
 Page 1

The Dynamic Data Cube

S. Geffner D. Agrawal A. El Abbadi
Department of Computer Science

University of California
Santa Barbara, CA 93106

{sgeffner, agrawal, amr}@cs.ucsb.edu

Abstract Range sum queries on data cubes are a powerful
tool for analysis. A range sum query applies an aggregation
operation (e.g., SUM, AVERAGE) over all selected cells in a
data cube, where the selection is specified by providing
ranges of values for numeric dimensions. We present the
Dynamic Data Cube, a new approach to range sum queries
which provides efficient performance for both queries and
updates, which handles clustered and sparse data gracefully,
and which allows for the dynamic expansion of the data cube
in any direction.

1 Introduction
The data cube [GBLP96], also known in the OLAP

community as the multidimensional database
[OLA96][AGS97], is designed to provide aggregate
information that can be used to analyze the contents of
databases and data warehouses. A data cube is constructed
from a subset of attributes in the database. Certain
attributes are chosen to be measure attributes, i.e., the
attributes whose values are of interest. Other attributes
are selected as dimensions or functional attributes. The
measure attributes are aggregated according to the
dimensions. For example, consider a hypothetical
database of sales information maintained by a company.
One may construct a data cube from the database with
SALES as a measure attribute and CUSTOMER_AGE
and DATE_AND_TIME as dimensions. Such a data cube
provides aggregated sales information for the enterprise
over time; for example, what were the total sales to 45-
year-old customers on the 8th of December? Range sum
queries are useful analysis tools when applied to data
cubes. A range sum query applies an aggregate operation
(e.g., SUM, AVERAGE) to the measure attribute within
the range of the query. An example is find the average
daily sales to customers between the ages of 27 and 45
during the time period December 7 to December 31.
Queries of this form can be very useful in finding trends
and in discovering relationships between attributes in the
database. Efficient range-sum querying is becoming more
important with the growing interest in database analysis,
particularly in On-Line Analytical Processing (OLAP)
[Cod93]. Since the introduction of the data cube, there
has been considerable research in the database community
regarding the computation of data cubes [AAD+96], for
choosing subsets of the data cube to precompute [HRU96]
[GHRU97], for constructing estimates of the size of
multidimensional aggregates [SDNR96] and for indexing
precomputed summaries [SR96] [JS96]. Approximating
the data cube using wavelets has also been examined
[VWI98].

Ho, Agrawal, Megiddo and Srikant [HAMS97] have
presented an elegant algorithm for computing range sum
queries in data cubes which we call the prefix sum
approach. The essential idea of the prefix sum approach is
to precompute many prefix sums of the data cube, which
can then be used to answer ad hoc queries at run-time.
The prefix sum method permits the evaluation of any
range sum query on a data cube in constant time. The
approach is hampered by its update cost, which in the
worst case requires recalculating all the entries in an array
of the same size as the entire data cube. In a recent paper
[GAES99], we have presented an algorithm for computing
range sum queries in data cubes which we call the relative
prefix sum approach. The relative prefix sum method
improves upon earlier results in that it prevents
unconstrained cascading updates, and consequently
achieves a reduction in update complexity while
maintaining constant time queries. Nevertheless, it still
incurs substantial update costs in the worst case, on the
order of the square root of the size of the cube.

These methods, which each provide constant-time query
performance, are suitable for applications in which the
underlying data is dense and update performance is
irrelevant. In current data analysis applications, update
complexity is rarely considered to be of significant
importance. Most analysis systems are oriented towards
batch updates, and for a wide variety of current-day
business applications this is considered sufficient. Yet,
the batch updating paradigm, a holdover from the 1960's
computing environment, is tremendously limiting to the
field. In the technological sector, we are all familiar with
the notion of an enabling threshold, the point at which
new applications become efficient enough to be practical.
As an example, before 1990, Internet use was essentially
limited to universities, and few applications existed. With
the arrival of WWW and HTML, along with the search
engines they made possible, an enabling threshold had
been crossed; the Internet became efficient and easy
enough to be adopted by the public en masse, and many
new applications arose.

One of the goals of research is to find and cross
enabling thresholds. Again, in current practice, data cubes
are used almost exclusively by data analysts, using
relatively expensive systems that first batch load data,
then permit read-only querying. This model of interaction
clearly limits what is possible. The prefix sum method is
a good example of present-day cutting-edge data cube
technology. During updates, it requires updating an array
whose size is equal to the size of the entire data cube. It

 Page 2

is easy to see that, even under batch update conditions,
this model is not workable for many applications. What
if the size of the data cube were a terabyte? What if batch
updates occur every minute (think Internet commerce)?
Table 1 compares update costs for various methods of
computing range sum queries in data cubes when the
number of dimensions is 8. In the table, n is the size of
each dimension, while d is the number of dimensions;
thus, the size of the complete data cube is n d. Even in the
relatively smaller data cubes, the performance difference is
striking. When n=102, the size of each dimension is only
100 elements; yet, with d=8, the full data cube is 1016

cells. To handle a single update at this data cube size, the
prefix sum method requires on the order of 10 10 times
more instructions than the Dynamic Data Cube. On a
hypothetical 500MIPS processor, excluding I/O and other
costs and ignoring constants in the formulas, the prefix
sum method may require more than 6 months of
processing to update a single cell in the data cube; in such
a case, even batch updating is not practical. The Dynamic
Data Cube can update that same cell in under 0.008
seconds. The relative prefix sum approach also quickly
becomes impractical. When n=104, the relative prefix
sum method requires 231 days to update a single cell in
the data cube, whereas the Dynamic Data Cube requires
under 2 seconds. Figure 1 presents the update functions in
graphical form for a range of data cube sizes.

How many potential applications of data cube
techniques are currently infeasible due to the high cost of
updates? Astronomers, for example, might wish to do
some data analysis on the billions of stars they are
discovering. Stock brokers might wish to dynamically
analyze the implications of millions of trades as they
occur. Business leaders might wish to construct
interactive "what-if" scenarios using their data cubes, in
much the same way that they construct "what-if" scenarios
using spreadsheets now. The fact that there are significant
impediments to dynamic updates in the data cube prevents
many potential applications from being even considered,
since those applications are clearly not practical at this
time. As an industry, we need to fundamentally reduce the
barriers to dynamic updates in very large data cubes so that
new and interesting applications become possible.

In addition, for many application domains data is sparse
or clustered. Examples include most geographically-based
information, such as geographically oriented business data
(e.g. sales by region, median income of households by
region, etc.), and scientific measurements (e.g., levels of
carbon monoxide production at numerous points on the
Earth's surface, locations of stars in space). Still other
applications require that data be allowed to grow
dynamically in any direction, rather than in a single
dimension as with append-only databases. Current
techniques do not handle these cases well. For these and
other potential application domains, we desire a method
that achieves sublinear performance for both queries and
updates. The method should permit the data cube to grow
dynamically in any direction to suit the underlying data,
and should handle sparse or clustered data efficiently.

Table 1. Update cost functions by method, d=8.
Values are rounded to the nearest power of 10.

