees, they are balanced (all leaf nodes 
appear on the same level, which is a desirable 
feature) and guarantee that the space utiliza- 
tion is at least 5070. However, if R-Trees are 
built using the dynamic insertion algorithms, 
the structure may provide excessive space over- 
lap and Hdead-spaceY in the nodes that result 
in bad performance. A packing technique pro- 
posed in [Rous85] alleviates this problem for 
relatively static databases of points. However, 
for update-intensive spatial databases, packing 
cannot be applied on every single insertion. In 
such an environment, the structure to be 
described in the next section (R+-trees) avoids 
the performance degradation caused by the 
overlapping regions. 

Space and time comparison of the above 
approaches is an interesting problem, which we are 
currently studying. As a first step, in section 5 we 
provide some analysis for the R- and R+- tree 
structures. 

3. R+-Trees 

In this section we introduce the R+-tree and 
discuss the algorithms for searching and updating 
the data structure. 

3.1. Description 

As mentioned above, R-trees are a direct exten- 
sion of B-trees in k-dimensions. The data struc- 
ture is a height-balanced tree which consists of 
intermediate and leaf nodes. Data objects are 
stored in leaf nodes and intermediate nodes are 
built by grouping rectangles at the lower level. 
Each intermediate node is associated with some 
rectangle which completely encloses all rectangles 
that correspond to lower level nodes. Figure 3.1 
shows an example set of data rectangles and Figure 
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3.2 the corresponding R-tree built on these rectan- 
gles (assuming a branching factor of 4). 

Considering the performance of R-tree search- 
ing, the concepts of coverage and overlap (Rous85] 
are important. Coverage of a level of an R-tree is 
defined as the total area of all the rectangles asso- 
ciated with the nodes of that level. Overlap of a 
level of an R-tree is defined as the total area con- 
tained within two or more nodes. Obviously, 
efficient R-tree searching demands that both over- 
lap and coverage be minimized. Minimal coverage 
reduces the amount of dead space (i.e. empty 
space) covered by the nodes. Minimal overlap is 
even more critical than minimal coverage. For a 
search window falling in the area of k overlapping 
nodes at level h-l, with h being the height of the 
tree, in the worst case, k paths to the leaf nodes 
have to be followed (i.e. one from each of the 
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Figure 3.1: Some rectangles organized into an R-tree 
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Figure 3.2: R-tree for the rectangles of Figure 3.1 

overlapping nodes), therefore slowing down the 
search from 1 to lk page accesses. For example, for 
the search window W shown in Figure 3.3, both 
subtrees rooted at nodes A and B must be searched 
although only the latter will return a qualifying 
rectangle. The cost of such an operation would be 
one page access for the root and two additional 
page accesses to check the rectangles stored in A 
and B. Clearly, since it is very hard to control the 
overlap during the dynamic splits of R-trees, 
efficient search degrades and it may even degen- 
erate the search from logarithmic to linear. 

It has been shown, that zero overlap and cover- 
age is only achievable for data points that are 
known in advance and, that using a packing tech- 
nique for R-trees, search is dramatically improved 
[Rous85]. In the same paper it is shown that zero 
overlap is not attainable for region data objects. 
However, if we allow partitions to split rectangles 
then zero overlap among intermediate node entries 
can be achieved. This is the main idea behind the 
R+-tree structure. Figure 3.4 indicates a different 
grouping of the rectangles of Figure 3.1 and Figure 
3.5 shows the corresponding R+-tree. 

