

The Relational Data Model and Relational Database Constraints

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Chapter Outline

- Relational Model Concepts
- Relational Model Constraints and Relational Database Schemas
- Update Operations and Dealing with Constraint Violations

Relational Model Concepts

- The relational Model of Data is based on the concept of a Relation.
- The model was first proposed by Dr. T.F. Codd of IBM in 1970 in the following paper: "A Relational Model for Large Shared Data Banks," Communications of the ACM, June 1970.

The above paper caused a major revolution in the field of Database management and earned Ted Codd the coveted ACM Turing Award.

Informal Definitions

- RELATION: A table of values
 - A relation may be thought of as a set of rows.
 - Each row represents a fact that corresponds to a real-world entity or relationship.
 - Each row has a value of an item or set of items that uniquely identifies that row in the table.
 - Each column typically is called by its column name or column header or attribute name.

Informal Definitions

- Key of a Relation:
 - Each row has a value of a data item (or set of items) that uniquely identifies that row in the table
 - Called the *key*
 - In the STUDENT table, SSN is the key
 - Sometimes row-ids or sequential numbers are assigned as keys to identify the rows in a table
 - Called *artificial key* or *surrogate key*

		E	xamp	ole -	Figure 5.1		Int) o Lab
	Relation name		Attributes				*	*
	STUDENT	Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
	×	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21
	~	Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
		Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
Tuples	$ \rightarrow $	Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
		Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25

Formal definitions

- The **Schema** (or description) of a Relation:
 - Denoted by R(A1, A2,An)
 - R is the **name** of the relation
 - The attributes of the relation are A1, A2, ..., An

• Example:

- CUSTOMER (Cust-id, Cust-name, Address, Phone#)
 - CUSTOMER is the relation name
 - Defined over the four attributes: Cust-id, Cust-name, Address, Phone#
- Each attribute has a **domain** or a set of valid values.
 - For example, the domain of Cust-id is 6 digit numbers.

Formal definitions

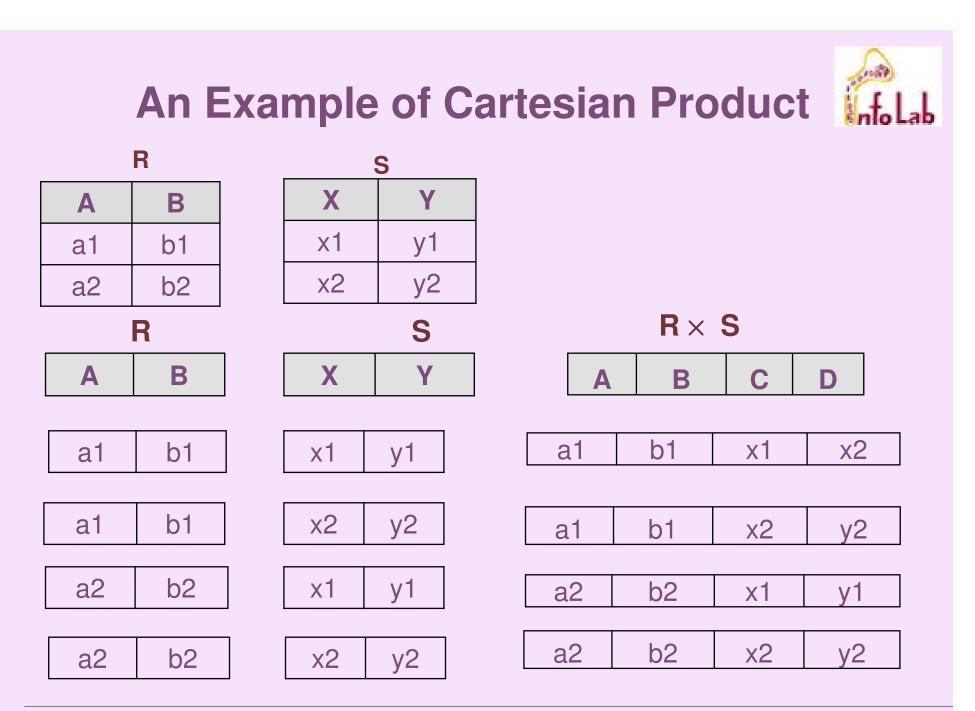
- A row is called a **tuple**, which is an ordered set of values
- A column header is called an **attribute**
 - Each attribute value is derived from an appropriate domain.
- The table is called a **relation**.
 - A relation can be regarded as a *set of tuples* (rows).
- The data type describing the types of values an attribute can have is represented by a **domain** of possible values.
- Each row in the CUSTOMER table is a 4-tuple and consists of four values, for example.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