Update Cost Functions by Method, d=8

n

Full Data
Cube Size

=nd
Prefix Sum

=nd
Relative PS

=nd/2

Dynamic
Data Cube
=(log2 n)d

10108108104104

10210161016108106

103102410241012107

104103210321016109

Comparison of Update Functions, d=8

n

N
um

ber of O
perations

1E+00
1E+06
1E+12

1E+18
1E+24
1E+30
1E+36

1E+42
1E+48
1E+54
1E+60

1E+66
1E+72
1E+78

1E+011E+031E+051E+071E+09

 PS

 RPS

 DDC

Scales are Logarithmic

Figure 1. Update functions. Scales are logarithmic.

Contribution We present the Dynamic Data Cube, a
method that provides sublinear performance for both range
sum queries and updates on the data cube. The method
supports dynamic growth of the data cube in any direction;
it gracefully manages clustered data and data cubes that
contain large regions of empty space.

Paper Organization The remainder of the paper is
organized as follows. In Section 2, we present the model
of the range sum problem, and discuss several previous
approaches. In Section 3, we introduce the Basic
Dynamic Data Cube as a foundation for later sections.
We present basic query and update methods. We present a
performance analysis of the Basic Dynamic Data Cube,
concluding that the method still has considerable update
complexity as the dimensionality of the data cube
increases. In Section 4, we present the Dynamic Data
Cube and analyze the performance characteristics of the
method. We show that it achieves sublinear queries and
updates, and we discuss various performance
considerations. Section 5 addresses dynamic growth of the
data cube. We demonstrate that the Dynamic Data Cube
is more suited than previous methods to dynamic growth
of the cube, and that it handles clustered data more
efficiently. Section 6 concludes the paper.

2 Problem Statement and Previous Solutions
Assume the data cube has one measure attribute and d

feature attributes (dimensions). Let D={1,2,...,d} denote
the set of dimensions. For example, let the measure
attribute be SALES, and the dimensions be
CUSTOMER_AGE and DATE_AND_TIME. Each
dimension has a size ni, which represents the number of
distinct values in the dimension. Initially we assume that

 Page 3

this size is known a priori; in Section 5 we will expand
our analysis to dynamic environments. Thus, we can
represent the d-dimensional data cube by a d-dimensional
array A of size n1 × n2 × ... × nd, where ni≥2, i∈D. In
Figure 2, d=2. For clarity, and without loss of generality,
our cost model will assume each dimension has the same
size; this allows us to present many of the formulae more
concisely. Thus, let the size of each dimension be n, i.e.
n=n1=n2=...=nd. Our subsequent formulae and
discussions will refer to n, rather than the total size of the
data cube N=nd; in this manner, the impact of the
dimensionality of the data cube on performance will be
revealed. We will call each array element a cell. The total
size of array A is nd cells. We assume the array has
starting index 0 in each dimension. For notational
convenience, in the two-dimensional examples we will
refer to cells in array A as A[i,j], where i is the vertical
coordinate and j is the horizontal coordinate.

Array A
Index01234567

035122463
173268712
224233345
332153528
442133471
523361852
645271933
724223191

Figure 2. The data cube represented as an array A.

Each cell in array A contains the aggregate value of the
measure attribute (e.g., total SALES) corresponding to a
given point in the d-dimensional space formed by the
dimensions. For example, given the measure attribute
SALES and the dimensions CUSTOMER_AGE and
DATE_AND_TIME, the cell at A[37, 220] contains the
total sales to 37-year-old customers on day 220. A range-
sum query on array A is defined as the sum of all the cells
that fall within the specified range. For example, a range-
sum query asking for the total sales to 37-year-old
customers from days 220 to 222 would be answered by
summing the cells A[37, 220], A[37, 221], and A[37,
222]. We will refer to range-sum queries simply as range
queries throughout the rest of this paper. As Ho et. al.
point out, the techniques presented here can also be
applied to obtain COUNT, AVERAGE, ROLLING SUM,
ROLLING AVERAGE, and any binary operator + for
which there exists an inverse binary operator - such that
a + b - b = a.

We observe the following characteristics of array A.
Array A can be used by itself to solve range sum queries;
we will refer to this as the naive method. Arbitrary range
queries on array A can cost O(nd): a range query over the
range of the entire array will require summing every cell
in the array. Updates to array A take O(1): given any new
value for a cell, an update can be achieved simply by
changing the cell's value in the array.

The prefix sum approach [HAMS97] achieves O(1)
complexity for queries and O(nd) complexity for updates.
The essential idea of the prefix sum approach is to
precompute many prefix sums of the data cube, which can
then be used to answer ad hoc queries at run-time. Figure

3 shows the array P employed by the prefix sum
approach. Each cell P[i,j] in array P stores the sum of all
cells that precede it in array A, i.e., SUM(A[0,0]:A[i,j]).
Using the prefix sum method, arbitrary range sum queries
can be evaluated by adding and subtracting a constant
number of cells in array P. In recent work, we presented
the relative prefix sum approach [GAES99]. The relative
prefix sum approach achieves O(1) complexity for queries
and O(nd/2) for updates.

Array P
Index01234567

03891113172326
11018212939505762
21224294053677888
315293551678699117
41935426180103123142
52140507595126151172
625496193114154182206
7275569103127168205230

Figure 3. Array P used in the prefix sum method.

Both the prefix sum approach and the relative prefix
sum approach make use of a property of range sums in
data cubes that is a consequence of the inverse property of
addition. Figure 4 presents the essential idea: the sum
corresponding to a range query's region can be determined
by adding and subtracting the sums of various other
regions, until we have isolated the region of interest.
This technique requires a constant number of region sums
that is related to the number of dimensions. We note that
all such regions begin at cell A[0,0] and extend to some
other cell in A. In the prefix sum method, the array P
stores these region sums directly, and uses them to answer
arbitrary queries as illustrated in Figure 4. In the relative
prefix sum method, these sums are stored indirectly in a
manner which improves update complexity.

Area_EArea_AArea_BArea_CArea_D

=--+

Figure 4. A geometric illustration of the two dimensional
case: Sum(Area_E) = Sum(Area_A) - Sum(Area_B) -
Sum(Area_c) + Sum(Area_D).

While these methods provide constant time queries, in
the worst case they incur update costs proportional to the
entire data space. This update cost results from the very
dependencies in the data which allow these methods to
work. As noted, the values of cells in array P are
cumulative, in that they contain the sums of all cells in
array A that precede them. Figure 5 shows the array P as
the cell A[1,1] is about to be updated. The value of cell
A[1,1] is a component of every P cell in the shaded
region; thus, updating A[1,1] requires updating every P
cell in the shaded region. In the worst case, when cell
A[0,0] is updated, this cascading update property will
require that every cell in the data cube be updated. Since
the size of the data cube is nd cells, this update
complexity is O(nd). The relative prefix sum method
constrains cascading updates somewhat, but is still subject
to this effect.

 Page 4

 Array P
Index01234567

03891113172326
11018 *212939505762
21224294053677888
315293551678699117
41935426180103123142
52140507595126151172
625496193114154182206
7275569103127168205230

Figure 5. Array P update example.

