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Chapter 12:  Indexing and HashingChapter 12:  Indexing and Hashing

� Basic Concepts

� Ordered Indices 

� B+-Tree Index Files

� B-Tree Index Files

� Static Hashing

� Dynamic Hashing 

� Comparison of Ordered Indexing and Hashing 

� Index Definition in SQL

� Multiple-Key Access
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Basic ConceptsBasic Concepts
� Indexing mechanisms used to speed up access to 

desired data.
� E.g., author catalog in library

� Search Key - attribute or set of attributes used to 
look up records in a file.

� An index file consists of records (called index 
entries) of the form

� Index files are typically much smaller than the 
original file 

� Two basic kinds of indices:
� Ordered indices:  search keys are stored in sorted order

� Hash indices: search keys are distributed uniformly across 
“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation MetricsIndex Evaluation Metrics

� Access types supported efficiently.  E.g., 
� records with a specified value in the attribute

� or records with an attribute value falling in a specified range 
of values.

� Access time

� Insertion time

� Deletion time

� Space overhead

Indexing techniques evaluated on basis of:
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Ordered IndicesOrdered Indices

� In an ordered index, index entries are stored sorted on the 
search key value.  E.g., author catalog in library.

� Primary index: in a sequentially ordered file, the index whose 
search key specifies the sequential order of the file.
� Also called clustering index /* Not! */

� The search key of a primary index is usually but not necessarily the primary key.

� Secondary index: an index whose search key specifies an 
order different from the sequential order of the file.  Also 
called 
non-clustering index. /* Wrong Again! */

� Index-sequential file: ordered sequential file with a primary 
index.
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Dense Index FilesDense Index Files

� Dense index — Index record appears for 
every search-key value in the file. 
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Sparse Index FilesSparse Index Files

� Sparse Index:  contains index records for only some 
search-key values.
� Applicable when records are sequentially ordered on search-

key

� To locate a record with search-key value K we:
� Find index record with largest search-key value < K

� Search file sequentially starting at the record to which the 
index record points

� Less space and less maintenance overhead for 
insertions and deletions.

� Generally slower than dense index for locating 
records.

� Good tradeoff: sparse index with an index entry for 
every block in file, corresponding to least search-key 
value in the block.
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Example of Sparse Index FilesExample of Sparse Index Files
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Multilevel IndexMultilevel Index

� If primary index does not fit in memory, access 
becomes expensive.

� To reduce number of disk accesses to index records, 
treat primary index kept on disk as a sequential file 
and construct a sparse index on it.
� outer index – a sparse index of primary index

� inner index – the primary index file

� If even outer index is too large to fit in main memory, 
yet another level of index can be created, and so on.

� Indices at all levels must be updated on insertion or 
deletion from the file.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 9

Multilevel Index (Cont.)Multilevel Index (Cont.)
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Index Update:  DeletionIndex Update:  Deletion

� If deleted record was the only record in the 
file with its particular search-key value, the 
search-key is deleted from the index also.

� Single-level index deletion:
� Dense indices – deletion of search-key is similar to file 

record deletion.

� Sparse indices – if an entry for the search key exists in the 
index, it is deleted by replacing the entry in the index with 
the next search-key value in the file (in search-key order).  If 
the next search-key value already has an index entry, the 
entry is deleted instead of being replaced.
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Index Update:  InsertionIndex Update:  Insertion

� Single-level index insertion:
� Perform a lookup using the search-key value appearing in 

the record to be inserted.
� Dense indices – if the search-key value does not appear in 

the index, insert it.
� Sparse indices – if index stores an entry for each block of the 

file, no change needs to be made to the index unless a new 
block is created.  In this case, the first search-key value 
appearing in the new block is inserted into the index.