Notice that rectangle G has been split into two 
sub-rectangles the first contained in node A and 
the second in P. That is, whenever a data rectan- 
gle at a lower level overlaps with another rectan- 
gle, we decompose it into a collection of non- 
overlapping sub-rectangles whose union makes up 

q K B 

Figure 3.3: An example of a “bad” search window 
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Figure 3.4: The rectangles of Figure 3.1 
grouped to form an R+-tree , 

Figure 3.5: The R+-tree built for Figure 3.4 

the original rectangle. The term “data rectangle” 
denotes a rectangle that is the minimum bounding 
rectangle of an object (as opposed to rectangles 
that correspond to intermediate nodes of the tree). 
Avoiding overlap is achieved at the expense of 
space which increases the height of the tree. How- 
ever, because the space increase is logarithmically 
distributed over the tree, the indirect increment of 
the height is more than offset by the benefit of 
searching multiple shorter paths. For example, if 
we consider again the cost for a search operation 
based on the window W of Figure 3.3 we notice 
that only the root of the tree and ‘node P need be 
accessed, thus saving us one out of three page 
accesses. 

R+-trees can be thought as an extension of K- 
D-B-trees to cover non-zero area objects (i.e. not 
only points but rectangles as well). An improve- 
ment over the K-D-B-trees is the reduced 
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coverage; the nodes of a given level do not neces- 
sarily cover the whole initial space. Moreover, 
compared to R-trees, R+-trees exhibit very good 
searching performance, especially for point queries, 
at the expense of some extra space. See section 5 
for analytical results supporting the above discus- 
sion. 

After this brief discussion to motivate the intro- 
duction of R+-trees we move now to formally 
describe the structure. A leaf node is of the form 

(oid, RECT) 

where oid is an object identifier and is used to refer 
to an object in the database. RECT is used to 
describe the bounds of data objects. For example, 
in a 2-dimensional space, an entry RECT will be of 
the form 

(Z~ow,Shish,YIor,Yhigh ) 

which represents the coordinates of the lower-left 
and upper-right corner of the rectangle. An intet- 
mediate node is of the form 

where p is a pointer to a lower level node of the 
tree and RECT is a representation of the rectangle 
that encloses. 

The R+-tree has the following properties: 

(1) For each entry (p, RECT) in an intermediate 
node, the subtree rooted at the node pointed to 
by p contains a rectangle R if and only if R is 
covered by RECT. The only exception is when 
R is a rectangle at a leaf node; in that case R 
must just overlap with RECT. 

(2) For any two entries (pI,REcT,) and (p&EC&) 
of an intermediate node, the overlap between 
REGT, and REClIz is zero. 

(3) The root has at least two children unless it is a 
leaf. 

(4) All leaves are at the same level. 

Let us assume that A4 is the maximum number of 
entries that can fit in a leaf or intermediate node. 
Notice that one property satisfied by an R-tree but 
not an R+-tree is that in the former every leaf 
node contains between M/2 and M entries and 
each intermediate node contains between M/2 and 
M nodes unless it is the root. K-D-B-trees do not 
satisfy this property either. However, Robinson 
showed with his experimental results that storage 
utilization in K-D-B-trees remains in acceptable 
levels (SO%, which is only 10% below the average 
B-tree utilization). Although, R-trees achieve 
better space utilization at the expense of search 
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performance we believe that 10% degradation is a 
minimal price to pay for the the search improve- 
ment obtained in R+-trees (see section 5). 

Another interesting comment here is due to the 
fact that populating the nodes as much as possible 
will result to a decrease in the height of the tree at 
the expense of more costly updates. Therefore 
another parameter of the problem should be the 
initial packing algorithm used to populate an R+- 
tree and its reorganization techniques. In the fol- 
lowing we discuss the algorithms for searching and 
updating an R+-tree. Section 4 presents the pack- 
ing algorithm. 

3.2. Searching 

The searching algorithm is similar to the one 
used in R-trees. The idea is to first decompose the 
search space into disjoint sub-regions and for each 
of those descend the tree until the actual data 
objects are found in the leaves. Notice that a 
major difference with R-trees is that in the latter 
sub-regions can overlap, thus leading to more 
expensive searching. The searching algorithm is 
shown in Figure 3.6. 

