
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Chapter 12: Indexing and Hashing (Chapter 12: Indexing and Hashing (CntCnt.).)

� Basic Concepts

� Ordered Indices

� B+-Tree Index Files

� B-Tree Index Files

� Static Hashing

� Dynamic Hashing

� Comparison of Ordered Indexing and Hashing

� Index Definition in SQL

� Multiple-Key Access

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Queries on BQueries on B++--TreesTrees

� Find all records with a search-key value of
k.
1. Start with the root node

1. Examine the node for the smallest search-key value >
k.

2. If such a value exists, assume it is Kj. Then follow Pj

to the child node

3. Otherwise k ≥ Km–1, where there are m pointers in the
node. Then follow Pm to the child node.

2. If the node reached by following the pointer above is not
a leaf node, repeat the above procedure on the node, and
follow the corresponding pointer.

3. Eventually reach a leaf node. If for some i, key Ki = k
follow pointer Pi to the desired record or bucket. Else
no record with search-key value k exists.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Queries on BQueries on B++--Trees (Cont.)Trees (Cont.)

� In processing a query, a path is traversed in the tree from
the root to some leaf node.

� If there are K search-key values in the file, the path is no
longer than  logn/2(K).

� A node is generally the same size as a disk block,
typically 4 kilobytes, and n is typically around 100 (40
bytes per index entry).

� With 1 million search key values and n = 100, at most
log50(1,000,000) = 4 nodes are accessed in a lookup.

� Contrast this with a balanced binary tree with 1 million
search key values — around 20 nodes are accessed in a
lookup
� above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Updates on BUpdates on B++--Trees: InsertionTrees: Insertion

� Find the leaf node in which the search-key
value would appear

� If the search-key value is already there in the
leaf node, record is added to file and if
necessary a pointer is inserted into the bucket.

� If the search-key value is not there, then add
the record to the main file and create a bucket
if necessary. Then:
� If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

� Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

� Splitting a node:
� take the n(search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first  n/2  in the
original node, and the rest in a new node.

� let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split. If the parent is full, split
it and propagate the split further up.

� The splitting of nodes proceeds upwards till a node that
is not full is found. In the worst case the root node may
be split increasing the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on

inserting Clearview

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Updates on BUpdates on B++--Trees: Insertion (Cont.)Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

� Find the record to be deleted, and remove it from
the main file and from the bucket (if present)

� Remove (search-key value, pointer) from the leaf
node if there is no bucket or if the bucket has
become empty

� If the node has too few entries due to the
removal, and the entries in the node and a sibling
fit into a single node, then
� Insert all the search-key values in the two nodes into a single

node (the one on the left), and delete the other node.

� Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted
node, from its parent, recursively using the above procedure.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Updates on BUpdates on B++--Trees: DeletionTrees: Deletion

� Otherwise, if the node has too few entries due
to the removal, and the entries in the node
and a sibling does not fit into a single node,
then
� Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

� Update the corresponding search-key value in the parent of the
node.

� The node deletions may cascade upwards till
a node which has n/2  or more pointers is
found. If the root node has only one pointer
after deletion, it is deleted and the sole child
becomes the root.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Examples of BExamples of B++--Tree DeletionTree Deletion

� The removal of the leaf node containing “Downtown” did not result
in its parent having too little pointers. So the cascaded deletions
stopped with the deleted leaf node’s parent.

Before and after deleting “Downtown”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Examples of BExamples of B++--Tree Deletion (Cont.)Tree Deletion (Cont.)

� Node with “Perryridge” becomes underfull (actually empty, in this special
case) and merged with its sibling.

� As a result “Perryridge” node’s parent became underfull, and was merged
with its sibling (and an entry was deleted from their parent)

� Root node then had only one child, and was deleted and its child became the
new root node

Deletion of “Perryridge” from result of previous example

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Example of BExample of B++--tree Deletion (Cont.)tree Deletion (Cont.)

� Parent of leaf containing Perryridge became underfull, and
borrowed a pointer from its left sibling

� Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

BB++--Tree File OrganizationTree File Organization

� Index file degradation problem is solved by using B+-Tree
indices. Data file degradation problem is solved by using
B+-Tree File Organization.

� The leaf nodes in a B+-tree file organization store records,
instead of pointers.

� Since records are larger than pointers, the maximum
number of records that can be stored in a leaf node is less
than the number of pointers in a nonleaf node.

� Leaf nodes are still required to be half full.

� Insertion and deletion are handled in the same way as
insertion and deletion of entries in a B+-tree index.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

BB++--Tree File Organization (Cont.)Tree File Organization (Cont.)