Index01234567

0Y1Y1
1Y2Y2
2Y3Y3
3X1X2X3SX1X2X3S

4Y1Y1
5Y2Y2
6Y3Y3
7X1X2X3SX1X2X3S

Figure 6. Partitioning array A into overlay boxes.

Y1
Y2

Y3

X1X2X3

S

Figure 7. Calculation of row sum values.

Index01234567

01115
12933
24048
31529355116354866
41015
52431
64247
7122634528305461

Figure 8. Array A partitioned into overlay boxes.

3 The Basic Dynamic Data Cube
In this section, we describe the Basic Dynamic Data

Cube as a foundation for later sections. The method
utilizes a tree structure which recursively partitions array
A into overlay boxes. Each overlay box will contain
information regarding relative sums of regions of A. By
descending the tree and adding these sums, we will
efficiently construct sums of regions which begin at
A[0,0] and end at any arbitrary cell in A. To calculate
complete region sums from the tree, we also make use of
the inverse property of addition as illustrated in Figure 4.
We will first describe overlays, then describe their use in
constructing the Basic Dynamic Data Cube. As
motivation to Section 4, we will analyze the performance
of the basic tree, and show that its update complexity is
still problematic.

3.1 Overlays
We define an overlay as a set of disjoint

hyperrectangles (hereafter called "boxes") of equal size that
completely partition cells of array A into non-overlapping

regions. For simplicity in presentation, we will assume
that the size of A in each dimension is 2 i for some integer
i. We also define several terms for use later in the paper.
We denote the length of the overlay box in each
dimension as k. We say that an overlay box is anchored
at (a1, a2, ..., ad) if the box corresponds to the region of
array A where the first cell (lowest cell index in each
dimension) is (a1, a2, ..., ad); we denote this overlay box
as B[a1, a2, ..., ad]. The first overlay box is anchored at
(0, 0, ..., 0). An overlay box B[a1, a2, ..., ad] is said to
cover a cell (x1, x2, ..., xd) in array A if the cell falls
within the boundaries of the overlay box, i.e., if

∀i((ai≤xi)

V

(ai+k>xi)).
Figure 6 shows array A partitioned into overlay boxes.

Each dimension is subdivided in half; in this two-
dimensional example, there are four resulting boxes. In
the figure, k=4; i.e., each box in the figure is of size 4×4.
The boxes are anchored at cells (0,0), (0,4), (4,0), and
(4,4). Each overlay box corresponds to an area of array A
of size kd cells; thus, in this example each overlay box
covers 42 = 16 cells of array A.

Each overlay box stores certain values. Referring to
Figure 6, S is the subtotal cell, while X1, X2, X3 are row
sum cells in the first dimension and Y1, Y2, Y3 are row
sum cells in the second dimension. Each box stores
exactly (kd - (k-1)d) values; the other cells covered by the
overlay box are not needed in the overlay, and would not
be stored. Values stored in an overlay box provide sums
of regions within the overlay box. Row sum values
provide the cumulative sums of rows, in each dimension,
of cells covered by the overlay box. Figure 7
demonstrates the calculation of row sum values; the row
sum values shown in the figure are equal to the sum of
the associated shaded cells in array A. Row sum value Y 1
is the sum of all cells within the overlay box in the row
containing cell Y1. Row sum value Y2 is the sum of all
cells within the overlay box in the row containing cell
Y2, plus Y1. Row sum value X1 is the sum of all cells
within the overlay box in the column containing cell X1.
Row sum value X2 is the sum of all cells within the
overlay box in the column containing X2, plus X1. Note
that row sum values are cumulative; i.e., X2 includes the
value of X1, and Xn includes the values of X1..Xn-1.
Formally, given an overlay box anchored at A[i 1, i2, ...,
id], the row sum value contained in cell [i1, i2, ..., j, ...,
id] is equal to SUM(A[i1, i2, ..., id]:A[i1, i2, ..., j, ...,
id]). The subtotal value S is the sum of all cells in A
covered by the overlay box. Formally, an overlay box
anchored at A[i1, i2, ..., id] has a subtotal value that is
equal to SUM(A[i1, i2, ..., id]:A[i1+k-1, i2+k-1, ...,
id+k-1]).

Figure 8 shows array A partitioned into overlay boxes
of size 4×4. The subtotal in cell [3,3] is equal to the sum
of all cells from A covered by the first overlay box, i.e.
Sum(A[0,0] .. A[3,3]) = 51. The row sum in overlay cell
[0,3] = A[0,0] + A[0,1] + A[0,2] + A[0,3] = 3+5+1+2 =

 Page 5

11. The row sum in overlay cell [1,3] = A[0,0] + A[0,1]
+ A[0,2] + A[0,3] + A[1,0] + A[1,1] + A[1,2] + A[1,3] =
3+5+1+2+7+3+2+6 = 29. Similarly, the row sum in
overlay cell [3,0] = A[0,0] + A[1,0] + A[2,0] + A[3,0] =
3+7+2+3 = 15.

3.2 Constructing the Basic Dynamic Data Cube
We now describe the construction of the Basic

Dynamic Data Cube, which organizes overlay boxes into
a tree to recursively partition array A (Figure 9). The root
node of the tree encompasses the complete range of array
A. The root node forms children by dividing its range in
each dimension in half. It stores a separate overlay box
for each child. Each of its children are in turn subdivided
into children, for which overlay boxes are stored; this
recursive partitioning continues until the leaf level. Thus,
each level of the tree has its own value for the overlay box
size k; k is (n/2) at the root of the tree, and is successively
divided in half for each subsequent tree level. We define
the leaf level as the level wherein k=1. When k=1, each
overlay box contains a single cell; since a single-cell
overlay box contains only the subtotal cell, the leaf level
contains the values stored in the original array A.

Level 2 (Root Node) n=8 k=n/2
1115
2933
4048

1529355116354866
1015
2431
4247

122634528305461

Level 1 k=n/4
8369

10183111021712
6569

511311614619

6478
6114134161215

99106
6154134141216

Level 0 (Leaf Level) k=1
35122463
73268712

24233345
32153528

42133471
23361852

45271933
24223191

Figure 9. Example of the basic tree (d=2).

3.2.1 Queries The Basic Dynamic Data Cube can be
used to generate the sum of any region of A which begins
at A[0,0] and ends at an arbitrary cell c in A; we will refer
to such a region as the target region, and to c as the target
cell. Figure 10 presents a range sum query algorithm.
The query process begins at the root of the tree. Using
the target cell, the algorithm checks the relationship
between the target cell and the overlay boxes in the node.
When an overlay box covers the target cell, a recursive

call to the function is performed, using the child
associated with the overlay box as the node parameter.
When the target cell comes before the overlay box in any
dimension, the target region does not intersect the overlay
box, and the box contributes no value to the sum. When
the target cell is after the overlay box in every dimension,
the target region includes the entire overlay box, and the
box contributes its subtotal cell to the sum. When the
cell is neither before nor completely after the overlay box,
the target region intersects the overlay box, and the box
contributes a row sum value to the sum.