• A relation is a set of such tuples (rows).

Formal Definitions

• A domain has a logical definition.


Example: "USA_phone_numbers" are the set of 10 digit phone numbers valid in the U.S.

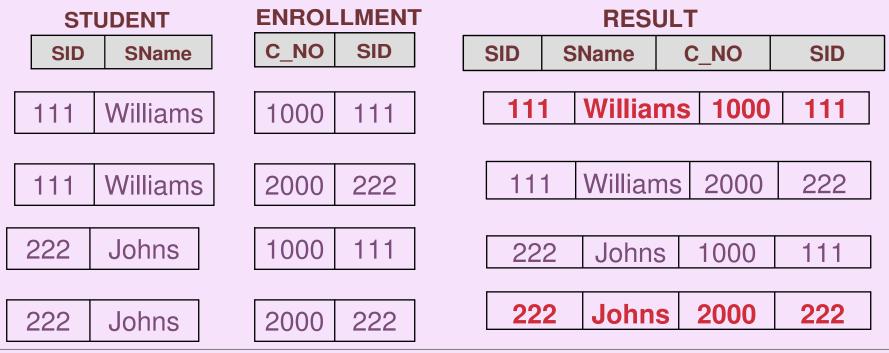
- A domain also has a data-type or a format defined for it.
 - For example, the USA_phone_numbers may have a format: (ddd)-ddd-dddd where each d is a decimal digit.
 - Dates have various formats such as month, date, year or yyyy-mm-dd, or dd mm,yyyy etc.

Formal Definitions

- The **relation** is formed over the cartesian product of the sets; each set has values from a domain
- The Cartesian product of two sets A and B is defined to be the set of all pairs (a, b) where a∈ A and b∈ B. It is denoted A×B, and is called the Cartesian product

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

An Example of Cartesian Product


STUDENT

SID	SName
111	Williams
222	Johnes

ENROLLMENT

C_NO	SID
1000	111
2000	222

$\textbf{STUDENT} \times \textbf{ENROLLMENT}$

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Formal Definitions

- The **degree** of a relation is the number of attributes *n* of its relation schema.
- A relation schema R of degree n is denoted by

R(A1, A2, ..., An)

The *domain* of *Ai* is denoted by *dom(Ai)*.

DEFINITION SUMMARY

Informal Terms	Formal Terms
Table	Relation
Column	Attribute/Domain
Row	Tuple
Values in a column	Domain
Table Definition	Schema of a Relation
Populated Table	Extension

Characteristics of Relations

- Ordering of tuples in a relation r(R):
 - The tuples are *not* considered to be ordered, even though they appear to be in the tabular form.
- Ordering of attributes in a relation schema R (and of values within each tuple):
 - We will consider the attributes in $R(A_1, A_2, ..., A_n)$ and the values in t=<v₁, v₂, ..., v_n> to be *ordered*.
- Values in a tuple: All values are considered *atomic* (indivisible). A special null value is used to represent values that are unknown or inapplicable to certain tuples.

