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Chapter 12:  Indexing and Hashing Chapter 12:  Indexing and Hashing 
((CntCnt.).)

� Basic Concepts

� Ordered Indices 

� B+-Tree Index Files

� B-Tree Index Files

� Static Hashing

� Dynamic Hashing 

� Comparison of Ordered Indexing and Hashing 

� Index Definition in SQL

� Multiple-Key Access



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 2

Dynamic HashingDynamic Hashing

� Good for database that grows and shrinks in size

� Allows the hash function to be modified dynamically

� Extendable hashing – one form of dynamic hashing
� Hash function generates values over a large range —

typically b-bit integers, with b = 32.

� At any time use only a prefix of the hash function to index 
into a table of bucket addresses.   

� Let the length of the prefix be i bits,  0 ≤ i ≤ 32.  

� Bucket address table size = 2i. Initially i = 0

� Value of i grows and shrinks as the size of the database 
grows and shrinks.

� Multiple entries in the bucket address table may point to a 
bucket. 

� Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to 
coalescing and splitting of buckets. 
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General Extendable Hash Structure General Extendable Hash Structure 

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see 
next slide for details)
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Use of Extendable Hash Structure:  Example Use of Extendable Hash Structure:  Example 

Initial Hash structure, bucket size = 2
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Example (Cont.)Example (Cont.)

� Hash structure after  insertion of one Brighton 
and two Downtown records

Brighton           0010

Downtown       1010
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Example (Cont.)Example (Cont.)

Hash structure after insertion of Mianus record

Brighton           0010

Downtown       1010

Mianus 1100
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Example (Cont.)Example (Cont.)

Hash structure after insertion of  three Perryridge records

Brighton           0010

Downtown       1010

Mianus 1100

Perryridge 1111
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Example (Cont.)Example (Cont.)

� Hash structure after insertion of Redwood 
and Round Hill records

Brighton           0010

Downtown       1010

Mianus 1100

Perryridge 1111

Redwood  0011

Round    1101
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Use of Extendable Hash StructureUse of Extendable Hash Structure

� Each bucket j stores a value ij; all the entries 
that point to the same bucket have the same 
values on the first ij bits.

� To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into 
bucket address table, and follow the pointer to appropriate 
bucket

� To insert a record with search-key value Kj

� follow same procedure as look-up and locate the bucket, say j.  

� If there is room in the bucket j insert record in the bucket.  

� Else the bucket must be split and insertion re-attempted (next 
slide.)

• Overflow buckets used instead in some cases (as the case 
for Perryridge in previous example)
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Updates in Extendable Hash Structure Updates in Extendable Hash Structure 

� If i > ij (more than one pointer to bucket j)
� allocate a new bucket z, and set ij and iz to the old ij -+ 1.

� make the second half of the bucket address table entries 
pointing to j to point to z

� remove and reinsert each record in bucket j.

� recompute new bucket for Kj and insert record in the bucket 
(further splitting is required if the bucket is still full)

� If i = ij (only one pointer to bucket j)
� increment i and double the size of the bucket address table.

� replace each entry in the table by two entries that point to 
the same bucket.

� recompute new bucket address table entry for Kj

Now i > ij so use the first case above.   

To split a bucket j when inserting record with search-key value Kj:
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Updates in Extendable Hash Structure (Cont.)Updates in Extendable Hash Structure (Cont.)
� When inserting a value, if the bucket is full after 

several splits (that is, i reaches some limit b) create an 
overflow bucket instead of splitting bucket entry table 
further.

� To delete a key value, 
� locate it in its bucket and remove it. 

� The bucket itself can be removed if it becomes empty (with 
appropriate updates to the bucket address table). 

� Coalescing of buckets can be done (can coalesce only with a 
“buddy” bucket having same value of ij and same ij –1 prefix, 
if it is present) 

� Decreasing bucket address table size is also possible

• Note: decreasing bucket address table size is an expensive 
operation and should be done only if number of buckets 
becomes much smaller than the size of the table 
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Extendable Hashing vs. Other SchemesExtendable Hashing vs. Other Schemes

� Benefits of extendable hashing:  
� Hash performance does not degrade with growth of file

� Minimal space overhead

� Disadvantages of extendable hashing
� Extra level of indirection to find desired record

� Bucket address table may itself become very big (larger than 
memory)

• Need a tree structure to locate desired record in the 
structure!

� Changing size of bucket address table is an expensive 
operation

� Linear hashing is an alternative mechanism which 
avoids these disadvantages at the possible cost of 
more bucket overflows
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Comparison of Ordered Indexing and HashingComparison of Ordered Indexing and Hashing

� Cost of periodic re-organization

� Relative frequency of insertions and deletions

� Is it desirable to optimize average access time 
at the expense of worst-case access time?

� Expected type of queries:
� Hashing is generally better at retrieving records having a 

specified value of the key.