Input: 

Algorithm Search (R,W) 

An R+-tree rooted at node R and a search win- 
dow (rectangle) W 

Output: 
All data objects overlapping W 

Method: 
Decompose search space and recursively search 
tree 

Sl. [Search Intermediate Nodes] 
If R is not a leaf, then for each entry (p,RECT) 
of R check if RECT overlaps W. If so, 
Search(CHILD,Sfl RECTJ, where CHILD is 
the node pointed to by p. 

S2. [Search Leaf Nodes] 
If R is a leaf, check all objects RECT in R and 
return those that overlap with W. 

Figure 3.8: Searching algorithm 

3.3. Insertion 

Inserting a new rectangle in an R+-tree is done 
by searching the tree and adding the rectangle in 
leaf nodes, The difference with the corresponding 

algorithm for R-trees is that the input rectangle 
may be added to more than one leaf node, the rea- 
son being that it may be broken to sub-rectangles 
along existing partitions of the space. Finally, 
overflowing nodes are split and splits are pro- 
pagated to parent as well as children nodes. The 
latter must be updated because a split to a parent 
node may introduce a space partition that affects 
the children nodes as well. This is very similar to 
the downwards split that Robinson introduced to 
K-D-B-trees. We discuss this problem in a later 
subsection in the context of the node splitting algo 
rithms. Figure 3.7 illustrates the insertion algo- 
rithm. 

Input: 

Algorithm Insert (RJR) 

An R+-tree rooted at node R and an input rec- 
tangle IR 

output: 
The new R+-tree that results after the inser- 
tion of IR 

Method: 
Find where IR should go and add it to the 
corresponding leaf nodes 

Il. [Search Intermediate Nodes] 
If R is not a leaf, then for each entry (p,RECT) 
of R check if RECT overlaps IR. If so, 
Insert(CHILD,IR), where CHILD is the node 
pointed to by p. 

12. [Insert into Leaf Nodes] 
If R is a leaf, add IR in R. If after the new rec- 
tangle is inserted R has more than M entries, 
SplitNode to re-organize the tree (see sec- 
tion 3.5). 

Figure 3.7: Insertion algorithm 

3.4. Deletion 

Deletion of a rectangle from an R+-tree is done 
as in R-trees by first locating the rectangle(s) that 
must be deleted and then removing it(them) from 
the leaf nodes. The reason that more than one rec- 
tangles may have to be removed from leaf nodes is 
that the insertion routine outlined above may 
introduce more than one copies for a newly 
inserted rectangle. Figure 3.8 shows the deletion 
algorithm. 
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Input: 

Algorithm Delete (RJR) 

An R+-tree rooted at node R and an input rec- 
tangle IR 

Output: 
The new R+-tree that results after the deletion 
of IR 

Method: 
Find where IR is and remove it from the 
corresponding leaf nodes. 

Dl. 

D2. 

[Search Intermediate Nodes] 
If R is not a leaf, then for each entry 
(p,RECT) of R check if RECToverlaps IR. If 
so, Delete(CHILD,IR), where CHILD is the 
node pointed to by p. 

[Delete from Leaf Nodes] 
If R is a leaf, remove IR from R and adjust 
the parent rectangle that encloses the remain- 
ing children rectangles. 

Figure 3.8: Deletion algorithm 

Clearly after a lot of deletions the storage utiliza- 
tion deteriorates significantly. In similar situations 
with K-D-B-trees Robinson suggests that subtrees 
should be periodically re-organized to achieve 
better performance. Guttman also suggests a simi- 
lar procedure where under-utilized nodes are emp- 
tied and the “orphaned” rectangles are re-inserted 
at the top of the tree. For brevity we will not give 
in detail an algorithm for tree re-organization. In 
[Falo87c] we suggest some algorithms which we 
plan to test in the near future. 