CHARACTERISTICS OF RELATIONS- Figure 5.2

STUDENT	Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
	Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25
	Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21

Relational Integrity Constraints

- Constraints are conditions that must hold on all valid relation states.
- There are three *main types* of constraints in the relational model:
 - Key constraints
 - Entity integrity constraints
 - Referential integrity constraints
- Another implicit constraint is the **domain** constraint
 - Every value in a tuple must be from the *domain of its attribute* (or it could be **null**, if allowed for that attribute)

Key Constraints

- **Superkey** of R: Is a set of attributes SK of R with the following condition:
 - No two tuples in any valid relation state r(R) will have the same value for SK
 - That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ≠ t2[SK]
 - This condition must hold in *any valid state* r(R)
- Key of R:
 - A "minimal" superkey
 - That is, a key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property)

Key Constraints (continued)

- Example: Consider the CAR relation schema: CAR(State, Reg#, SerialNo, Make, Model, Year)
 - CAR has two keys: Key1 = {State, Reg#}
 - Key2 = {SerialNo}
 - Both are also superkeys of CAR
 - {SerialNo, Make} is a superkey but not a key.
- In general:
 - Any key is a superkey (but not vice versa)
 - Any set of attributes that includes a key is a superkey
 - A minimal superkey is also a key

Key Constraints (continued)

- If a relation has several **candidate keys**, one is chosen arbitrarily to be the **primary key**.
 - The primary key attributes are <u>underlined</u>.
- Example: Consider the CAR relation schema: CAR(State, Reg#, <u>SerialNo</u>, Make, Model, Year) We chose SerialNo as the primary key
- The primary key value is used to *uniquely identify* each tuple in a relation and provides the tuple identity
- Also used to *reference* the tuple from another tuple
 - General rule: Choose as primary key the smallest of the candidate keys (in terms of size)
 - Not always applicable choice is sometimes subjective

CAR table with two candidate keys

	License_number	Engine_serial_number	Make	Model	Year
	Texas ABC-739	A69352	Ford	Mustang	02
	Florida TVP-347	B43696	Oldsmobile	Cutlass	05
Figure 5.4	New York MPO-22	X83554	Oldsmobile	Delta	01
The CAR relation, with	California 432-TFY	C43742	Mercedes	190-D	99
two candidate keys:	California RSK-629	Y82935	Toyota	Camry	04
License_number and Engine_serial_number.	Texas RSK-629	U028365	Jaguar	XJS	04

CAR

Relational Databases and Relational Database Schemas

- Relational Database Schema:
 - A set S of relation schemas that belong to the same database.
 - S is the name of the whole **database schema**
 - $S = \{R1, R2, ..., Rn\}$
 - R1, R2, ..., Rn are the names of the individual relation schemas within the database S
- Following slide shows a COMPANY database schema with 6 relation schemas

Schema Diagram for the COMPANY Relational Database Schema

EMPLOYE	E								
Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
DEPARTN	IENT								
Dname	Dnumb	er Mgr_	_ssn	Mgr_start_	_date				
DEPT_LO	CATIONS	5							
Dnumbe	r Dloc	ation							
PROJECT									
Pname	Pnumb	er Ploca	ation	Dnum					
WORKS_C	N								
Essn	Pno	Hours							Eiguro F
Figure 5.5 Schema diagram for									
DEPEND	ENT								the COMPAN
	Depende		_					rela	tional databa

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Figure 5.6 One possible database state for the COMPANY relational database schema

EMPLOYEE	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John		Smith	123456789	1965-01-09	731 Fondren, Houston, TX	м	30000	333445555	5
	Franklin		Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia		Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer		Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh		Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	м	38000	333445555	5
	Jayce		English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad		Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	м	25000	987654321	4
	James		Borg	888665555	1937-11-10	450 Stone, Houston, TX	м	55000	null	1

DEPT_LOCATIONS	
----------------	--

DITOMOLIT	DEGORITOR
	Houston
	Stafford
	Bellaire
	Sugarland

DNUMBER DLOCATION

-		*			
	DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
		Research	5	333445555	1988-05-22
		Administration	4	987654321	1995-01-01
		Headquartera	1	888665555	1981-06-19
		•			

