
0018-9162/01/$17.00 © 2001 IEEE48 Computer

Database Technology
for Decision
Support
Systems

D
ecision support systems are the core of busi-
ness IT infrastructures because they give
companies a way to translate a wealth of
business information into tangible and
lucrative results. Collecting, maintaining,

and analyzing large amounts of data, however, are
mammoth tasks that involve significant technical chal-
lenges, expenses, and organizational commitment.

Online transaction processing systems allow orga-
nizations to collect large volumes of daily business
point-of-sales data. OLTP applications typically auto-
mate structured, repetitive data processing tasks such
as order entry and banking transactions. This detailed,
up-to-date data from various independent touch points
must be consolidated into a single location before ana-
lysts can extract meaningful summaries. Managers use
this aggregated data to make numerous day-to-day
business decisions—everything from managing inven-
tory to coordinating mail-order campaigns.

DECISION SUPPORT SYSTEM COMPONENTS
A successful decision support system is a complex

creation with numerous components. A fictitious busi-
ness example, the Footwear Sellers Company, helps
illustrate a decision support system’s various compo-
nents. FSC manufactures footwear and sells through
two channels—directly to customers and through
resellers. FSC’s marketing executives need to extract
the following information from the company’s aggre-
gate business data:

• the five states reporting the highest increases in
youth product category sales within the past year,

• total footwear sales in New York City within the
past month by product family,

• the 50 cities with the highest number of unique
customers, and

• one million customers who are most likely to buy
the new Walk-on-Air shoe model.

Before building a system that provides this decision
support information, FSC’s analysts must address and
resolve three fundamental issues:

• what data to gather and how to conceptually
model the data and manage its storage,

• how to analyze the data, and
• how to efficiently load data from several inde-

pendent sources.

As Figure 1 shows, these issues correlate to a deci-
sion support system’s three principal components: a
data warehouse server, online analytical processing
and data mining tools, and back-end tools for popu-
lating the data warehouse.

Data warehouses contain data consolidated from
several operational databases and tend to be orders of
magnitude larger than operational databases, often
hundreds of gigabytes to terabytes in size. Typically,
the data warehouse is maintained separately from the
organization’s operational databases because analyti-
cal applications’ functional and performance require-
ments are quite different from those of operational
databases. Data warehouses exist principally for deci-
sion support applications and provide the historical,
summarized, and consolidated data more appropriate

Creating the framework for an effective decision support system—
one that leverages business data from numerous discrete touch points—
is a daunting but doable task.

Surajit
Chaudhuri
Microsoft Research

Umeshwar
Dayal
Hewlett-Packard
Laboratories

Venkatesh
Ganti
Microsoft Research

C O V E R F E A T U R E

for analysis than detailed, individual records. The
workloads consist of ad hoc, complex queries that
access millions of records and perform multiple scans,
joins, and aggregates. Query response times are more
important than transaction throughput.

Because data warehouse construction is a complex
process that can take many years, some organizations
instead build data marts, which contain information
for specific departmental subsets. For example, a mar-
keting data mart may include only customer, product,
and sales information and may not include delivery
schedules. Several departmental data marts can coex-
ist with the main data warehouse and provide a par-
tial view of the warehouse contents. Data marts roll
out faster than data warehouses but can involve com-
plex integration problems later if the initial planning
does not reflect a complete business model.

Online analytical processing and data mining tools
enable sophisticated data analysis. Back-end tools—
such as extraction, transformation, and load tools—
populate the data warehouse from external data
sources.

DATA WAREHOUSE
Most data warehouses use relational database tech-

nology because it offers a robust, reliable, and effi-
cient approach for storing and managing large vol-
umes of data. The most significant issue associated
with data warehouse construction is database design,
both logical and physical. Building a logical schema
for an enterprise data warehouse requires extensive
business modeling.