3.6. Node Splitting 

When a node overflows some splitting algorithm 
is needed to produce two new nodes. Since we 
require that the two sub-nodes cover mutually dis- 
joint areas, we first search for a “good” partition 
(vertical or horizontal) that will decompose the 
space into two sub-regions. The procedure of 
finding a good partition is very similar to the one 
used by the packing algorithm and will thus be 
described in more detail in the next section. For 
reference, we call this procedure Partition. 

Notice that, contrary to the R-tree splitting 
algorithm, downward propagation of the split may 
be necessary. For example, in Figure 3.9, suppose 
A is a parent node of B which in turn is a parent 

node of C. Then, if node A has to be split, lower 
level nodes B and C have to be split as well. 

: . ., 

i.~ .._.. i 

j 

i 

:, .__._ ._: 
i : ,c.. L . ..__ ____ j ; j 

jA 
,_.___....._______.............: : 

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
a------- 

Partition line 

Figure 3.9: Recursive node splitting 

This is due to property (1) of an R+-tree which 
requires that a rectangle R should not be found in 
a subtree rooted at a node A unless the rectangle 
associated with A covers R completely. Hence, 
nodes intersected by the partition must be split 
recursively. The only exception is with leaf nodes. 
Objects in the leaf nodes are not split; this is just 
for efficiency reasons since rectangles in the leaf 
pages cannot account for further downward splits. 
In [Falo87c], we discuss some additional optimiza- 
tion tactics that can be used to increase the space 
efficiency of the tree regarding splitting of nodes. 
The node splitting algorithm is illustrated in Fig- 
ure 3.10. 

Input: 

Algorithm SplitNode (R) 

A node R (leaf or intermediate) 

output: 
The new R+-tree 

Method: 
Find a partition for the node to be split, create 
two new nodes and, if needed, propagate the 
split upward and downward 

SNl. [Find a Partition] 
Partition R using the Partition routine of 
the Pack algorithm (see next section). Let 
RECT and p be the rectangle and pointer 
respectively associated with node R. Also, let 
S, and S, denote the two sub-regions result- 
ing after the partition. Create 

~~=(PI,REG) and n2=(p2,REcT2), the two 
nodes resulting from the split of R, where 
REm;=RECTn Si, for i=1,2. 
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SN2. [Populate New Nodes] 
Put in ni all nodes (p,,REcT,) of R such that 
RECT, lies completely in RECTi, for i=1,2. 
For those nodes that 
RECTJl REmi#RECTk (i.e. they just over- 
lap with the sub-region) 
a) if R is a leaf node, then put RECTk in 
both new nodes 
b) Otherwise, use SplitNode to recursively 
split the children nodes along the partition. 
Let (ph1,REC7’kl) and (p~,REcTk,) be the 
two nodes after splitting (pk,REC&), where 
RECT, lies completely in REmi, i=1,2. 
Add those two nodes to the corresponding 
node ni. 

SN3. [Propagate Node Split Upward] 
If R is the root, create a new root with only 
two children, ni and n2. 
Otherwise, let PR be R’s parent node. 
Replace R in PR with ni and n2. If PR has 
now more than M entries, invoke 
SplitNode( 

Figure 3.10: Node splitting algorithm 

The above operations are the only ones needed 
to keep the R+-tree in a valid form. However, as 
mentioned above another significant operation is 
the initial packing of the tree. This is especially 
useful when a file with data rectangles is given and 
the system is required to build an R+-tree on top 
of that file. In this case “good” (with respect to 
some criteria) initial set up can be achieved by 
carefully grouping the rectangles at the leaf level. 
This problem is the subject of the next section. 

4. Packing Algorithm 

This section describes the Partition and Pack 
algorithms. They are described for a 2- 
dimensional space, although the generalization is 
straightforward. Partition divides the total space 
occupied by N f-dimensional rectangles by a line 
parallel to either the s-axis (z-cut) or the y-axis 
(y-cut). The selection of the Z- or y cut is based - 
on one or more of the following criteria: 

(1) nearest neighbors 

(2) minimal total x- and y-displacement 

(3) minimal total space coverage accrued by the 
two sub-regions 

(4) minimal number of rectangle splits. 