WORKS_ON	ESSN	PNO	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
	ProductX	1	Bellaire	5
	ProductY	2	Sugarland	5
	ProductZ	3	Houston	5
	Computerization	10	Stafford	4
	Reorganization	20	Houston	1
	Newbenefits	30	Stafford	4

DEPENDENT	ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	1986-04-05	DAUGHTER
	333445555	Theodore	м	1983-10-25	SON
	333445555	Joy	F	1958-05-03	SPOUSE
	987654321	Abner	м	1942-02-28	SPOUSE
	123456789	Michael	м	1988-01-04	SON
	123456789	Alice	F	1988-12-30	DAUGHTER
	123456789	Elizabeth	F	1967-05-05	SPOUSE

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Entity Integrity

• Entity Integrity:

- The *primary key attributes* PK of each relation schema R in S cannot have null values in any tuple of r(R).
 - This is because primary key values are used to *identify* the individual tuples.
 - $t[PK] \neq null \text{ for any tuple t in } r(R)$
 - If PK has several attributes, null is not allowed in any of these attributes
- Note: Other attributes of R may be constrained to disallow null values, even though they are not members of the primary key.

Referential Integrity

- A constraint involving *two* relations.
- Used to specify a *relationship* among tuples in two relations: the **referencing relation** and the **referenced relation**.
- Tuples in the *referencing relation* R₁ have attributes
 FK (called foreign key attributes) that reference the primary key attributes PK of the *referenced relation* R₂. A tuple t₁ in R₁ is said to **reference** a tuple t₂ in R₂ if t₁[FK] = t₂[PK].
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from *R*₁.*FK* to *R*₂.*PK*

Info Lab

Displaying a relational database schema and its constraints

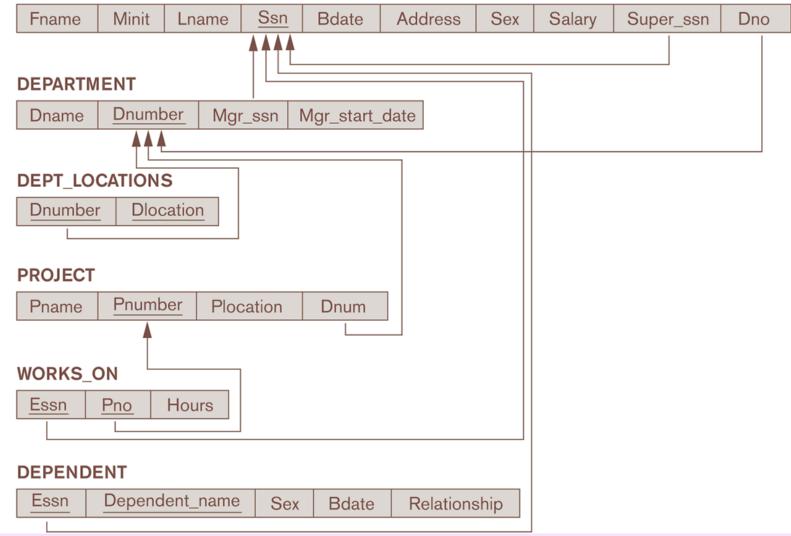

- Each relation schema can be displayed as a row of attribute names
- The name of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined
- A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table
 - Can also point the primary key of the referenced relation for clarity
- Next slide shows the COMPANY relational schema diagram

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Referential Integrity Constraint

- The value in the foreign key column (or columns) FK of the **referencing relation** R1 can be **either**:
 - a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, <u>or</u>
 - 2) a **null**.
- In case (2), the FK in R1 should **not** be a part of its own primary key.
- Example:
 - <"John", "L",, "Smith", 111222333, 1965-10-21, "101 Main St. Atlanta, GA 30332", M, 42000, 444555666, NULL>

```
<"Mary", "J",, "Burton", 111111111, 1972-1-18, "23 Maple St.
Atlanta, GA 30310", F, 35000, NULL, 3>
```