Logical database design
In the star schema design, the database consists of

a fact table that describes all transactions and a dimen-
sion table for each entity. For the fictitious FSC, each
sales transaction involves several entities—a customer,
a salesperson, a product, an order, a transaction date,
and the city where the transaction occurred. Each
transaction also has measure attributes—the number

of units sold and the total amount the customer paid.
Each tuple in the fact table consists of a pointer to

each entity in a transaction and the numeric measures
associated with the transaction. Each dimension table
consists of columns that correspond to the entity’s
attributes. Computing the join between a fact table
and a set of dimension tables is more efficient than
computing a join among arbitrary relations.

Some entities, however, are associated with hierar-
chies, which star schemas do not explicitly support. A
hierarchy is a multilevel grouping in which each level
consists of a disjoint grouping of the values in the level
immediately below it. For example, all products can
be grouped into a disjoint set of categories, which are
themselves grouped into a disjoint set of families.

Snowflake schemas are a refinement of star schemas
in which a dimensional hierarchy is explicitly repre-
sented by normalizing the dimension tables. In the star
schema depicted in Figure 2, a set of attributes describes
each dimension and may be related via a relationship
hierarchy. For example, the FSC’s product dimension
consists of five attributes: the product name (Running
Shoe 2000), category (athletics), product family (shoe),
price ($80), and the profit margin (80 percent).

Physical database design
Database systems use redundant structures such as

indices and materialized views to efficiently process
complex queries. Determining the most appropriate set
of indices and views is a complex physical design prob-
lem. While index lookups and scans can be effective for
data-selective queries, data-intensive queries can require
sequential scans of an entire relation or a relation’s ver-
tical partitions. Improving the efficiency of table scans
and exploiting parallelism to reduce query response
times are important design considerations.1

Index structures and their usage
Query processing techniques that exploit indices

through index intersection and union are useful for
answering multiple-predicate queries. Index intersec-

December 2001 49

Operational
databases

Online analytical
processing

servers

Data
warehouse

server

Analysis

Query/reporting

Data mining

Tools

Serve

Back-end
tools
• Extract
• Transform
• Load
• Refresh

Data marts

Data sources

Metadata
repository

Monitoring and administration

External sources

Figure 1. Decision
support system
architecture,
which consists of
three principal
components: a data
warehouse server,
analysis and data
mining tools, and
data warehouse
back-end tools.

50 Computer

tions exploit multiple-condition selectivities and can
significantly reduce or eliminate the need to access
base tables if all projection columns are available via
index scans.

The specialized nature of star schemas makes mas-
ter-detail join indices especially attractive for decision
support. While indices traditionally map the value in
a column to a list of rows with that value, a join index
maintains the relationship between a foreign key and
its matching primary keys. In the context of a star
schema, a join index can relate the values of one or
more attributes of a dimension table to matching rows
in the fact table. The schema in Figure 2, for exam-
ple, can support a join index on City that maintains,
for each city, a list of the tuples’ record identifiers in
the fact table that correspond to sales in that city.
Essentially, the join index precomputes a binary join.

Multikey join indices can represent precomputed n-
way joins. For example, a multidimensional join index
built over the sales database can join City.CityName
and Product.Name to the fact table. Consequently, the
index entry for Seattle, Running Shoe points to the
record identifiers of tuples in the Sales table with that
combination.

Materialized views and usage
Many data warehouse queries require summary

data and therefore use aggregates. Materializing sum-
mary data can accelerate many common queries. In
the FSC example, two data views—total sales grouped
by product family and city, and total number of cus-
tomers grouped by city—can efficiently answer three
of the marketing department’s queries: states report-
ing the highest increases in youth product category
sales, total footwear sales in New York City by prod-
uct family, and the 50 cities with the highest number
of unique customers.

The challenges in exploiting materialized views are
similar to the index challenges:

• identify the views to materialize,
• exploit the materialized views to answer queries,

and

• update the materialized views during load and
refresh.

Because materialized views require extremely large
amounts of space, currently adopted solutions only
support a restricted class of structurally simple mate-
rialized views.

ONLINE ANALYTICAL APPLICATIONS
In a typical online analytical application, a query

aggregates a numeric measure at higher levels in the
dimensional hierarchy. An example is the first FSC
marketing query that asks for a set of aggregate hier-
archical measures—the five states reporting the high-
est increases in youth product category sales within
the past year. State and year are ancestors of the city
and date entities.