Exactly one child will be descended at each level of the
tree. This property follows from the construction of
overlays. Overlay boxes completely partition array A into
disjoint regions. Therefore, the target cell must fall
within only one overlay box at a given level of the tree.
Given a node and its overlay boxes, the target cell will fall
within one box, and outside the others. Consider the
boxes that do not enclose the target cell. Overlay boxes
store the cumulative sums of rows in the region covered
by the overlay box. Therefore, the contribution of these
regions can be determined directly from the overlay box
values; no descent is necessary. When the target cell falls
within an overlay box, we must descend to the child
associated with that overlay box. Therefore, exactly one
child will be descended in the tree at any given node, and
queries are of complexity O(log n).

/* Function CalculateRegionSum
 Returns the contribution of node h and its subtree to
 the sum of the region A[0,...,0]:cell */
int CalculateRegionSum (DDCTreeNode h, Cell cell) {
 int sum=0; /* running total of sum contributed by this
 node and its subtrees */
 int i; /* index variable */

 //naive code for clarity's sake --
 // production code would only check overlay boxes
 // which intersect the target region
 for (i=0; i<NUM_OVERLAY_BOXES_PER_NODE; i++) {
 // ** NUM_OVERLAY_BOXES_PER_NODE = 2d **
 if (Covers(h.box[i], cell) {
 if (h is a leaf) sum+=h.box[i].subtotal;
 else sum+=CalculateRegionSum(h.child[i], cell);
 } else {
 if (CellBeforeBox(h.box[i], cell)) sum+=0;
 else if (CellCompletelyAfterBox(h.box[i]))
 sum+=box.subtotal;
 else
 sum+=the appropriate row sum value
 from this overlay box;
 }
 }

 return sum;
}

Figure 10. Query algorithm, Basic Dynamic Data Cube.

An example of the query process is presented in Figure
11. We will calculate the region sum of the region that
begins at A[0,0] and ends at cell * in the figure. For
illustrative purposes only, we have labeled the overlay
boxes for the four children of the root Q, R, S and T.
Each of these overlay boxes contributes at most one value
to the sum of the target region. Overlay box Q
contributes its subtotal (51), since the target region
includes all of the area covered by Q. R contributes its
row sum value (48), which represents the sum of all the
rows in R that are contained in the target region.
Likewise, S contributes its row sum value (24). By

 Page 6

summing these three values, the sum of all cells of A
within the shaded region of the root node is obtained. The
target cell lies within T, so we must descend to the child
associated with T to calculate the remaining sum of the
target region. Descending to tree level one, we have
labeled the overlay boxes of the appropriate node U, V,
W and Z. U contributes its subtotal cell (16). Note that
not all overlay boxes in a node always contribute to the
sum. In this case, W and Z do not contribute any values
to the sum of the target region, since they do not intersect
it. Since the target cell falls within V, we must descend
to the child associated with V. At the leaf level, we have
labeled the overlay boxes of the appropriate leaf node L,
M, N and O. Note that each overlay box at the leaf level
contains only its the subtotal cell. L contributes its
subtotal cell (7), and N contributes its subtotal cell (5),
while M and O do not contribute to the target region
sum. The total region sum thus consists of
51+48+24+16+7+5=151, which is the sum of all cells in
array A in the range A[0,0] to the target cell A[6,6]
(Figure 11a).

Level 2 (Root node)
Q11R15

2933
4048

1529355116354866
S10T15

24*31
4247

122634528305461

Level 1
8369

10183111021712
6569

511311614619

64U7V8
61141341612 *15

99W10Z6
6154134141216

Level 0 (Leaf Level)
35122463
73268712

24233345
32153528

421334L 7M 1
233618N 5*O 2

45271933
24223191

Figure 11. Query example.

QR

5148
SUL 7

2416N 5*

Figure 11a. Individual components of the range sum.

3.2.2 Updates The value of a cell can be updated by
descending a single path in the tree. This follows from
the construction of overlay boxes. At any level of the
tree, an update to a cell effects only the overlay box that
contains it; other overlay boxes are unaffected. The
update algorithm (Figure 12) makes use of a bottom-up

approach. It first traverses the tree to the leaf associated
with the target cell. When the leaf is reached, the
algorithm determines the difference between the old and
new values of the cell, and stores the new value into the
cell. The difference value is used to update overlay box
values in ancestor nodes of the tree.

/* Function UpdateCell
 Updates the data cube in response to a change in the
 value of a cell in array A. Returns the difference
 between the old and new values of cell. */
int UpdateCell(DDCTreeNode h, Cell cell, int newValue) {
 int oldValue;
 int difference;
 int i;

 i = the index of the overlay box in h that covers cell;

 if (h is not a leaf) {
 difference=UpdateCell(h.child[i], cell, newValue);
 /* difference=oldValue-newValue */
 offset[] = offset of cell within h.box[i]
 in each dimension;
 for each set of row sum values { /* d sets */
 add difference to all row sum values ≥ offset in
 that dimension
 }
 return difference;
 } else { /* h is a leaf */
 oldValue=h.box[i].subtotal;
 h.box[i].subtotal=newValue;
 return (oldValue-newValue); /* return difference */
 }
}

Figure 12. Update algorithm, Basic Dynamic Data Cube.

Referring to Figure 11, we will assume that the value
of cell * is to be updated from 5 to 6. The update
function will recursively call itself, traversing down the
tree to the leaf containing *; it begins at the root and
descends the child associated with overlay box T, then of
V, then reaches the leaf. The cell to be updated is
associated with overlay box N. The difference between
the old and new values of the cell is +1. The algorithm
stores the new value, 6, into N. The difference is returned
up the calling chain, where the values in overlay box V
will be updated. All values to the right or below the
changed cell must be updated; in this case, the row sum
value (12) and the subtotal cell (15) must be increased by
difference. The recursion unwinds to the root level,
where the values in overlay box T are updated. The row
sum values (31), (47), and (54), and the subtotal cell (61),
must be increased by difference.

Only one overlay box is updated at each tree level;
therefore, the cost of updating the Basic Dynamic Data
Cube is O(log n) plus the cost of updating the values in
these overlay boxes. However, updates to overlay boxes
can be expensive. Assume an array A of two dimensions,
where the size of each dimension is n. Further assume a
tree on array A as we have described. As noted earlier,
each overlay box contains (k d - (k-1)d) values; however,
for the two dimensional case we can observe from the
figures that the number of row sum values, not including
the subtotal cell, is equal to d(k-1). Thus, at the root
level of the tree, each overlay box must store 2(n/2 -1)
row sum cells, or O(n) cells. Row sum values are
cumulative sums of rows. In the worst case, updating a
single cell covered by an overlay box may require that
every row sum value in the overlay box be updated; thus,

 Page 7

updating the overlay row sum values becomes the
dominant update cost. The worst-case update cost of the
Basic Dynamic Data Cube becomes O(n) in the two-
dimensional case.