Other Types of Constraints

- Semantic Integrity Constraints:
 - based on application semantics and cannot be expressed by the model per se
 - Example: "the max. no. of hours per employee for all projects he or she works on is 56 hrs per week"
- A constraint specification language may have to be used to express these
- SQL-99 allows triggers and ASSERTIONS to express for some of these

Populated database state

- Each *relation* will have many tuples in its current relation state
- The **relational database state** is a union of all the individual relation states
- Whenever the database is changed, a new state arises
- Basic operations for changing the database:
 - INSERT a new tuple in a relation
 - DELETE an existing tuple from a relation
 - MODIFY an attribute of an existing tuple
- Next slide shows an example state for the COMPANY database

Populated database state for COMPANY Figure 5.6 One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

WORKS_ON

Essn	<u>Pno</u>	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	DEPENDENT
333445555	20	10.0	Essn
999887777	30	30.0	333445555
999887777	10	10.0	333445555
987987987	10	35.0	333445555
987987987	30	5.0	987654321
987654321	30	20.0	123456789
987654321	20	15.0	123456789
888665555	20	NULL	123456789

DEPT LOCATIONS

DEI 1_LOOAIIONS				
Dlocation				
Houston				
Stafford Bellaire				
			Sugarland	
Houston				

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

	DEI ENDENI				
10.0	Essn	Dependent_name	Sex	Bdate	Relationship
30.0	333445555	Alice	F	1986-04-05	Daughter
10.0	333445555	Theodore	М	1983-10-25	Son
35.0	333445555	Joy	F	1958-05-03	Spouse
5.0	987654321	Abner	М	1942-02-28	Spouse
20.0	123456789	Michael	М	1988-01-04	Son
15.0	123456789	Alice	F	1988-12-30	Daughter
NULL	123456789	Elizabeth	F	1967-05-05	Spouse

Elmasri/Navathe, Fundamentals of Database Systems, Fifth Edition

Update Operations on Relations

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Several update operations may have to be grouped together.
- Updates may **propagate** to cause other updates automatically. This may be necessary to maintain integrity constraints.

Update Operations on Relations

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (RESTRICT or REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Possible violations for each operation

- INSERT may violate any of the constraints:
 - Domain constraint:
 - if one of the attribute values provided for the new tuple is not of the specified attribute domain
 - Key constraint:
 - if the value of a key attribute in the new tuple already exists in another tuple in the relation
 - Referential integrity:
 - if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
 - Entity integrity:
 - if the primary key value is null in the new tuple

Possible violations for each operation

- DELETE may violate only referential integrity:
 - If the primary key value of the tuple being deleted is referenced from other tuples in the database
 - Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 8 for more details)
 - RESTRICT option: reject the deletion
 - CASCADE option: propagate the new primary key value into the foreign keys of the referencing tuples
 - SET NULL option: set the foreign keys of the referencing tuples to NULL
 - One of the above options must be specified during database design for each foreign key constraint

Possible violations for each operation

- UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified
- Any of the other constraints may also be violated, depending on the attribute being updated:
 - Updating the primary key (PK):
 - Similar to a DELETE followed by an INSERT
 - Need to specify similar options to DELETE
 - Updating a foreign key (FK):
 - May violate referential integrity
 - Updating an ordinary attribute (neither PK nor FK):
 - Can only violate domain constraints

Summary

- Presented Relational Model Concepts
 - Definitions
 - Characteristics of relations
- Discussed Relational Model Constraints and Relational Database Schemas
 - Domain constraints
 - Key constraints
 - Entity integrity
 - Referential integrity
- Described the Relational Update Operations and Dealing with Constraint Violations

In-Class Exercise

(Taken from Exercise 5.15)

Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:

STUDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(<u>Book_ISBN</u>, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this schema.

References

 http://ifsc.ualr.edu/wu/Course/DB/06Fall/E NCh05.ppt