In the context of the FSC data warehouse, a typical
OLAP session to determine regional sales of athletic
shoes in the last quarter might proceed as follows:

• The analyst issues a select sum(sales) group by
country query to view the distribution of sales of
athletic shoes in the last quarter across all coun-
tries.

• After isolating the country with either the highest
or the lowest total sales relative to market size, the
analyst issues another query to compute the total
sales within each state of that country to under-
stand the reason for its exceptional behavior.

The analyst traverses down the hierarchy associ-
ated with the city dimension. Such a downward tra-
versal of the hierarchy from the most summarized to
the most detailed level is called drill-down. In a roll-
up operation, the analyst goes up one level—perhaps
from the state level to the country level—in a dimen-
sional hierarchy.

Key OLAP-related issues include the conceptual
data model and server architectures.

OLAP conceptual data model
The multidimensional model shown in Figure 3 uses

numeric measures as its analysis objects. Each numeric
measure in this aggregation-centric conceptual data
model depends on dimensions that describe the enti-
ties in the transaction. For instance, the dimensions
associated with a sale in the FSC example are the cus-
tomer, the salesperson, the city, the product name, and
the date the sale was made. Together, the dimensions
uniquely determine the measure, so the multidimen-
sional data model treats a measure as a value in the
dimensions’ multidimensional space.

With a multidimensional data view, drill-down and
roll-up queries are logical operations on the cube
depicted in Figure 3. Another popular operation is to

OrderNo
SalespersonID
CustomerNo
DateKey
CityName
ProdNo
Quantity
TotalPrice

Fact table

CustomerNo
CustomerName
CustomerAddress
City

Customer

SalespersonID
SalespersonName
City
Quota

Salesperson

OrderNo
OrderDate

Order

DateKey
Date
Month

Date

CityName
State

City

ProdNo
Name
Category
Family
UnitPrice
ProfitMargin

Month
Year

Month

CategoryName
CategoryDescr

Category

State

Year

Product

Figure 2. Snowflake
schema for a the
hypothetical
Footwear Sellers
Company. A set of
attributes describes
each dimension and
is related via a rela-
tionship hierarchy.

compare two measures that are aggregated by the
same dimensions, such as sales and budget.

OLAP analysis can involve more complex statisti-
cal calculations than simple aggregations such as sum,
count, and average. Examples include functions such
as moving averages and the percentage change of an
aggregate within a certain period compared with a dif-
ferent time period. Many commercial OLAP tools pro-
vide such additional functions.

The time dimension is particularly significant for
decision support processes such as trend analysis. For
example, FSC’s market analysts may want to chart
sales activity for a class of athletic shoes before or after
major national athletic contests. Sophisticated trend
analysis is possible if the database has built-in knowl-
edge of calendars and other sequential characteristics
of the time dimension. The OLAP Council (http://
www.olapcouncil.org) has defined a list of other such
multidimensional cube operations.

OLAP server and middleware architectures
Although traditional relational servers do not effi-

ciently process complex OLAP queries or support
multidimensional data views, three types of relational
DBMS servers—relational, multidimensional, and
hybrid online analytical processing—now support
OLAP on data warehouses built with relational data-
base systems.

ROLAP servers. ROLAP middleware servers sit be-
tween the relational back-end server where the data
warehouse is stored and the client front-end tools.
ROLAPs support multidimensional OLAP queries and
typically optimize for specific back-end relational
servers. They identify the views to be materialized,
rephrase user queries in terms of the appropriate mate-
rialized views, and generate multistatement SQL for
the back-end server. They also provide additional ser-
vices such as query scheduling and resource assign-
ment. ROLAP servers exploit the scalability and
transactional features of relational systems, but intrin-
sic mismatches between OLAP-style querying and SQL
can create performance bottlenecks in OLAP servers.