We will improve upon this result in Section 4; first,
however, we will present the general update cost formula
of the basic tree for a d-dimensional data cube. As noted
earlier, only one overlay box per tree level will be affected
during an update. An overlay box at a given level
contains exactly (kd - (k-1)d) values that may be affected
by an update. However, this formula may be
approximated as (dkd-1), which is strictly larger than (kd -
(k-1)d) for d≥2. This approximation formula is motivated
by the observation that a given overlay box of
dimensionality d has d sets of row sum values, and the
size of each set is approximately kd-1. At the root level,
k=n/2, but the value of k decreases as we descend the tree;
at each level of the tree, the value of k is divided in half.
Thus, the cost of updating all the necessary overlay boxes
during an update becomes the series

 d(n/2)d-1 + d(n/4)d-1 + ... + d1d-1

Rearranging terms, we have
= d[1d-1 + 2d-1 + 4d-1 + ... + (n/4)d-1 + (n/2)d-1]
There are (log n) terms in this series. Substituting

(n/2) as ((2log n)/2) or (2(log n)-1),
= d[20(d-1) + 21(d-1) + 22(d-1) + 23(d-1) +... + 2((log

n)-2)(d-1) + 2((log n)-1)(d-1)]
= d[(2d-1)0 + (2d-1)1 + (2d-1)2 + (2d-1)3 +... + (2d-

1)(log n)-2 + (2d-1)(log n)-1]
= d[(2d-1)log n - 1) / (2d-1 - 1)]
= d[(nd-1 - 1) / (2d-1 - 1)]
= O(nd-1)
In the next section, we present a modification to the

basic tree that improves update performance; the resulting
structure has sublinear complexity for both queries and
updates.

4 Improving Updates
It is clear that storing overlay values directly in arrays

results in costly update characteristics. As noted, the high
update complexity of the overlay boxes is a consequence
of dependencies between successive row sum values.
Recall from Figure 7 that row sum values are cumulative
sums of rows of cells covered by an overlay box. In
Figure 13, an arrow illustrates the dependencies between
cells in one set of row sum values. The value in row sum
cell X1 is a component of the value of cells X2..X6;
therefore, when the value in cell X1 changes, the values in
cells X2..X6 are affected. Thus, an update to a single cell
may cause a cascading update throughout the array. The
series of dependencies between row sum values is at the
heart of this update problem, and leads to the cascading
updates that we have described.

X1X2X3X4X5X6

Figure 13. Dependencies between row sum values.

If we could remove or reduce the dependencies between
row sums, perhaps the update cost for the tree as a whole
can be significantly improved. The dependencies cannot
be completely removed, however; the essence of the
approach depends upon the existence of these
dependencies, as illustrated in Figure 4. Instead, we
propose a method of storing row sum values that
ameliorates the series of dependencies between row sum
values, and as a consequence attains efficient, balanced
update and query characteristics for the tree as a whole.
Our method takes a recursive approach, the recursion
being with respect to the number of dimensions in the
data cube. We first present an efficient means of handling
the two-dimensional base case. We then present the
method by which higher dimensional data cubes can be
recursively reduced to two dimensions. We provide an
inductive proof of the complexity of our approach which
demonstrates that the tree provides sublinear complexity
for both queries and updates.

4.1 The Two-Dimensional Case: The Bc Tree
We will analyze the two dimensional data cube as a

special case of the d-dimensional data cube. We begin by
examining the row sum values in the two dimensional
data cube. An overlay for a two dimensional data cube has
two sets of row sum values, each of which is one
dimensional (Figure 6). Our goal is to reduce the
cascading update that occurs when an individual row sum
is updated. To this end, rather than store row sum values
directly in an array, we will store them separately in an
extension to the b-tree we call the Cumulative B Tree (Bc

tree). There will be a separate Bc tree for each set of row
sum values. The Bc tree is similar to a standard b-tree,
with a few alterations. As in a standard b-tree, each node
has a fixed maximum number of children; the maximum
number of children per node is called the fanout. Each
node stores keys associated with the children, and data is
stored in the leaves of the tree.

Figure 14 shows a Bc tree for one set of row sum
values in an overlay box. The Bc tree modifies the
standard b-tree in two ways. The first modification is
with regard to keys. Each leaf of the Bc tree corresponds
to one row sum cell. For the purposes of insertion and
lookup, the key for each leaf is not equal to the data value
in the cell, but rather is equal to the index of the cell in
the one-dimensional array of row sum values. Thus, the
leaves of the Bc tree are in the same order as the row sum
cells in the overlay box. Recall that row sum values are
cumulative sums of rows; in the Bc tree, we store the sum
of each individual row separately, and generate cumulative
row sums as needed. The first leaf in the figure
corresponds to the first row sum cell. Its key is thus 1,
and it stores the value 14, which is the sum of the cells in
the first row of the overlay box. The second leaf
corresponds to the second row sum cell; its key is thus 2,
and its value is (23-14=9), which is the sum of the cells
in the second row of the overlay box. Bc trees also
augment the standard b-tree by storing additional values in

 Page 8

interior nodes. Along with the traditional pointer to each
child, interior nodes of the Bc tree maintain subtree sums
(STS). For each node entry, the STS stores the sum of
the subtree found by following the left branch associated
with the entry. The fanout of the tree in the figure is
three, so there are at most two STS values in each node;
however, for fanout f there are (f-1) STSs. In this
example, the root stores an STS of 33, which represents
the sum of the leaf values in the left subtree below the
root (14+9+10). The interior node with key 3 has an STS
of 9, which represents the sum of the leaf values in its left
subtree (9).

142333455366

Key: 4
STS: 33

Leaf 1
Value 14

Leaf 2
Value 9

Leaf 3
Value 10

Leaf 4
Value 12

Leaf 5
Value 8

Leaf 6
Value 13

Key: 5Key: 6
STS: 12STS: 8

Key: 2Key: 3
STS: 14STS: 9

Figure 14. One set of row sum values stored in a Bc tree.

A row sum value is obtained from the Bc tree in O(log
k) steps, where k is the number of row sum values in the
overlay box. To calculate the row sum value for a given
cell, traverse the tree using the cell's index as the key.
Before descending to a node's child, the algorithm sums
each preceding STS in the node. The following example
makes use of the Bc tree shown in Figure 14. Suppose
we wish to find the value of row sum cell 5 in the overlay
box. We start at the root, using 5 as the key. 5 is in the
right subtree of the root. The STS of 33 precedes it, so
we add 33 to our total and descend to the right child of the
root. 5 is in the middle subtree of this node. The node
has two STSs (12 and 8). The STS 12 precedes the
subtree we will descend, so we add it to our total. The
STS 8 is after the subtree we will descend, so we ignore
it. We descend to the leaf, which contains the value 8,
and add it to our total, yielding 33+12+8=53. We are
storing the sums of individual rows in the leaves of the
tree, and thus the value we have calculated is the row sum
value that is required for the overlay box. Assuming the
tree fanout is f, a constant value, the worst-case query
time of the Bc tree requires (f*logf k), or O(log k).

We next describe the algorithm for updating row sum
values in a Bc tree. The update complexity is O(log k).
For illustration, reconsider the Bc tree of Figure 14, and
suppose an update to the data cube causes the row sum
cell 3 to change from 10 to 15. We will update the Bc

tree, and hence the row sum value, to reflect this change
using a bottom-up method. We begin by traversing down
the tree to the leaf, where we note that the difference
between the old and new values is +5. We update the
value of cell 3 with the new value (15). As we return up
the tree, we will update one STS value per visited node

with the difference, when appropriate. In this case, we
first ascend to the node with key 3 in tree level 1. We do
not update the STS value of this node because the changed
cell did not fall in its left subtree. We next ascend to the
root. As the changed cell falls within the left subtree of
the root, we update the STS value in the root with the
difference, yielding (33+5=38). At most one STS value
will be modified per visited node during the update
process, since we only update STS values corresponding
to subtrees which contain the changed cell. Thus,
updating the Bc tree requires O(log k). Using the Bc tree
to store overlay box values in the two-dimensional case
thus provides both query and update complexity of O(log
k).

