
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Chapter 12: Indexing and Hashing Chapter 12: Indexing and Hashing
((CntCnt.).)

� Basic Concepts

� Ordered Indices

� B+-Tree Index Files

� B-Tree Index Files

� Static Hashing

� Dynamic Hashing

� Comparison of Ordered Indexing and Hashing

� Index Definition in SQL

� Multiple-Key Access

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Dynamic HashingDynamic Hashing

� Good for database that grows and shrinks in size

� Allows the hash function to be modified dynamically

� Extendable hashing – one form of dynamic hashing
� Hash function generates values over a large range —

typically b-bit integers, with b = 32.

� At any time use only a prefix of the hash function to index
into a table of bucket addresses.

� Let the length of the prefix be i bits, 0 ≤ i ≤ 32.

� Bucket address table size = 2i. Initially i = 0

� Value of i grows and shrinks as the size of the database
grows and shrinks.

� Multiple entries in the bucket address table may point to a
bucket.

� Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

General Extendable Hash Structure General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see
next slide for details)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Use of Extendable Hash Structure: Example Use of Extendable Hash Structure: Example

Initial Hash structure, bucket size = 2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example (Cont.)Example (Cont.)

� Hash structure after insertion of one Brighton
and two Downtown records

Brighton 0010

Downtown 1010

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example (Cont.)Example (Cont.)

Hash structure after insertion of Mianus record

Brighton 0010

Downtown 1010

Mianus 1100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Example (Cont.)Example (Cont.)

Hash structure after insertion of three Perryridge records

Brighton 0010

Downtown 1010

Mianus 1100

Perryridge 1111

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Example (Cont.)Example (Cont.)

� Hash structure after insertion of Redwood
and Round Hill records

Brighton 0010

Downtown 1010

Mianus 1100

Perryridge 1111

Redwood 0011

Round 1101

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Use of Extendable Hash StructureUse of Extendable Hash Structure

� Each bucket j stores a value ij; all the entries
that point to the same bucket have the same
values on the first ij bits.

� To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into
bucket address table, and follow the pointer to appropriate
bucket

� To insert a record with search-key value Kj

� follow same procedure as look-up and locate the bucket, say j.

� If there is room in the bucket j insert record in the bucket.

� Else the bucket must be split and insertion re-attempted (next
slide.)

• Overflow buckets used instead in some cases (as the case
for Perryridge in previous example)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Updates in Extendable Hash Structure Updates in Extendable Hash Structure

� If i > ij (more than one pointer to bucket j)
� allocate a new bucket z, and set ij and iz to the old ij -+ 1.

� make the second half of the bucket address table entries
pointing to j to point to z

� remove and reinsert each record in bucket j.

� recompute new bucket for Kj and insert record in the bucket
(further splitting is required if the bucket is still full)

� If i = ij (only one pointer to bucket j)
� increment i and double the size of the bucket address table.

� replace each entry in the table by two entries that point to
the same bucket.

� recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Updates in Extendable Hash Structure (Cont.)Updates in Extendable Hash Structure (Cont.)
� When inserting a value, if the bucket is full after

several splits (that is, i reaches some limit b) create an
overflow bucket instead of splitting bucket entry table
further.

� To delete a key value,
� locate it in its bucket and remove it.

� The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

� Coalescing of buckets can be done (can coalesce only with a
“buddy” bucket having same value of ij and same ij –1 prefix,
if it is present)

� Decreasing bucket address table size is also possible

• Note: decreasing bucket address table size is an expensive
operation and should be done only if number of buckets
becomes much smaller than the size of the table

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Extendable Hashing vs. Other SchemesExtendable Hashing vs. Other Schemes

� Benefits of extendable hashing:
� Hash performance does not degrade with growth of file

� Minimal space overhead

� Disadvantages of extendable hashing
� Extra level of indirection to find desired record

� Bucket address table may itself become very big (larger than
memory)

• Need a tree structure to locate desired record in the
structure!

� Changing size of bucket address table is an expensive
operation

� Linear hashing is an alternative mechanism which
avoids these disadvantages at the possible cost of
more bucket overflows

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Comparison of Ordered Indexing and HashingComparison of Ordered Indexing and Hashing

� Cost of periodic re-organization

� Relative frequency of insertions and deletions

� Is it desirable to optimize average access time
at the expense of worst-case access time?

� Expected type of queries:
� Hashing is generally better at retrieving records having a

specified value of the key.