Bottlenecks are becoming less of a problem with the
OLAP-specific SQL extensions implemented in rela-
tional servers such as Oracle, IBM DB2, and Micro-
soft SQL Server. Functions such as median, mode,
rank, and percentile extend the aggregate functions.
Other feature additions include aggregate computa-
tions over moving windows, running totals, and
breakpoints to enhance support for reporting appli-
cations.

Multidimensional spreadsheets require grouping by
different sets of attributes. Jim Gray and colleagues2

proposed two operators—roll-up and cube—to aug-
ment SQL and address this requirement. Roll-up of a
list of attributes such as product, year, and city over a

data set results in answer sets with the following appli-
cations:

• group by product, year, and city;
• group by product and year; and
• group by product.

Given a list of k columns, the cube operator pro-
vides a group-by for each of the 2k combinations of
columns. Such multiple group-by operations can be
executed efficiently by recognizing commonalities
among them.3 When applicable, precomputing can
enhance OLAP server performance.4

MOLAP servers. MOLAP is a native server architec-
ture that does not exploit the functionality of a re-
lational back end but directly supports a multi-
dimensional data view through a multidimensional
storage engine. MOLAP enables the implementation
of multidimensional queries on the storage layer via
direct mapping. MOLAP’s principal advantage is its
excellent indexing properties; its disadvantage is poor
storage utilization, especially when the data is sparse.
Many MOLAP servers adapt to sparse data sets
through a two-level storage representation and exten-
sive compression. In a two-level storage representa-
tion, either directly or by means of design tools, the
user identifies a set of one- or two-dimensional sub-
arrays that are likely to be dense and represents them
in the array format. Traditional indexing structures
can then index these smaller arrays. Many of the tech-
niques devised for statistical databases are relevant
for MOLAP servers. Although MOLAP servers offer
good performance and functionality, they do not scale
well for extremely large data sizes.

HOLAP servers. The HOLAP architecture combines
ROLAP and MOLAP technologies. In contrast to
MOLAP, which performs better when the data is rea-
sonably dense, ROLAP servers perform better when
the data is extremely sparse. HOLAP servers identify
sparse and dense regions of the multidimensional
space and take the ROLAP approach for sparse
regions and the MOLAP approach for dense regions.
HOLAP servers split a query into multiple queries,
issue the queries against the relevant data portions,
combine the results, and then present the result to the
user. HOLAP’s selective view materialization, selec-
tive index building, and query and resource schedul-
ing are similar to its MOLAP and ROLAP counter-
parts.

December 2001 51

Sandals
Sneakers

Boots
Slippers

Hiking shoes
Running shoes

1 2 3 4 5 6 7

W
S

N
10
50
20
12
15
10

Date

City

Pr
o

d
u

ct

Hierarchical summarization paths

Industry

Category

Product

Country

State

City

Year

Quarter

Month Week

Date

Figure 3. A sample
multidimensional
database. Each
numeric measure
in this aggregation-
centric conceptual
data model depends
on dimensions that
describe the entities
in the transaction.

52 Computer

DATA MINING
Suppose that FSC wants to launch a catalog

mailing campaign with an expense budget of
less than $1 million. Given this constraint, the
marketing analysts want to identify the set of
customers most likely to respond to and buy
from the catalog. Data mining tools provide
such advanced predictive and analytical func-
tionality by identifying distribution patterns
and characteristic behaviors within a data set.

Knowledge discovery—the process of speci-
fying and achieving a goal through iterative
data mining—typically consists of three phases:

• data preparation,
• model building and evaluation, and
• model deployment.

Data preparation
In the data preparation phase, the analyst prepares a

data set containing enough information to build accu-
rate models in subsequent phases. To address FSC’s
information requirement, an accurate model will pre-
dict whether a customer is likely to buy products adver-
tised in a new catalog. Because predictions are based
on factors potentially influencing customers’ purchases,
a model data set would include all customers who
responded to mailed catalogs in the past three years,
their demographic information, the 10 most expensive
products each customer purchased, and information
about the catalogs that elicited their purchases.