The first three criteria reduce search by reducing 
the coverage of “dead-space”. Minimization of 
splits in the fourth confines the height expansion of 
the R+-tree. The criteria are used at each step to 
find a space partitioning which groups the rectan- 
gles in a way that locally improves search. 
Although it is possible to use the above criteria in 
a computationally exponential algorithm that glo- 
bally minimizes coverage and height, we gear the 
discussion toward a practical locally optimized 
(suboptimal) organization of the R+-tree. 

Partition uses the Sweep routine that sweeps 
the space in a fashion parallel to the x- or y- axis. 
The sweep stops when ff (fill-factor) rectangles 
have been encountered, where ff is either the capa- 
city of a node or some predefined fraction of it 
according to some desired loading factor. Suppose 
that the sweep was performed along the x-axis and 
let a be the distance from the origin when the fill- 
factor along the s-axis is reached. The first sub- 
region will contain rectangles whose x coordinate is 
less than a and the second sub-region will contain 
the rest of the rectangles. Since the sweep line at a 
may cut some of the rectangles, those will have to 
be split into two smaller rectangles to agree with 
the disjointness property of the R+--trees. 

The algorithm requires that the rectangles are 
sorted once along the x dimension and once along 
the y dimension. Therefore, the complexity is on 
the order of NlogN. The partition algorithm is 
shown in Figure 4.1. The routine Sweep is used 
to scan the rectangles and identify points where 
space partitioning is possible. This routine is very 
similar to the one described in [Prep851 and is 
shown in Figure 4.2. 

Input: 

Algorithm Partition (S, ff) 

A set of S rectangles and the fill-factor ff of 
the first sub-region 

output: 
A node R containing the rectangles of the first 
sub-region and the set S’ of the remaining rec- 
tangles 

Method: 
Decompose the total space into a locally 
optimal (in terms of search performance) first 
sub-region and the remaining sub-region 

PAl. [No Partition Required] 
If total space to be partitioned contains less 
than or equal to ff rectangles, no further 
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PA2. 

PA3. 

PA4. 

PA5. 

decomposition is done; a node R storing the 
entries is created and the algorithm returns 
(R0 1. 
[Compute Lowest z- and y- Values] 
Let Ox and Oy be the lowest x- and y- 
coordinates of the given rectangles. 

[Sweep Along the x-dimension] 
(Cx,x-cut) = Sweep(“x”,Os,ff). Cx is the 
cost to split on the x direction. 

[Sweep Along the y-dimension] 
(Cy,y-cut) = .Sweep(“y”,Oy,ff). Cy is the 
cost to split on the y direction. 

[Choose a Partition Point] 
Select the cut that gives the smallest of Cx 
and Cy, divide the space, and distribute the 
rectangles and their splits. A node R that 
stores all the entries of the first sub-region is 
created. Let S’ denote the set of the rectan- 
gles falling in the second sub-region. Return 
(RF). 

Figure 4.1: Partition algorithm 

Algorithm Sweep (axis,Oxy,ff) 

Input: 
The axis on which sweeping is performed, the 
point Oxy on that axis where the sweep starts 
and the fill-factor If 

output 
Computed properties of the first sub-region and 
the x or y cut - - 

Method: 
Sweep from Oxy and compute the property 
until the ff has been reached 

SWl. [Find the First ff Rectangles] 
Starting from Oxy, pick the next fj rectan- 
gles from the list of rectangles sorted on the 
input axis. 

SW2. [Evaluate Partitions] 
Compute the total value Cost of the meas- 
ured property used to organize the rectangles 
(nearest neighbor, minimal coverage, minimal 
spilts, etc.). Return (Cost,largest x or y coor- 
dinate of the ff rectangles). 