� If range queries are common, ordered indices are to be 
preferred
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Index Definition in SQLIndex Definition in SQL

� Create an index
create index <index-name> on <relation-name>

<attribute-list>)

E.g.:  create index b-index on branch(branch-name)

� Use create unique index to indirectly specify 
and enforce the condition that the search key 
is a candidate key.

� To drop an index

drop index <index-name>
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MultipleMultiple--Key AccessKey Access
� Use multiple indices for certain types of queries.

� Example:
select account-number

from account

where branch-name = “Perryridge” and balance = 1000

� Possible strategies for processing query using 
indices on single attributes:
1. Use index on branch-name to find accounts with branch 

name of Perryridge; test balance = 1000.

2. Use index on balance to find accounts with balances of 
$1000; test branch-name = “Perryridge”.

3. Use branch-name index to find pointers to all records 
pertaining to the Perryridge branch.  Similarly use index 
on balance.  Take intersection of both sets of pointers 
obtained.
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Indices on Multiple AttributesIndices on Multiple Attributes

� With the where clause
where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only 
records that satisfy both conditions.
Using separate indices is less efficient — we may fetch 
many records (or pointers) that satisfy only one of the 
conditions.

� Can also efficiently handle 
where branch-name = “Perryridge” and balance < 1000

� But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the 
second condition.

Suppose we have an index on combined search-key
(branch-name, balance).
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Grid FilesGrid Files

� Structure used to speed the processing of general 
multiple search-key queries involving one or more 
comparison operators.

� The grid file has a single grid array and one linear 
scale for each search-key attribute.  The grid array 
has number of dimensions equal to number of 
search-key attributes.

� Multiple cells of grid array can point to same 
bucket

� To find the bucket for a search-key value, locate 
the row and column of its cell using the linear 
scales and follow pointer
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Example Grid File for Example Grid File for accountaccount
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Queries on a Grid FileQueries on a Grid File

� A grid file on two attributes A and B can 
handle queries of all following forms with 
reasonable efficiency
� (a1 ≤ A ≤ a2)

� (b1 ≤ B ≤ b2)

� (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.

� E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use 
linear scales to find corresponding candidate 
grid array cells, and look up all the buckets 
pointed to from those cells.
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Grid Files (Cont.)Grid Files (Cont.)
� During insertion, if a bucket becomes full, new 

bucket can be created if more than one cell points to 
it. 
� Idea similar to extendable hashing, but on multiple 

dimensions

� If only one cell points to it, either an overflow bucket must 
be created or the grid size must be increased

� Linear scales must be chosen to uniformly 
distribute records across cells. 
� Otherwise there will be too many overflow buckets.

� Periodic re-organization to increase grid size will 
help.
� But reorganization can be very expensive.

� Space overhead of grid array can be high.

� R-trees (Chapter 23) are an alternative 
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Bitmap IndicesBitmap Indices

� Bitmap indices are a special type of index designed for 
efficient querying on multiple keys

� Records in a relation are assumed to be numbered 
sequentially from, say, 0
� Given a number n it must be easy to retrieve record n

• Particularly easy if records are of fixed size

� Applicable on attributes that take on a relatively small 
number of distinct values
� E.g. gender, country, state, …

� E.g. income-level (income broken up into a small number of  
levels such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

� A bitmap is simply an array of bits
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Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� In its simplest form a bitmap index on an 
attribute has a bitmap for each value of the 
attribute
� Bitmap has as many bits as records

� In a bitmap for value v, the bit for a record is 1 if the record
has the value v for the attribute, and is 0 otherwise
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Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� Bitmap indices are useful for queries on multiple attributes

� not particularly useful for single attribute queries

� Queries are answered using bitmap operations
� Intersection (and)

� Union (or)

� Complementation (not) 

� Each operation takes two bitmaps of the same size and 
applies the operation on corresponding bits to get the result 
bitmap
� E.g.   100110  AND 110011 = 100010

100110  OR  110011 = 110111
NOT 100110  = 011001

� Males with income level L1:   10010 AND 10100 = 10000

• Can then retrieve required tuples.

• Counting number of matching tuples is even faster
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Bitmap Indices (Cont.)Bitmap Indices (Cont.)

� Bitmap indices generally very small compared with 
relation size
� E.g. if record is 100 bytes, space for a single bitmap is 1/800 of 

space used by relation.  

• If number of distinct attribute values is 8, bitmap is only 1% 
of relation size

� Deletion needs to be handled properly
� Existence bitmap to note if there is a valid record at a record 

location

� Needed for complementation

• not(A=v):      (NOT bitmap-A-v) AND ExistenceBitmap

� Should keep bitmaps for all values, even null value
� To correctly handle SQL null semantics for  NOT(A=v):

• intersect above result with  (NOT bitmap-A-Null)
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End of ChapterEnd of Chapter
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Sample Sample accountaccount FileFile