Data preparation can involve complex queries with
large results. For instance, preparing the FSC data set
involves joins between the customer relation and the
sales relation as well as identifying the top 10 products
for each customer. All the issues related to efficiently
processing decision support queries are equally rele-
vant in the data mining context. In fact, data mining
platforms use OLAP or relational servers to meet their
data preparation requirements.

Data mining typically involves iteratively building
models on a prepared data set and then deploying one
or more models. Because building models on large
data sets can be expensive, analysts often work ini-
tially with data set samples. Data mining platforms,
therefore, must support computing random samples of
data over complex queries.

Building and evaluating mining models
Only after deciding which model to deploy does the

analyst build the model on the entire prepared data
set. The goal of the model-building phase is to iden-
tify patterns that determine a target attribute. A tar-
get attribute example in the FSC data set is whether a
customer purchased at least one product from a past
catalog.

Several classes of data mining models help predict
both explicitly specified and hidden attributes. Two
important issues influencing model selection are the
accuracy of the model and the efficiency of the algo-
rithm for constructing the model over large data sets.
Statistically, the accuracy of most models improves
with the amount of data used, so the algorithms for
inducing mining models must be efficient and scalable
to process large data sets within a reasonable amount
of time.

Model types
Classification models are predictive. When given a

new tuple, classification models predict whether the
tuple belongs to one of a set of target classes. In the
FSC catalog example, a classification model would
determine, based on past behavior, whether a cus-
tomer is or is not likely to purchase from a catalog.
Decision trees and naïve Bayes models are two popu-
lar types of classification models.5-7

Regression trees and logistic regression are two pop-
ular types of regression models, which predict numeric
attributes, such as a customer’s salary or age.5

With some applications, the analyst does not explic-
itly know the set of target classes and considers them
hidden. The analyst uses clustering models such as K-
Means and Birch to determine the appropriate set of
classes and to classify a new tuple into one of these
hidden classes.6,7

Analysts use rule-based models such as the associa-
tion rules model to explore whether the purchase of a
certain set of footwear products is indicative, with some
degree of confidence, of a purchase of another product.

Additional model considerations
No single model class or algorithm will always build

the ideal model for all applications. Data mining plat-
forms must therefore support several types of model
construction for evaluation and provide additional
functionality for extensibility and interchangeability.

In some cases, analysts may want to build a unique
correlation model that the data mining platform does
not support. To handle such requirements, mining
platforms must support extensibility.

Many commercial products build models for spe-
cific domains, but the actual database on which the
model must be deployed may be in a different data-
base system. Data mining platforms and database
servers therefore must also be capable of interchang-
ing models.

The Data Mining Group (http://www.dmg.org)
recently proposed using the Predictive Model Markup
Language, an XML-based standard, to interchange
several popular predictive model classes. The idea is
that any database supporting the standard can import
and deploy any model described in the standard.

Data mining
iteratively builds

models on a
prepared data set
and then deploys

one or more models.

Mining model deployment
During the model deployment phase, the analyst

applies the selected model to data sets to predict a tar-
get attribute with an unknown value. For each cur-
rent set of customers in the FSC example, the
prediction is whether they will purchase a product
from the new catalog. Deploying a model on an input
data set—a subset or partitioning of the input data
set—may result in another data set. In the FSC exam-
ple, the model deployment phase identifies the subset
of customers that will be mailed catalogs.

When input data sets are extremely large, the model
deployment strategy must be very efficient. Using
indexes on the input relation to filter out tuples that will
not be in the deployment result may be necessary, but
this requires tighter integration between database sys-
tems and model deployment. Unfortunately, the research
community has devoted less attention to deployment
efficiency than to model-building scalability.

ADDITIONAL OLAP AND DATA MINING ISSUES
Other important issues in the context of OLAP and

data mining technology include packaged applica-
tions, platform application program interfaces and the
impact of XML, approximate query processing,
OLAP and data mining integration, and Web mining.