Figure 4.2: Sweep algorithm 

Step SW2 evaluates the partition according to 

proceedings of the 13th VLDB Conference, Brighton 1987 

some (or perhaps all) of the criteria mentioned in 
the beginning of the section. For example, for cri- 
terion 3, Cost is the total area covered by the rec- 
tangles returned by step SWl, while for criterion 4, 
Cost is the number of the input rectangles that are 
split by the sweep line. 

The Pack algorithm is basically the same with 
that of [Rous85] but adapted to accept any of the 
grouping selection criteria discussed earlier in this 
section. The fill-factor determines how much 
packed (populated) the R+-tree will be. The more 
packed it is, the faster the search. Therefore, if the 
database is relatively static, it is highly desirable 
to pack the tree to capacity. 

The packing algorithm is shown in Figure 4.3. 

Input: 

Algorithm Pack (SJj) 

A set S of rectangles to be organized and the 
fill-factor jj of the tree 

Output: 
A “good” R+--tree 

Method: 
Recursively pack the entries of each level of the 
tree 

Pl. [No Packing Needed] 
If N= Id is less than or equal to fj, then build 
the root R of the R+--tree and return it. 

P2. [Initialization] 
Set AN=@. AN holds the set of next level 
rectangles to be packed later. 

P3. [Partition Space] 
(R,S’) = Partition(S,ff) 
if we are partitioning non-leaf nodes and some 
of the rectangles have been split because of the 
chosen partition, recursively propagate the split 
downward and if necessary propagate the 
changes upward also. 
AN=append(AN,R). 
Continue step P3 until S’= 0. 

P4. [Recursively Pack Intermediate Nodes] 
Return Pack(AIV,ffl 

Figure 4.3: Pack algorithm 

Notice that step P3 can be expensive due to recur- 
sive splits (see also algorithm SplitNode in section 
3.5). That is one strong incentive to make the 
fourth property mentioned in the beginning of the 
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section (i.e. minimal number of splits) the basic cri- 
terion for good partitions. 

In summary, the packing algorithm attempts to 
set up an R-+--tree with good search performance. 
It is a matter of experimental work to discover 
which of the above mentioned criteria for space 
partitioning are the best to use. However, some 
preliminary work has been already done on analyz- 
ing the search performance of R- and R+-trees. 
The next section briefly presents these results. 

6. Analysis 

An approach that simplifies the analysis 
[Falo87a] is to transform the objects into points in 
a space of higher dimensionality [Hinr83]. For a 
rectangle aligned with the axes, four coordinates 
are enough to uniquely determine it (the x and y 
coordinates of the lower-left and upper-right 
corners). Since 4-d spaces are impossible to illus- 
trate, we examine segments on a line (l-d space) 
instead of rectangles in the plane (2-d space), and 
we transform the segments into points in a 2-d 
space. Each segment is uniquely determined by 
(%tWt~ x,,d), the coordinates of its start and end 
points. Obtaining formulas and results for line 
segments is a first step to the analysis of 2-d rec- 
tangles, or even objects of higher dimensionality. 
However, there are applications for line segments, 
also: Orenstein [Oren86] suggests the z-transform 
to map a multi-dimensional space to a l-d space. 
Each rectangle is thus mapped to a set of line seg- 
ments; the point- and region- queries in the 
multi-dimensional space directly correspond to 
point- and region- queries in the l-d space. 

For a given point, let Density D be the number 
of segments that contain it. For our analysis, we 
have assumed two sets of segments, set 1 with Ni 
segments of size u1 and set 2 with N2 segments of 
size u2. The segments of each set are uniformly 
distributed on the entire space. Due to this unifor- 
mity assumption, D is the same for every point in 
the space. Allowing more than one size for segents 
enables the analysis to account for realistic distri- 
butions where not all objects are of the same size. 
In [Falo87a] we have shown that the same analyti- 
cal results still stand in the case of more than two 
sets of segments. 