� Multilevel insertion (as well as deletion) 
algorithms are simple extensions of the 
single-level algorithms
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Secondary IndicesSecondary Indices

� Frequently, one wants to find all the records 
whose values in a certain field (which is not the 
search-key of the primary index satisfy some 
condition.
� Example 1: In the account database stored sequentially by 

account number, we may want to find all accounts in a 
particular branch

� Example 2: as above, but where we want to find all 
accounts with a specified balance or range of balances

� We can have a secondary index with an index 
record for each search-key value; index record 
points to a bucket that contains pointers to all the 
actual records with that particular search-key 
value.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 13

Secondary Index on Secondary Index on balancebalance field of field of 
accountaccount
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Primary and Secondary IndicesPrimary and Secondary Indices

� Secondary indices have to be dense.

� Indices offer substantial benefits when 
searching for records.

� When a file is modified, every index on the 
file must be updated, Updating indices 
imposes overhead on database modification.

� Sequential scan using primary index is 
efficient, but a sequential scan using a 
secondary index is expensive 
� each record access may fetch a new block from disk
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BB++--Tree Index FilesTree Index Files

� Disadvantage of indexed-sequential files: 
performance degrades as file grows, since many 
overflow blocks get created.  Periodic 
reorganization of entire file is required.

� Advantage of B+-tree index files:  automatically 
reorganizes itself with small, local, changes, in the 
face of insertions and deletions.  Reorganization of 
entire file is not required to maintain performance.

� Disadvantage of B+-trees: extra insertion and 
deletion overhead, space overhead.

� Advantages of B+-trees outweigh disadvantages, 
and they are used extensively.

B+-tree indices are an alternative to indexed-sequential files.
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BB++--Tree Index Files (Cont.)Tree Index Files (Cont.)

� All paths from root to leaf are of the same 
length

� Each node that is not a root or a leaf has 
between [n/2] and n children.

� A leaf node has between [(n–1)/2] and n–1 
values

� Special cases: 
� If the root is not a leaf, it has at least 2 children.

� If the root is a leaf (that is, there are no other nodes in 
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:
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BB++--Tree Node StructureTree Node Structure

� Typical node

� Ki are the search-key values 

� Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes).

� The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1
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Leaf Nodes in BLeaf Nodes in B++--TreesTrees

� For i = 1, 2, . . ., n–1, pointer Pi either points to a file 
record with search-key value Ki, or to a bucket of 
pointers to file records, each record having search-key 
value Ki.  Only need bucket structure if search-key 
does not form a primary key. /* if not primary index! */

� If Li, Lj are leaf nodes and i < j, Li’s search-key values 
are less than Lj’s search-key values

� Pn points to next leaf node in search-key order

Properties of a leaf node:
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NonNon--Leaf Nodes in BLeaf Nodes in B++--TreesTrees

� Non leaf nodes form a multi-level sparse 
index on the leaf nodes.  For a non-leaf node 
with m pointers:
� All the search-keys in the subtree to which P1 points are less 

than K1

� For 2 ≤ i ≤ n – 1 /* n */, all the search-keys in the subtree to 
which Pi points have values greater than or equal to Ki–1 and 
less than Km–1 /* Ki except for i=n */, 
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Example of a BExample of a B++--treetree

B+-tree for account file (n = 3)
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Example of BExample of B++--treetree

� Leaf nodes must have between 2 and 4 values 
((n–1)/2 and n –1, with n = 5).

� Non-leaf nodes other than root must have 
between 3 and 5 children ((n/2 and n with n
=5).

� Root must have at least 2 children.

B+-tree for account file (n = 5)
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Observations about BObservations about B++--treestrees

� Since the inter-node connections are done by 
pointers, “logically” close blocks need not be 
“physically” close.

� The non-leaf levels of the B+-tree form a hierarchy of 
sparse indices.

� The B+-tree contains a relatively small number of 
levels (logarithmic in the size of the main file), thus 
searches can be conducted efficiently.

� Insertions and deletions to the main file can be 
handled efficiently, as the index can be restructured 
in logarithmic time (as we shall see).