Packaged applications
To develop a complete OLAP or data mining analy-

sis solution, the analyst must perform a series of com-
plex queries and build, tune, and deploy complex
models. Several commercial tools try to bridge the gap
between actual solution requirements for well-under-
stood domains and the support from a given OLAP
or data mining platform. Packaged applications and
reporting tools can exploit vertical-domain knowledge
to make the analyst’s task easier by providing higher-
level, domain-specific abstractions. The Data Ware-
housing Information Center (http://www.dwinfocenter.
org/) and KDnuggets (http://www.kdnuggets.com/
solutions/index.html) provide comprehensive lists of
domain-specific solutions.

Businesses can purchase such solutions instead of
developing their own analysis, but specific vertical-
domain solutions are limited by their feature sets and
therefore may not satisfy all of a company’s analysis
needs as its business grows.

Platform APIs and XML’s impact
Several OLAP and data mining platforms provide

APIs so analysts can build custom solutions. However,
solution providers typically have had to program for
a variety of OLAP or data mining engines to provide
an engine-independent solution. New Web-based
XML services offer solution providers a common inter-
face for OLAP engines. Microsoft and Hyperion have

published the XML for Analysis specification
(http://www.essbase.com/downloads/XML_
Analysis_spec.pdf), a simple object access pro-
tocol-based XML API designed specifically for
standardizing the data access interaction be-
tween a client application and an analytical data
provider (OLAP and data mining) working over
the Web. With this specification, solution pro-
viders can program using a single XML API
instead of multiple vendor-specific APIs.

Approximate query processing
Complex aggregate query processing typically

requires accessing large amounts of data in the
warehouse. For example, computing FSC’s average
sales across cities requires a scan of all warehouse data.
In many cases, however, approximate query process-
ing is an option for obtaining a reasonably accurate
estimate very quickly. The basic idea is to summarize
the underlying data as concisely as possible and then
answer aggregate queries using the summary instead
of the actual data. The Approximate Query Processing
project (http://www.research.microsoft.com/dmx/
ApproximateQP) and the AQUA Project (http://
www.bell-labs.com/project/aqua) provide additional
information about this approach.

OLAP and data mining integration
OLAP tools help analysts identify relevant portions

of the data, while mining models effectively enhance
this functionality. For example, if the FSC product sales
increase does not meet the targeted rates, the market-
ing managers will want to know the anomalous
regions and product categories that failed to meet the
target. An exploratory analysis that identifies anom-
alies uses a technique that marks an aggregate mea-
sure at a higher level in a dimensional hierarchy with
an anomaly score. The anomaly score computes the
overall deviation of the actual aggregate values from
corresponding expected values over all its descen-
dants.8,9 Analysts can use data mining tools such as
regression models to compute expected values.

Web mining
Most major businesses maintain a Web presence

where customers can browse, inquire about, and pur-
chase products. Because each customer has one-to-
one contact with the business through the Web site,
companies can personalize the experience. For exam-
ple, the Web site may recommend products, services,
or articles within the customer’s interest category.
Amazon.com has pioneered the deployment of such
personalization systems.

The two key issues involved in developing and
deploying such Web systems are data collection and
personalization techniques. Analysis of Web log data—

December 2001 53

Specific vertical-
domain solutions are

limited by their
feature sets, and

they may not satisfy
all of a company’s
analysis needs as

its business grows.

54 Computer

automatically collected records of customer
behavior at the Web site—can reveal typical pat-
terns. For example, this kind of analysis would
allow FSC to offer a special on athletic socks to
a customer who purchases shoes. Data mining
models can exploit such behavioral data—par-
ticularly when it is combined with the demo-
graphic data the customer enters during
registration or checkout—to personalize the
Web pages the customer sees with appropriate
advertisements. Over time, when a large user
community develops, the business can recom-
mend additional products based on similarities
among users’ behavioral patterns. Data mining

models can identify such similar user classes.

DATA WAREHOUSE TOOLS
Building a data warehouse from independent data

sources is a multistep process that involves extracting
the data from each source, transforming it to conform
to the warehouse schema, cleaning it, and then load-
ing it into the warehouse. The Data Warehousing
Information Center provides an extensive list of ETL
(extract, transform, load) tools for use in this opera-
tions sequence.