In the following we give some indicative results 
of the search performance of both R- and R+- 
trees. First, we show the number of disk accesses 
required to search an R-tree or R+-tree in case of 
a point query. Figure 5.la-b shows the disk 
accesses required for searching an R-tree and a 

corresponding R+-tree used to index 100,000 seg- 
ments with total density of 40. The first figure 
(5.la) shows disk accesses required as a function of 
the large segment density when the large segments 
account for 10% of the total number of segments 

( i.e. N,=90,000 and Nz=lO,OOO). Figure 5.lb 
illustrates the number of disk accesses as a function 
of the number of small segments for a fixed small 
segment density (D1=5). 
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Figure 5.1 
Disk Accesses for Two-Size Segments: Point Query 

(a) As a function of Dg; N,=lO,OOO 
(b) As a function of N,; D,=5 

These figures show clearly the problem that R- 
trees have in handling many small segments but 
just a few lengthy ones. In Figure 5.la large den- 
sity implies long segments. In such situations, an 
R-tree may require more than twice the page 
accesses required by an Rf-tree. Notice also that 
the performance of the R+--tree is “immune” to 
changes in the distribution of the segment sizes. 

In the second set of figures, Figures 5.2a-b, we 
illustrate the number of disk accesses needed when 
performing a segment query on an R- or R+- tree. 
The query segment was chosen to be on the order 
of 2 small segments. This decision was made based 
on the fact that segment queries are mostly per- 
formed to isolate a few segments in a given space 
(“zooming”). Again, the graphs show that R-trees 
suffer in cases where few lengthy segments are 
present. Performance improvements (i.e. savings 
in disk page accesses) of up to 50% can be 
achieved. Of course, when the number of large 
segments approaches the total number of segments, 
R+-trees will lose since many lengthy segments 
cause a lot of splits to sub-segments. However, 
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typical distributions do not have this characteris- 
tic. On the contrary, lengthy segments are few 
compared with small ones (e.g., in a VLSI design). 

This concludes our presentation of some analyt- 
ical results we have obtained. For a more detailed 
description, the reader is referred to [Falo87a]. We 
are currently working on the experimental 
verification of these results. 
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Figure 5.2 
Disk Accesses for Two-Size Segments: Segment Query 

(a) As a function of DI; N,=lO,OOO 
(b) As a function of N,; Dl=5 

6. Summary 

The contributions of this work can be summar- 
ized as follows: 

(1) A variation to R-trees, R+-trees, is introduced. 
All algorithms needed to search, update and 
pack the structure are discussed.in depth. The 
main advantage of R+-trees compared to R- 
trees is the improved search performance, espe- 
cially in the case of point queries, where there 
can be even more than 50% savings in disk 
accesses. Also, this structure behaves exactly aa 
a K-D-B-tree in the case where the data is 
points instead of non-zero area objects (rectan- 
gles). This is significant in the sense that K- 
D-B-trees have been shown (through the exper- 
imental results that Robinson obtained) to be 
very efficient for indexing point data. There- 
fore, a single structure, the R+-tree, can be 
used in a database system in order to index any 
kind of geometric data. 

(2) We provide initial analytical results comparing 
the search performance of R- and R+- trees. 
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These are the first results obtained in this direc- 
tion. Moreover, the results of the comparison 
agree completely with the intuition: R-trees 
suffer in the case of few, large data objects, 
which force a lot of “forking” during the 
search. R+-trees handle these cases easily, 
because they split these large data objects into 
smaller ones. 

Future work in the area includes the following 
tasks: 

(1) Experimentation through simulation to verify 
the analytical results. 

(2) Extension of the analysis for rectangles on a 
plane (2-d), and eventually for spaces of arbi- 
trary dimensionality. 

(3) Design and experimentation with alternative 
methods for partitioning a node and compact 
ing an R+-tree. 

(4) Comparison of R- and R+-trees with other 
methods for handling multi-dimensional 
objects. 
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