� Good space utilization important since records use
more space than pointers.

� To improve space utilization, involve more sibling
nodes in redistribution during splits and merges
� Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entries

Example of B+-tree File Organization

 3/2n

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

BB--Tree Index FilesTree Index Files
� Similar to B+-tree, but B-tree allows search-key values to

appear only once; eliminates redundant storage of search

keys.

� Search keys in nonleaf nodes appear nowhere else in the B-

tree; an additional pointer field for each search key in a

nonleaf node must be included.

� Generalized B-tree leaf node

� Nonleaf node – pointers Bi are the bucket or file record

pointers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

BB--Tree Index File ExampleTree Index File Example

B-tree (above) and B+-tree (below) on same data

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

BB--Tree Index Files (Cont.)Tree Index Files (Cont.)
� Advantages of B-Tree indices:

� May use less tree nodes than a corresponding B+-Tree.

� Sometimes possible to find search-key value before reaching
leaf node.

� Disadvantages of B-Tree indices:
� Only small fraction of all search-key values are found early

� Non-leaf nodes are larger, so fan-out is reduced. Thus B-Trees
typically have greater depth than corresponding
B+-Tree

� Insertion and deletion more complicated than in B+-Trees

� Implementation is harder than B+-Trees.

� Typically, advantages of B-Trees do not out
weigh disadvantages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Static HashingStatic Hashing

� A bucket is a unit of storage containing one or more
records (a bucket is typically a disk block).

� In a hash file organization we obtain the bucket of a
record directly from its search-key value using a hash
function.

� Hash function h is a function from the set of all search-
key values K to the set of all bucket addresses B.

� Hash function is used to locate records for access,
insertion as well as deletion.

� Records with different search-key values may be
mapped to the same bucket; thus entire bucket has to be
searched sequentially to locate a record.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Example of Hash File Organization Example of Hash File Organization
(Cont.)(Cont.)

� There are 10 buckets,

� The binary representation of the ith
character is assumed to be the integer i.

� The hash function returns the sum of the
binary representations of the characters
modulo 10
� E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) =

3

Hash file organization of account file, using branch-name as
key
(See figure in next slide.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Example of Hash File Organization Example of Hash File Organization

Hash file organization of account file, using branch-name as key
(see previous slide for details).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Hash FunctionsHash Functions
� Worst hash function maps all search-key values to

the same bucket; this makes access time proportional
to the number of search-key values in the file.

� An ideal hash function is uniform, i.e., each bucket is
assigned the same number of search-key values from
the set of all possible values.

� Ideal hash function is random, so each bucket will
have the same number of records assigned to it
irrespective of the actual distribution of search-key
values in the file.

� Typical hash functions perform computation on the
internal binary representation of the search-key.
� For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Handling of Bucket OverflowsHandling of Bucket Overflows

� Bucket overflow can occur because of
� Insufficient buckets

� Skew in distribution of records. This can occur due to two
reasons:

• multiple records have same search-key value

• chosen hash function produces non-uniform
distribution of key values

� Although the probability of bucket overflow
can be reduced, it cannot be eliminated; it is
handled by using overflow buckets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Handling of Bucket Overflows (Cont.)Handling of Bucket Overflows (Cont.)

� Overflow chaining – the overflow buckets of a given
bucket are chained together in a linked list.

� Above scheme is called closed hashing.

� An alternative, called open hashing, which does not use
overflow buckets, is not suitable for database applications.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Hash IndicesHash Indices

� Hashing can be used not only for file organization,
but also for index-structure creation.

� A hash index organizes the search keys, with their
associated record pointers, into a hash file structure.

� Strictly speaking, hash indices are always secondary
indices
� if the file itself is organized using hashing, a separate

primary hash index on it using the same search-key is
unnecessary.

� However, we use the term hash index to refer to both
secondary index structures and hash organized files.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Example of Hash IndexExample of Hash Index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Deficiencies of Static HashingDeficiencies of Static Hashing

� In static hashing, function h maps search-key
values to a fixed set of B of bucket addresses.
� Databases grow with time. If initial number of buckets is too

small, performance will degrade due to too much overflows.

� If file size at some point in the future is anticipated and
number of buckets allocated accordingly, significant amount
of space will be wasted initially.

� If database shrinks, again space will be wasted.

� One option is periodic re-organization of the file with a new
hash function, but it is very expensive.

� These problems can be avoided by using
techniques that allow the number of buckets
to be modified dynamically.