4.2 Storing Overlay Box Values Recursively
The Bc tree breaks the barrier to efficient updates of

row sum values in one dimension. We now consider the
general case, where the dimensionality of the data cube is
greater than two. We have already noted that a two
dimensional overlay box has two groups of row sum
values, each of which is one dimensional. In general, an
overlay box of d dimensions has d groups of row sum
values, and each group is (d-1) dimensional (Figure 15).
The row sum values of a three dimensional overlay
consist of three planes, each of dimensionality two. We
observe the fact that each group of row sum values has the
same internal structure as array P. Recall that array P
stores cumulative sums of cells in array A (Figure 3); row
sum values store cumulative sums of rows within the
overlay box. This concordance suggests that the two-
dimensional row sum value planes be stored as two-
dimensional data cubes using the techniques already
described. Thus, the overlay box values of a d-
dimensional data cube can be stored as (d-1)-dimensional
data cubes using Dynamic Data Cubes, recursively; when
d=2, we use the Bc tree to store the row sum values.
Algorithms for query and update are as before, except that
overlay box values are not accessed directly from arrays;
rather, they are obtained from secondary trees.

b

b

4

8

b12

S b

b

b

b

b

b

b

b

b

b

b

b

15

11

7

3

14

10

6

2

13

9

5

1

b

b

4

8

b12

S b

b

b

b

b

b

b

b

b

b

b

b

15

11

7

3

14

10

6

2

13

9

5

1

b8

b12

Sb

b

b

b

b

b

b

b

b

15

11

7

14

10

6

13

9

5

b4bbb 321

Figure 15. Values stored in a three dimensional overlay
box (view is from lower rear).

4.3 Complexity of the Dynamic Data Cube
We now present an inductive proof of the performance

complexity of the Dynamic Data Cube. We establish that
the tree of trees has sublinear complexity for both queries
and updates.

 Page 9

Theorem 1. Navigating a Dynamic Data Cube, not
including the cost of accessing overlay box values in
subtrees, requires O(log n), regardless of the
dimensionality of the tree.

Proof of Theorem 1
A Dynamic Data Cube has log(n) levels; this follows

from the manner in which overlay boxes recursively
partition the data space. We descend exactly one child per
node, which results in log(n) nodes being visited. Each
node stores 2d overlay boxes. One overlay box
corresponds to the child that will be descended; no row
sum values will be needed from this overlay box. We
will require one row sum or subtotal value from each of
the remaining (2d - 1) overlay boxes in the worst case,
resulting in a maximum of (2d - 1) values accessed at any
given level of the tree. As we have assumed that the
dimensionality of a given data cube is fixed, this is a
constant factor. Thus, ignoring the cost of accessing
values in overlay boxes, we incur O(log n) to navigate a
Dynamic Data Cube, irrespective of the dimensionality of
the tree. ❏

Theorem 2. The complete Dynamic Data Cube,
including subtrees, has query complexity of O(log d n) and
update complexity of O(logd n).

Inductive Proof of Theorem 2
Base Case: Two dimensional tree

As noted earlier, overlay boxes are stored in B c trees in
the two-dimensional case. Thus, we must traverse
individual Bc trees to obtain the necessary row sum values
from overlay boxes in the primary tree. As shown earlier,
the cost of traversing the Bc tree is O(log k), where k is
the size of the overlay box. The size of the overlay box at
the root of the primary tree is k=(n/2), and the overlay box
size grows geometrically smaller as we proceed down the
levels of the primary tree towards the leaves. Thus, as we
descend the primary tree, Bc trees are constructed for
geometrically decreasing values of k. The cost of
accessing each Bc tree therefore grows smaller as we
approach the leaves of the primary tree. As noted earlier,
in the worst case (2d - 1) row sum values will be required
for each level of the primary tree. The cost of accessing
all required Bc trees during a query is thus a series:

(22 - 1) [log (n/2) + log (n/22) + log (n/23) + ... + log

(24) + log (23) + log (22) + log (21)]
This expression evaluates to

3 [log (n/2) + ... + 4 + 3 + 2 + 1]
= (3)(1/2)(log(n/2))(log(n/2)+1)
= (3)((1/2)(log2(n/2)) + (1/2)(log(n/2)))
= O(log2(n/2))
Thus, the total cost of accessing overlay box values in

the two dimensional case is O(log n) for navigating the
primary tree plus O(log2(n/2)) for the Bc trees which store

the overlay box values, thus yielding O(log2(n/2)) for the
complete structure. Note that the B c tree has balanced
query and update complexities; accordingly, the
complexity of O(log2(n/2)) is also the update cost of the
complete Dynamic Data Cube in the two-dimensional
case. Therefore, the complexity for both queries and
updates in the two-dimensional case is O(log 2 n), which
is O(logd n).

Inductive Case: d > 2
We make the inductive hypothesis that the complexity

of a d-dimensional tree is O(logd n), and show this
implies that the complexity of a (d+1)-dimensional tree is
O(logd+1 n). Using Theorem 1, the cost of queries and
updates for a (d+1) dimensional tree is O(log n), plus the
cost of accessing the overlay box values. Recall that,
when d>2, overlay boxes are stored in their own separate
Dynamic Data Cubes, each of dimensionality (d-1), which
we refer to as secondary trees. In this case, since the
primary tree has dimensionality of (d+1), the secondary
trees have dimensionality d; therefore, by the inductive
hypothesis, each secondary tree has complexity O(log d n).
There will be (2d+1 - 1) secondary trees accessed at each
level of the primary tree, a constant factor. The cost of
accessing the complete (d+1) dimensional tree is thus
(2d+1 - 1)(logd n)(log n), or O(logd+1 n). Therefore, a
(d+1) dimensional tree has query and update complexity of
O(logd+1 n). ❏

4.4 Discussion
Storage requirements are often an important factor

when evaluating new methods. The space required to store
array A is nd cells. The leaf level of the tree stores array
A, and therefore also requires nd cells of storage. Higher
levels of the tree, however, require increasingly less space
to store. Recall that each overlay box requires exactly
(kd - (k-1)d) cells of storage, and that k doubles for each
successively higher level of the tree (i.e., each tree level
has its own value of k). Table 2 presents a comparison
between the storage requirements of overlay boxes versus
the storage required by the corresponding covered region in
array A. As k increases, the overlay box storage, as a
percentage of the region it covers, decreases dramatically.
From Table 2, and also from Figure 9, it is apparent that
most of the additional storage required by the Dynamic
Data Cube is found in the lowest levels of the tree. In
contrast, levels of the tree closer to the root occupy
considerably less space. This trend holds regardless of the
dimensionality of the tree.

