
Programming in Android

Nick Bopp

nbopp@usc.edu

Types of Classes

• Activity

– This is the main “Android” class that you will be
using. These are actively displayed on the screen
and allow for user interaction.

• Service

– Non-visible code that can be started by an activity
or bound to an activity. Usually spawns
background threads for transferring data, playing
music, or doing any CPU heavy process outside
the main UI thread.

Types of Classes 2

• Content Provider

– This is a means of exposing data available for use

by other applications, whereas by default data is

typically private to single applications.

• Broadcast Receiver

– Essentially a listener that waits for specific events

and then begins activities, or alerts the user in

some way.

Intents – How Things Are Started

• In normal Java and most of Android, an object is
instantiated:

– E.g. Object o = new Object();

• In Android, all new Activities and Services are
started using Intent objects, and then a start
method()

– Intent j = new Intent(this, ActivityToStart.class);

– startActivity(j); OR startActivityForResult(j);

• This makes navigation through an application
rather tricky.

The Activity Stack

• When an application is created, one activity is
specified with an intent filter to receive the
launcher’s request to start the application.
This essentially makes the activity the
“starting” activity for the app.

• Once in this activity, you can either add a new
activity to the stack or finish() the activity,
which effectively pops the only activity off the
stack and returns to the home screen.

Stack Example

• Launcher starts A().

• A() fires an Intent for B().

• B() fires an Intent for A().

• User presses the back button(pops an activity
off the stack).

• Usually, this will result in B() being displayed:
(A->B->A) pops top A to become (A->B), a
successive pop would go to A, and one more
would return to the home screen.

How To Change Up the Order

(Somewhat)

• “Launch Modes” and “Affinities”: attributes

you can set in the manifest that determine

whether there can be multiple instances of an

Activity and what tasks they belong to.

• However, you can never simply hop around

the stack choosing whichever previously

called activity you like and returning to it.

When the User Goes Away

• There are several ways to deal with the user leaving
the application for a while.

• Usually Android handles this by just getting rid of
stack, and retaining only the Activity at the very base.

• However, developer can specify extremes here

– No matter how long you are gone, try to hold onto the
state of the call stack (dependent upon available memory
and priority)

– As soon as you leave the application for any reason,
immediately clear the call stack (useful for smaller apps).

The Activity Lifecycle

• http://developer.android.com/images/activity

_lifecycle.png

Saving States

• Android activities can be killed quite often,

and while when this happens is technically

defined, in practice you’ll find it can seem

quite erratic.

• For this reason, you’ll want to make calls to

onSaveInstanceState() and

onRestoreInstanceState() so that the user

cannot tell what’s going on in the background.

UI Design

• UI’s are built out of Views and ViewGroups.

• These are arranged into a tree with a single root
ViewGroup.

• ViewGroups define how their members are
arranged.

• E.g. LinearLayout is a child of ViewGroup which
arranges all Views within it in a simple linear
patter (horizontally or vertically).

• Different attributes can be specified, these can all
be found in the developer pages online.

Two Ways to Make UI Layouts

• Programatically inside of Activity’s onCreate()

code.

• Inside of layout XML files.

• Generally XML is the way to go.

• The Java then identifies these views by ID’s

specified by the XML file and allows for user

input to interact with the system.

Built in Widgets

• Widgets combine Views, custom graphics /

drawables, and add handy methods for

performing some of the most basic UI tasks.

• TextView – displays text

• EditView – allows user to input text

• Button

• NumberScroll – Useful for entering dates / times

• Lists

Menus

• Users can hit the menu button to pull up a

menu.

• That menu then has a series of buttons that

you can label, and another method that reacts

to whatever button it was that was hit.

Dialogs

• These are the equivalents of pop up windows.

They usually tell a user than they’ve made a

mistake or need to redo something.

• The activity is faded into the background and

the Dialog box pops up.

Toasts

• A toast is a smaller, non-interactive version of
Dialog that doesn’t fade out or impede the
Activity in any way. These provide nice short
little notifications.

• Personally, I use them to let the user know when
files download, when their GPS location changes,
etc.

• Generally this information should not be crucial
to the user, because this does not persist. If the
phone is in your pocket, the toasts don’t queue
up and wait for the screen to be turned on again.

Data Storage

• Several choices:

– Preferences

– Files on the SDCard or internal memory

– SQLite database on the phone

• Preferences is basically a map objects that
only works for primitives.

• Limited experience using SQLite on the phone,
though I suppose it would come in handy at
times.

File I/O – Your Best Friend

• Pictures take up lots of space!

• Running low on memory causes Android to

reclaim memory by destroying older / non-

visible activities.

• Dealing with all these random kills is a hassle.

• Solution – Use as little memory as possible by

storing temporary data in files and reading /

writing.

A Few Minor Differences

• A file can’t be created directly in the normal
java fashion of: File f = new File(“filename”);

• Instead use openFileOutput() and
openFileInput(). These return
FileInputStreams or FileOutputStreams that
can then in turn work just like every other
Java I/O.

• Files can be made to either be private to the
application (default), or globally viewable.

Application Manifest

• This is where you state all the stuff that goes
in your application.

• Generally this includes: any of the 4 “Android
classes”, permissions, and so on.

• Also, Intent Filters are specified here, and in
particular, the main Intent Filter must be
specified around your “root” activity so that it
is possible to open up your app in the first
place.

Log Class

• This is just handy.

• It is basically your bread and butter for
debugging, when you’re running the emulator or
the app on your device, you will pull up the
DDMS perspective in eclipse. This has tons of
useful information (threads running, heap size,
file tree) as well as the Log screen, which
timestamps every message sent out from the
phone.

• Useful for tracking variables, and the state of
your app.

Of Particular Interest to Project

• Multithreading is very important for the sorts of

things I (and you) will be doing.

• Networking (hand in hand with multithreading) is

likewise important, downloading a file in the

main thread will cause issues. If the user presses

the screen (EVER) and nothing happens for 5

seconds, you get a non-responsive window the

user can forcibly close the application.

• GoogleMaps and Location data

Threading and UI Updates

• Threads are made and run in the same way as

usual Java, but there are some specific concerns.

• There is no way to update the screen from a

separate thread. For this reason you use a

Handler object, which you can give a runnable to

run on the main thread. Handlers always

“remember” what thread they were created in,

and can post Runnables from any thread to the

thread they were created on.

Networking In Android

• There are several ways to do this.

• I believe standard Socket programming in Java
works? Not too sure here, haven’t used it.

• A much simpler way is to use the
URLConnection class and others in java.net
package.

• Also, Apache has its own packages that can be
used for networking which provide the same
basic function, but in a different structure.

GoogleMaps and Location

• Google has built in a lot of functionality to using
their GoogleMaps in Android.

• In particular, the MapView is a view that can be
used to display a GoogleMap on screen without
too much work required on developers.

• NOTE: When you try this the first time, you will
see gray tiles but no actual map. You need to
generate a key from your debug.keystore online,
just search for Android GoogleMap Registration
or something similar and you’ll see what I’m
talking about.

Location and Sensor Updates

• Location updates are pretty simple, you just

create an Activity that requests updates for

GPS updates every 10 seconds or so, and then

there is a method in that Activity that receives

the new location and does whatever you

want.

• Generally, getting accelerometer data works

in a very similar fashion.