� If range queries are common, ordered indices are to be
preferred

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Index Definition in SQLIndex Definition in SQL

� Create an index
create index <index-name> on <relation-name>

<attribute-list>)

E.g.: create index b-index on branch(branch-name)

� Use create unique index to indirectly specify
and enforce the condition that the search key
is a candidate key.

� To drop an index

drop index <index-name>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

MultipleMultiple--Key AccessKey Access
� Use multiple indices for certain types of queries.

� Example:
select account-number

from account

where branch-name = “Perryridge” and balance = 1000

� Possible strategies for processing query using
indices on single attributes:
1. Use index on branch-name to find accounts with branch

name of Perryridge; test balance = 1000.

2. Use index on balance to find accounts with balances of
$1000; test branch-name = “Perryridge”.

3. Use branch-name index to find pointers to all records
pertaining to the Perryridge branch. Similarly use index
on balance. Take intersection of both sets of pointers
obtained.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Indices on Multiple AttributesIndices on Multiple Attributes

� With the where clause
where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only
records that satisfy both conditions.
Using separate indices is less efficient — we may fetch
many records (or pointers) that satisfy only one of the
conditions.

� Can also efficiently handle
where branch-name = “Perryridge” and balance < 1000

� But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the
second condition.

Suppose we have an index on combined search-key
(branch-name, balance).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Grid FilesGrid Files

� Structure used to speed the processing of general
multiple search-key queries involving one or more
comparison operators.

� The grid file has a single grid array and one linear
scale for each search-key attribute. The grid array
has number of dimensions equal to number of
search-key attributes.

� Multiple cells of grid array can point to same
bucket

� To find the bucket for a search-key value, locate
the row and column of its cell using the linear
scales and follow pointer

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Example Grid File for Example Grid File for accountaccount

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Queries on a Grid FileQueries on a Grid File

� A grid file on two attributes A and B can
handle queries of all following forms with
reasonable efficiency
� (a1 ≤ A ≤ a2)

� (b1 ≤ B ≤ b2)

� (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.

� E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use
linear scales to find corresponding candidate
grid array cells, and look up all the buckets
pointed to from those cells.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Grid Files (Cont.)Grid Files (Cont.)
� During insertion, if a bucket becomes full, new

bucket can be created if more than one cell points to
it.
� Idea similar to extendable hashing, but on multiple

dimensions

� If only one cell points to it, either an overflow bucket must
be created or the grid size must be increased

� Linear scales must be chosen to uniformly
distribute records across cells.
� Otherwise there will be too many overflow buckets.

� Periodic re-organization to increase grid size will
help.
� But reorganization can be very expensive.

� Space overhead of grid array can be high.

� R-trees (Chapter 23) are an alternative

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Bitmap IndicesBitmap Indices

� Bitmap indices are a special type of index designed for
efficient querying on multiple keys

� Records in a relation are assumed to be numbered
sequentially from, say, 0
� Given a number n it must be easy to retrieve record n

• Particularly easy if records are of fixed size

� Applicable on attributes that take on a relatively small
number of distinct values
� E.g. gender, country, state, …

� E.g. income-level (income broken up into a small number of
levels such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

� A bitmap is simply an array of bits

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� In its simplest form a bitmap index on an
attribute has a bitmap for each value of the
attribute
� Bitmap has as many bits as records

� In a bitmap for value v, the bit for a record is 1 if the record
has the value v for the attribute, and is 0 otherwise

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� Bitmap indices are useful for queries on multiple attributes

� not particularly useful for single attribute queries

� Queries are answered using bitmap operations
� Intersection (and)

� Union (or)

� Complementation (not)

� Each operation takes two bitmaps of the same size and
applies the operation on corresponding bits to get the result
bitmap
� E.g. 100110 AND 110011 = 100010

100110 OR 110011 = 110111
NOT 100110 = 011001

� Males with income level L1: 10010 AND 10100 = 10000

• Can then retrieve required tuples.

• Counting number of matching tuples is even faster

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� Bitmap indices generally very small compared with
relation size
� E.g. if record is 100 bytes, space for a single bitmap is 1/800 of

space used by relation.

• If number of distinct attribute values is 8, bitmap is only 1%
of relation size

� Deletion needs to be handled properly
� Existence bitmap to note if there is a valid record at a record

location

� Needed for complementation

• not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap

� Should keep bitmaps for all values, even null value
� To correctly handle SQL null semantics for NOT(A=v):

• intersect above result with (NOT bitmap-A-Null)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

End of ChapterEnd of Chapter

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Sample Sample accountaccount FileFile