Table 2. Required storage, overlay boxes versus array A.

kd
Overlay Box
= kd - (k-1)d

Region in A
= kd

Percentage
O.B. / A

223475.00%
4271643.75%
82156423.44%

64212740963.10%
2562511655360.78%

 Page 10

We therefore propose the following optimization to the
tree to conserve space and improve overall performance.
We will delete a given number of the lowest, most space-
consuming levels of the tree immediately above the
leaves. Let the leaves store array A directly as before. We
define the level of the tree immediately above the leaves as
tree level 1. Starting at tree level 1 and working upwards
towards the root, we will delete h tree levels. After these
tree levels have been removed, the new tree level 1 will
not have an overlay box size of k=2 as before, but will
contain overlay boxes of size k=2 h+1. Higher levels of
the tree would remain as before. Note that we are not
changing the fanout or the essential tree structure; we are
merely eliminating h levels of the tree immediately above
the leaf level, and consequently conserving the storage
space those levels would have consumed. Since the
lowest tree levels are dense, their elimination results in
considerable space savings. By setting the appropriate
value of h, one can reduce the storage required by the
Dynamic Data Cube to within ε of the size of array A.

This optimization induces an associated performance
cost. We have eliminated h levels of overlay boxes which
provided partial region sums of the target region. When
we reach the leaf level, we will have to sum leaf cells to
calculate the sum of the missing region. For example,
refer to Figure 11. Suppose we eliminate one tree level in
the figure by setting h=1; thus, tree level 1 would be
deleted, to be replaced by tree level 2. Deleting the level
saves 48 cells of storage, or 34%. As a result, however,
the region sums provided by boxes U, V, W, and Z
would no longer be available. To compensate for these
missing region sums, during queries we will have to sum
the appropriate leaf cells to calculate the sum of any
missing region. We note that, given any individual query,
all deleted regions will be adjacent at the leaf level;
furthermore, the maximum size of the union of these
deleted regions is 2(h+1)d leaf cells. Therefore, in the
worst case, this optimization would require the addition of
2(h+1)d adjacent leaf cells when the query reaches the leaf
level. This cost is offset by the fact that the deletion of
tree levels will have a positive impact on tree traversal
times, since the number of levels in the tree affects the
number of accesses to secondary storage during traversal.
The appropriate value of h for a given application would
be determined by balancing the desired space savings and
the tree traversal time savings against the cost of the
additional computation required by the optimization.

Very high dimensionality of the cube (e.g., d>20) will
present performance hurdles. This "dimensionality curse"
is a well-known problem in the field of multidimensional
database indexes, and affects all known methods.
Limiting the number of dimensions in the cube is
currently the best option for system designers; see the
work by Harinarayan et. al. for a discussion of this topic
[HRU96]. The performance characteristics of the
Dynamic Data Cube nevertheless allow the incremental
construction and maintenance of dramatically larger data
cubes, at higher dimensionality, than other methods.

5 Dynamic Growth of the Data Cube
The prefix sum and relative prefix sum methods do not

address the growth of the data cube; instead, they assume
that the size of each dimension is known a priori. For
many potential applications, however, it is more
convenient to grow the size of the data cube dynamically
to suit the data. For example, astronomers who are
analyzing stars might form a data cube for their star
database. They expect to discover more stars in the future.
Clearly it would not be efficient to create a data cube that
initially contains cells for all possible locations of star
systems in the Universe, particularly since the vast
majority of the resulting cells would always be empty.
Rather, it is more practical to create the data cube initially
only for locations of existing star systems; as additional
systems are discovered, new cells can be added to the data
cube. New star systems, however, can be found in any
direction relative to existing systems, therefore the data
cube must be able to grow in any direction relative to its
existing cells. The direction of data cube growth should
be determined by the data, and not a priori. The capability
to grow the data cube dynamically in any direction (i.e.,
not merely appending to a single edge of the data cube) is
very important in many application environments.

This example also illustrates another issue. In many
application domains data is essentially clustered, and there
are large unpopulated regions in the data space. Consider
the case of NASA's EOSDIS satellites, which generate an
enormous volume of data every day. The data is
principally in the form of measurements of numerous
environmental variables on the Earth, such as rates of
vegetation growth, rates of methane gas production, etc.
Measurements are made for the entire surface of the planet,
yet the data is essentially clustered; for example, methane
gas production is largely concentrated around agricultural
and industrial centers. There are vast, unpopulated regions
of the data space; for example, methane gas production
may be essentially zero over oceans. This information is
not static, however, and new point sources of methane gas
production may arise, such as when new cattle ranches or
factories comes on-line in previously undeveloped areas.
Range sum queries over a data cube formed from such data
would be very useful, providing scientists with aggregate
measurements for any arbitrary region of the globe.

Neither the prefix sum method nor the relative prefix
sum method gracefully handle these situations. There are
several difficulties. Neither approach makes any provision
for empty or non-existent regions of cells within the data
cube. Figure 16 shows an example of a cell, denoted *,
being added to an existing data cube. Since empty regions
are not allowed with these methods, the creation of cell *
forces the further creation of all cells in the shaded region.
This results in the first difficulty for these methods: since
they must store all cells in the range of each dimension, a
significant amount of storage space may be wasted for
regions that are unpopulated. A more serious consequence
directly follows. For correctness of later queries, these
methods would require that the values of cells in the
shaded region be computed and stored when cell * is added.

 Page 11

Furthermore, in a dynamic environment new cells may be
added in any direction relative to existing cells. When the
new cell precedes cells in the existing data cube, as in
Figure 17, those cells must also be updated. This fact
results from the cell dependencies inherent in these
approaches, i.e., all cell values are dependent on the values
of cells that precede them. In the worst case, when a new
cell is created that precedes all existing cells, every cell in
the array will require updating; thus, the creation of a new
cell may incur worst-case update performance cost for
these methods. In consideration of these properties, we
suggest that the prefix sum approach can be extended to
support efficient growth of the data cube, as long as
growth occurs within certain constraints: growth should
only occur at the rightmost edges of the data cube, e.g.,
append-only growth; and, all cells in newly-created rows
should be added at the same time, to avoid the situation
illustrated in Figure 16.

Index012345678910

03891113172326
11018212939505762
21224294053677888
315293551678699117
41935426180103123142
52140507595126151172
625496193114154182206
7275569103127168205230
8
9*

Figure 16. Creation of a new cell after existing cells.

3891113172326
1018212939505762

*1224294053677888
15293551678699117
1935426180103123142
2140507595126151172
25496193114154182206
275569103127168205230

Figure 17. Creation of a new cell before existing cells.

The Dynamic Data Cube is well suited to dynamic growth
of the data cube due to the properties of the overlay box.
Each overlay box covers some region in array A; when all
the cells in that region of A are equal to zero, the overlay
box values will also be equal to zero. We therefore need
not store overlay boxes or subtrees associated with regions
that are completely empty, since all row sums from such
regions are zero. Accordingly, we can build the data cube
incrementally over time using a Dynamic Data Cube. We
begin with one node, the root, of size 2d cells. Suppose
information is to be added that falls in a cell that is
outside the boundaries of the root; we call this adding a
new cell (Figure 18a). When a new cell is added, we
create a new root above the current root, thereby creating a
new tree level. The new root has a size that is twice the
size of the previous root in each dimension. The old root
is placed as a child of the new root, and overlay box
information is generated for it (Figure 18b). Data cube
growth can occur in any direction. The parent grows the
data space towards the new cell. Thus, the placement of
the previous root in its new parent depends on the location
of the new cell; to avoid certain forms of pathological
growth, a round-robin approach may be used when
resolving ambiguity. We do not allocate storage for the

new sibling nodes of the previous root, however, since
overlay boxes for these empty regions will have row sums
that evaluate to zero. In the figures, the shaded areas
represent regions for which no storage is allocated.

