
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Chapter 12: Indexing and HashingChapter 12: Indexing and Hashing

� Basic Concepts

� Ordered Indices

� B+-Tree Index Files

� B-Tree Index Files

� Static Hashing

� Dynamic Hashing

� Comparison of Ordered Indexing and Hashing

� Index Definition in SQL

� Multiple-Key Access

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Basic ConceptsBasic Concepts
� Indexing mechanisms used to speed up access to

desired data.
� E.g., author catalog in library

� Search Key - attribute or set of attributes used to
look up records in a file.

� An index file consists of records (called index
entries) of the form

� Index files are typically much smaller than the
original file

� Two basic kinds of indices:
� Ordered indices: search keys are stored in sorted order

� Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

search-key pointer

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Index Evaluation MetricsIndex Evaluation Metrics

� Access types supported efficiently. E.g.,
� records with a specified value in the attribute

� or records with an attribute value falling in a specified range
of values.

� Access time

� Insertion time

� Deletion time

� Space overhead

Indexing techniques evaluated on basis of:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Ordered IndicesOrdered Indices

� In an ordered index, index entries are stored sorted on the
search key value. E.g., author catalog in library.

� Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.
� Also called clustering index /* Not! */

� The search key of a primary index is usually but not necessarily the primary key.

� Secondary index: an index whose search key specifies an
order different from the sequential order of the file. Also
called
non-clustering index. /* Wrong Again! */

� Index-sequential file: ordered sequential file with a primary
index.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Dense Index FilesDense Index Files

� Dense index — Index record appears for
every search-key value in the file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Sparse Index FilesSparse Index Files

� Sparse Index: contains index records for only some
search-key values.
� Applicable when records are sequentially ordered on search-

key

� To locate a record with search-key value K we:
� Find index record with largest search-key value < K

� Search file sequentially starting at the record to which the
index record points

� Less space and less maintenance overhead for
insertions and deletions.

� Generally slower than dense index for locating
records.

� Good tradeoff: sparse index with an index entry for
every block in file, corresponding to least search-key
value in the block.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Example of Sparse Index FilesExample of Sparse Index Files

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Multilevel IndexMultilevel Index

� If primary index does not fit in memory, access
becomes expensive.

� To reduce number of disk accesses to index records,
treat primary index kept on disk as a sequential file
and construct a sparse index on it.
� outer index – a sparse index of primary index

� inner index – the primary index file

� If even outer index is too large to fit in main memory,
yet another level of index can be created, and so on.

� Indices at all levels must be updated on insertion or
deletion from the file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Multilevel Index (Cont.)Multilevel Index (Cont.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Index Update: DeletionIndex Update: Deletion

� If deleted record was the only record in the
file with its particular search-key value, the
search-key is deleted from the index also.

� Single-level index deletion:
� Dense indices – deletion of search-key is similar to file

record deletion.

� Sparse indices – if an entry for the search key exists in the
index, it is deleted by replacing the entry in the index with
the next search-key value in the file (in search-key order). If
the next search-key value already has an index entry, the
entry is deleted instead of being replaced.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Index Update: InsertionIndex Update: Insertion

� Single-level index insertion:
� Perform a lookup using the search-key value appearing in

the record to be inserted.
� Dense indices – if the search-key value does not appear in

the index, insert it.
� Sparse indices – if index stores an entry for each block of the

file, no change needs to be made to the index unless a new
block is created. In this case, the first search-key value
appearing in the new block is inserted into the index.

� Multilevel insertion (as well as deletion)
algorithms are simple extensions of the
single-level algorithms

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Secondary IndicesSecondary Indices

� Frequently, one wants to find all the records
whose values in a certain field (which is not the
search-key of the primary index satisfy some
condition.
� Example 1: In the account database stored sequentially by

account number, we may want to find all accounts in a
particular branch

� Example 2: as above, but where we want to find all
accounts with a specified balance or range of balances

� We can have a secondary index with an index
record for each search-key value; index record
points to a bucket that contains pointers to all the
actual records with that particular search-key
value.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Secondary Index on Secondary Index on balancebalance field of field of
accountaccount

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Primary and Secondary IndicesPrimary and Secondary Indices

� Secondary indices have to be dense.

� Indices offer substantial benefits when
searching for records.

� When a file is modified, every index on the
file must be updated, Updating indices
imposes overhead on database modification.

� Sequential scan using primary index is
efficient, but a sequential scan using a
secondary index is expensive
� each record access may fetch a new block from disk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

BB++--Tree Index FilesTree Index Files

� Disadvantage of indexed-sequential files:
performance degrades as file grows, since many
overflow blocks get created. Periodic
reorganization of entire file is required.

� Advantage of B+-tree index files: automatically
reorganizes itself with small, local, changes, in the
face of insertions and deletions. Reorganization of
entire file is not required to maintain performance.

� Disadvantage of B+-trees: extra insertion and
deletion overhead, space overhead.

� Advantages of B+-trees outweigh disadvantages,
and they are used extensively.

B+-tree indices are an alternative to indexed-sequential files.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

BB++--Tree Index Files (Cont.)Tree Index Files (Cont.)

� All paths from root to leaf are of the same
length

� Each node that is not a root or a leaf has
between [n/2] and n children.

� A leaf node has between [(n–1)/2] and n–1
values

� Special cases:
� If the root is not a leaf, it has at least 2 children.

� If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

BB++--Tree Node StructureTree Node Structure

� Typical node

� Ki are the search-key values

� Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

� The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Leaf Nodes in BLeaf Nodes in B++--TreesTrees

� For i = 1, 2, . . ., n–1, pointer Pi either points to a file
record with search-key value Ki, or to a bucket of
pointers to file records, each record having search-key
value Ki. Only need bucket structure if search-key
does not form a primary key. /* if not primary index! */

� If Li, Lj are leaf nodes and i < j, Li’s search-key values
are less than Lj’s search-key values

� Pn points to next leaf node in search-key order

Properties of a leaf node:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

NonNon--Leaf Nodes in BLeaf Nodes in B++--TreesTrees

� Non leaf nodes form a multi-level sparse
index on the leaf nodes. For a non-leaf node
with m pointers:
� All the search-keys in the subtree to which P1 points are less

than K1

� For 2 ≤ i ≤ n – 1 /* n */, all the search-keys in the subtree to
which Pi points have values greater than or equal to Ki–1 and
less than Km–1 /* Ki except for i=n */,

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Example of a BExample of a B++--treetree

B+-tree for account file (n = 3)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Example of BExample of B++--treetree

� Leaf nodes must have between 2 and 4 values
((n–1)/2 and n –1, with n = 5).

� Non-leaf nodes other than root must have
between 3 and 5 children ((n/2 and n with n
=5).

� Root must have at least 2 children.

B+-tree for account file (n = 5)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Observations about BObservations about B++--treestrees

� Since the inter-node connections are done by
pointers, “logically” close blocks need not be
“physically” close.

� The non-leaf levels of the B+-tree form a hierarchy of
sparse indices.

� The B+-tree contains a relatively small number of
levels (logarithmic in the size of the main file), thus
searches can be conducted efficiently.

� Insertions and deletions to the main file can be
handled efficiently, as the index can be restructured
in logarithmic time (as we shall see).