Extraction and transformation
The goal of the data extraction step is to bring data

from disparate sources into a database where it can
be modified and incorporated into the data ware-
house. The goal of the subsequent data transforma-
tion step is to address discrepancies in schema and
attribute value conventions. A set of rules and scripts
typically handles the transformation of data from an
input schema to the destination schema.

For example, an FSC distributor may report sales
transactions as a flat file in which each record describes
all entities and the number of units involved in the
transaction. The distributor might split each customer
name into three fields: first name, middle initial, and
last name. To incorporate the distributor’s sales infor-
mation into the FSC data warehouse with the schema
shown in Figure 2, the analyst must first extract the
records and then, for each record, transform all three
name-related source columns to derive a value for the
customer name attribute.

Data cleaning
Data entry errors and differences in schema con-

ventions can cause the customer dimension table to
have several corresponding tuples for a single cus-
tomer, resulting in inaccurate query responses and
inappropriate mining models. For example, if the cus-
tomer table has multiple tuples for several FSC cus-
tomers in New York, New York may incorrectly
appear in the list of top 50 cities with the highest num-

ber of unique customers. Tools that help detect and
correct data anomalies can have a high payoff, and a
significant amount of research addresses the problems
of duplicate elimination10 and data-cleaning frame-
works.11

Loading
After its extraction and transformation, data may

still require additional preprocessing before it is loaded
into the data warehouse. Typically, batch load utili-
ties handle functions such as checking integrity con-
straints; sorting; summarizing, aggregating, and
performing other computations to build derived tables
stored in the warehouse; and building indices and
other access paths. In addition to populating the ware-
house, a load utility must allow the system adminis-
trator to monitor status; to cancel, suspend, and
resume a load; and to restart after failure with no data
integrity loss. Because load utilities for data ware-
houses handle much larger data volumes than opera-
tional databases, they exploit pipelined and parti-
tioned parallelism.1

Refreshing
Refreshing a data warehouse consists of propagat-

ing updates on source data that correspondingly
update the base tables and the derived data—materi-
alized views and indexes—stored in the warehouse.
The two issues to consider are when to refresh and
how to refresh.

Typically, data warehouses are refreshed periodi-
cally according to a predetermined schedule, such as
daily or weekly. Only if some OLAP queries require
current data such as up-to-the-minute stock quotes is
it necessary to propagate every update. The data ware-
house administrator sets the refresh policy depending
on user needs and traffic. Refresh schedules may dif-
fer for different sources. The administrator must
choose the refresh cycles properly so that the data vol-
ume does not overwhelm the incremental load utility.

Most commercial utilities use incremental loading
during refresh to reduce data volume, inserting only
the updated tuples if the data sources support extract-
ing relevant portions of data. However, the incre-
mental load process can be difficult to manage because
the update must be coordinated with ongoing trans-
actions.

METADATA MANAGEMENT
Metadata is any information required to manage

the data warehouse, and metadata management is an
essential warehousing architecture element. Adminis-
trative metadata includes all information required to
set up and use a warehouse. Business metadata in-
cludes business terms and definitions, data ownership,
and charging policies. Operational metadata includes

Data mining models
can exploit

behavioral data
to personalize the

Web pages the
customer sees

with appropriate
advertisements.

information collected during warehouse operation
such as the lineage of migrated and transformed data;
the data currency (active, archived, or purged); and
monitoring information such as usage statistics, error
reports, and audit trails. Warehouse metadata often
resides in a repository that enables metadata sharing
among tools and processes for designing, setting up,
using, operating, and administering a warehouse.

C oncerted efforts within industry and academia
have brought substantial technological progress
to the data warehousing task, reflected by the

number of commercial tools that exist for each of the
three major operations: populating the data ware-
house from independent operational databases, stor-
ing and managing the data, and analyzing the data to
make intelligent business decisions. Despite the
plethora of commercial tools, however, several inter-
esting avenues for research remain.