Level 0 (Old root)
35* 4
73

Figure 18a. Adding a new cell.

Level 1: New rootLevel 1
8*8*4

1018101844

Level 0
35* 435* 40
737300

Figure 18b. New root created.Figure 18c. New sibling.

We continue to create new roots in this manner,
doubling the size in each dimension for each successive
root, until a root is created that encompasses the new cell.
At this point, we traverse down the tree to the new cell,
creating child nodes and associated overlay boxes as we
descend (Figure 18c). Recall that only one overlay box at
each tree level is affected by an update; therefore, we will
create only one child node and overlay box per tree level
during this process. No overlay box or subtree is
instantiated for regions that are entirely empty. Should
we encounter a non-existent overlay box during a query,
we may conclude that its row sum values are all zero. We
note that this method of tree growth may result in the
construction of trees of non-optimal height when data is
inserted in certain pathological distributions and
sequences. While a complete discussion of this topic is
beyond the scope of this paper, we will observe that, since
each newly-created root is double the size of the previous
root, this sub-optimal effect would be naturally limited
when trees are built using real data.

The Bc tree also supports incremental construction.
Being derived from the standard b-tree, it gracefully
handles growth of its data. As with the Dynamic Data
Cube, we need not create all nodes in the B c tree at
instantiation. Even when a query seeks a cell that has not
yet been inserted in the Bc tree, the Bc tree will still return
the correct row sum value associated with that cell.
Therefore, the Bc tree also supports incremental
construction of the Dynamic Data Cube.

This incremental construction of the Dynamic Data
Cube is naturally suited to clustered data and data that
contains large, unpopulated regions. Where data does not
exist, overlay boxes will not be instantiated; thus, the
Dynamic Data Cube avoids the storage of empty regions.
Since overlay boxes are self-contained, there is no
cascading update problem associated with adding a new
cell. The Dynamic Data Cube allows graceful growth of
the data cube in any direction, making it more suitable for
applications which involve change or growth.

 Page 12

6 Conclusion
We present the Dynamic Data Cube, a new method for

handling range sum queries in data cubes. We describe the
construction of the Basic Dynamic Data Cube. We
develop the Bc tree, which breaks the update complexity
barrier, and demonstrate its use in the construction of the
recursive Dynamic Data Cube. We further present a
method of constraining the space requirements of the
Dynamic Data Cube to within ε of the full data cube size
by deleting unnecessary tree levels. We discuss the
properties of the Dynamic Data Cube which enable it to
handle sparse and clustered data, as well as empty regions
of the cube, efficiently.

The Dynamic Data Cube provides an efficient means of
storing and maintaining data cubes for a wide variety of
emerging applications. Table 3 presents the performance
complexities of various methods of computing range sum
queries. Our analysis reveals the impact of the
dimensionality of the data cube on performance by
referring to n, which is the size of the data cube in each
dimension, rather than N, the total size of the data cube;
for reference, N=nd. The Dynamic Data Cube has
performance complexity of O(logd n) for both queries and
updates. It provides the capability to grow the data cube
dynamically in any direction, and the ability to handle
sparse and clustered data gracefully. As noted in the
discussion of Table 1, these characteristics significantly
lower the barriers to the adoption of data cube methods in
novel application domains.

Table 3. Performance complexities of various methods.
MethodPerformance for

input size N (N=nd)
QueryUpdate

Naive approachO(nd)O(1)
Prefix Sum [HAMS97]O(1)O(nd)
Relative Prefix Sum [GAES99]O(1)O(nd/2)
Dynamic Data CubeO(logd n)O(logd n)

References

[AAD+96]S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J.
F. Naughton, R. Ramakrishnan, S. Sarawagi. On the
computation of multidimensional aggregates. In Proc. of
the 22nd Int'l Conference on Very Large Databases ,
pages 506-521, Mumbai (Bombay), India, September
1996.

[AGS97]R. Agrawal, A. Gupta, S. Sarawagi. Modeling
multidimensional databases. In Proc. of the 13th Int'l
Conference on Data Engineering , Birmingham, U.K.,
April 1997.

[Cod93]E. F. Codd. Providing OLAP (on-line analytical
processing) to user-analysts: an IT mandate. Technical
report, E.F. Codd and Associates, 1993.

[GAES99]S. Geffner, D. Agrawal, A. El Abbadi, T. Smith. Relative
Prefix Sums: An Efficient Approach for Querying
Dynamic OLAP Data Cubes. To appear in Proc. of the
15th International Conference on Data Engineering ,
Sydney, Australia, March 1999.

[GBLP96]J. Gray, A. Bosworth, A. Layman, H. Pirahesh. Data
Cube: A relational aggregation operator generalizing
group-by, cross-tabs and sub-totals. In Proc. of the 12th

Int'l Conference on Data Engineering , pages 152-159,
1996.

[GHRU97]H. Gupta, V. Harinarayan, A. Rajaraman, J. Ullman.
Index selection for OLAP. In Proc. of the 13th Int'l
Conference on Data Engineering, Birmingham, U. K.
April 1997.

[HAMS97]C. Ho, R. Agrawal, N. Megiddo, R. Srikant. Range
Queries in OLAP Data Cubes. In Proc. of the ACM
SIGMOD Conference on the Management of Data, pages
73-88, 1997.

[HRU96]V. Harinarayan, A. Rajaraman, J. D. Ullman.
Implementing data cubes efficiently. In Proc. of the
ACM SIGMOD Conference on the Management of Data,
June 1996.

[JS96]T. Johnson, D. Shasha. Hierarchically split cube forests
for decision support: description and tuned design, 1996.
Working Paper.

[OLA96]The OLAP Council. MD-API the OLAP Application
Program Interface Version 5.0 Specification, September
1996.

[SDNR96]A. Shukla, P. M. Deshpande, J. F. Naughton, K.
Ramasamy. Storage estimation for multidimensional
aggregates in the presence of hierarchies. In Proc. of the
22nd Int'l Conference on Very Large Databases, pages
522-531, Mumbai (Bombay), India, September 1996.

[SR96]B. Salzberg, A. Reuter. Indexing for aggregation, 1996.
Working Paper.

[VWI98]J. S. Vitter, M. Wang, B. Iyer. Data Cube Approximation
and Histograms via Wavelets. In Proceedings of the
1998 ACM Seventh International Conference on
Information and Knowledge Management (CIKM'98) ,
pages 96--104.

This research is partially supported by NSF under grant
number IRI94-11330.

This research is patent pending. For licensing information,
contact Mathew Grell at the University of California Office of
Research.

 Page 13