Data cleaning is related to heterogeneous data inte-
gration, a problem that has been studied for many
years. To date, much emphasis has centered on data
inconsistencies rather than schema inconsistencies.
Although data cleaning is the subject of recent atten-
tion, more work needs to be done to develop domain-
independent tools that solve the variety of data-
cleaning problems associated with data warehouse
development.

Most data mining research has focused on devel-
oping algorithms for building more accurate models
or for building models faster. The other two stages of
the knowledge discovery process—data preparation
and mining model deployment—have largely been
ignored. Both stages present several interesting prob-
lems specifically related to achieving better synergy
between database systems and data mining technol-
ogy. Ultimately, new tools should give analysts more
efficient ways to prepare a good data set for achieving
a specific goal and more efficient ways to deploy mod-
els over the results of arbitrary SQL queries. ✸

References
1. T. Barclay et al., “Loading Databases Using Dataflow

Parallelism,” SIGMOD Record, Dec. 1994, pp. 72-83.
2. J. Gray et al., “Data Cube: A Relational Aggregation

Operator Generalizing Group-By, Cross-Tab, and Sub
Totals,” Data Mining and Knowledge Discovery J., Apr.
1997, pp. 29-54.

3. S. Agrawal et al., “On the Computation of Multidi-
mensional Aggregates,” Proc. VLDB Conf., Morgan
Kaufmann, San Francisco, 1996, pp. 506-512.

4. V. Harinarayan, A. Rajaraman, and J.D. Ullman,
“Implementing Data Cubes Efficiently,” Proc. SIGMOD
Conf., ACM Press, New York, 1996, pp. 205-216.

5. L. Breiman et al., Classification and Regression
Trees, Chapman & Hall/CRC, Boca Raton, Fla.,
1984.

6. V. Ganti, J. Gehrke, and R. Ramakrishnan,
“Mining Very Large Data Sets,” Computer, Aug.
1999, pp. 38-45.

7. J. Han and M. Kamber, Data Mining: Concepts
and Techniques, Morgan Kaufmann, San Fran-
cisco, 2001.

8. S. Sarawagi, “User Adaptive Exploration of
OLAP Data Cubes,” Proc. VLDB Conf., Mor-
gan Kaufmann, San Francisco, 2000, pp. 307-
316.

9. J. Han, “OLAP Mining: An Integration of OLAP
with Data Mining,” Proc. IFIP Conf. Data
Semantics, Chapman & Hall/CRC, Boca Raton, Fla.,
1997, pp. 1-11.

10. M. Hernandez and S. Stolfo, “The Merge/Purge Problem
for Large Databases,” Proc. SIGMOD Conf., ACM
Press, New York, 1995, pp. 127-138.

11. H. Galhardas et al., “Declarative Data Cleaning: Model,
Language, and Algorithms,” Proc. VLDB Conf., Mor-
gan Kaufmann, San Francisco, 2001, pp. 371-380.

Surajit Chaudhuri is a senior researcher and manager
of the Data Management, Exploration, and Mining
Group at Microsoft Research. His research interests
include self-tuning database systems, decision support
systems, and integration of text, relational, and semi-
structured information. He received a PhD in com-
puter science from Stanford University. Chaudhuri is
a member of the IEEE Computer Society and the
ACM. Contact him at surajitc@microsoft.com.

Umeshwar Dayal is a principal laboratory scientist at
Hewlett-Packard Laboratories. His research interests
are data mining, business process management, dis-
tributed information management, and decision sup-
port technologies, especially as applied to e-business.
He received a PhD in applied mathematics from Har-
vard University. Dayal is a member of the ACM and
the IEEE. Contact him at dayal@hpl.hp.com.

Venkatesh Ganti is a researcher in the Data Manage-
ment, Exploration, and Mining Group at Microsoft
Research. His research interests include mining and
monitoring large evolving data sets and decision sup-
port systems. He received a PhD in computer science
from the University of Wisconsin–Madison. Ganti is
a member of the ACM. Contact him at vganti@
microsoft.com.

December 2001 55

More work is
required to develop

domain-independent
tools that solve the

data-cleaning
problems associated
with data warehouse

development.

