
1

Session-7: Object-Relational DBMS

Cyrus Shahabi

2

Motivation

� Relational databases (2nd generation) were designed for
traditional banking-type applications with well-structured,
homogenous data elements (vertical & horizontal homogeneity)
and a minimal fixed set of limited operations (e.g., set & tuple-
oriented operations).

� New applications (e.g., CAD, CAM, CASE, OA, and CAP),
however, require concurrent modeling of both data and processes
acting upon the data.

� Hence, a combination of database and software-engineering
disciplines lead to the 3rd generation of database management
systems: Object Database Management Systems, ODBMS.

� Note that a classic debate in database community is that do we
need a new model or relational model is sufficient and can be
extended to support new applications.

3

Motivation …

� People in favor of relational model argue that:
� New versions of SQL (e.g., SQL-92 and SQL3) are designed to incorporate

functionality required by new applications (UDT, UDF, …).

� Embedded SQL can address almost all the requirements of the new
applications.

� “Object people”, however, counter-argue that in the above-
mentioned solutions, it is the application rather than the inherent
capabilities of the model that provides the required functionality.

� Object people say there is an impedance mismatch between
programming languages (handling one row of data at a time) and
SQL (multiple row handling) which makes conversions inefficient.

� Relational people say, instead of defining new models, let’s introduce
set-level functionality into programming languages.

4

Weaknesses of Relational Data Model
� Poor representation of ‘real world’ conceptual model

� Usually the relational schema does not correspond to real world entities

� Difficult to change schema without affecting the applications; e.g., Y2K

� Semantic overloading

� The same relation is used to represent entities as well as relationships

� Poor support for integrity and business rules

� Fixed number of attributes & all attribute values must be atomic

� Limited operations

� Difficult to handle recursive queries

� Impedance mismatch (when SQL is embedded in PLs)

� Type System mismatch, Evaluation Strategy mismatch

� Poor navigational access

� Short-lived transactions (strict locking and recovery mechanisms

5

Michael Stonebraker’s Classification

� Michael Stonebraker presents this four-quadrant matrix
in the book entitled “Object-Relational DBMSs: The Next
Great Wave”
� This is a classification of both database applications and systems.

6

Lower-Left Quadrant

� Those application that process simple data and
require no query capability e.g. text processors
(word, emacs)

� Information has little internal structure.

� Document updates are relatively infrequent.

� Documents are of modest size.

� Queries are simple string or pattern searches.

7

Upper-Left Quadrant

� Those application that process simple data and
require complex query capability e.g. a typical
business application require RDBMS.

� Information has straightforward and fixed
structure.

� Information collection may be large.

� Information storage must be reliable.

� Queries are relatively complex.

� Updates are frequent and Security is vital.

8

Lower-Right Quadrant

� Those application that process complex data and
require no query capability e.g. a CAD
application requires OODBMS.

� Information has complex structure.

� Analysis are complex.

� Information is moderate in quantity.

� Updates are periodic.

9

Upper-Right Quadrant

� Those application that process complex data and
require complex query capability e.g. an Image
Data Archive requires ORDBMS.

� Information has complex structure.

� Information may include special data types.

•Images, Spatial information

� Information is large in quantity.

� Queries are important.

� Updates are periodic.

10

Object-Relational Databases

� Object-Relational databases (ORDBSs) seek to:

� Retain the relational model as a subset.

� Retain the strengths of the relational model
and all the technologies that come with it.

� Supports complex data types (BLOBS, ADTs,
Spatial, and Multimedia, …).

� Supports object-oriented design.

� Reduces impedance mismatch (type system).

11

� Resolves many of known weaknesses of
RDBMS.

� Preserves significant body of knowledge and
experience gone into developing relational
applications.

Advantages of ORDBMSs

12

Disadvantages of ORDBMSs

• Complexity.

• Increased costs.

• Supporters of relational approach believe
simplicity and purity of relational model are
lost.

• Some believe RDBMS is being extended for what
will be a minority of applications.

• OO purists not attracted by extensions either.

• SQL now extremely complex.

13

Classification Problems

� Most of OODBMSs claim to be in Upper-Right
quadrant not just ORDBMSs.

14

Object-Oriented Concepts
� Abstraction and Encapsulation (Provided by Abstract Data Types

(ADT))
� Abstraction is the process of identifying the essential aspects of an entity

and ignoring the unimportant properties. Focus on what an object is and
what it does, rather than how it should be implemented.

� Encapsulation (or information hiding) provides data independence by
separating the external aspects of an object from its internal details, which
is hidden from the outside world.

� Objects

� Object is a uniquely identifiable entity that contains both the attributes that
describe the state of a real-world object and the actions that conceptualize
the behavior of a real-world object. The difference between object and
entity is that object encapsulates both state and behavior while entity only
models state.

� Attributes (or instance variables) describe the current state of an object (the
notation for attribute: object-name.attribute-name).

15

Object-Oriented Concepts

� Methods: define the behavior of the object. They can be used to
change the object’s state by modifying its attribute values, or to
query the value of the selected attributes. A method consists of a
name and a body that performs the behavior associated with the
method name (notation: object-name.method-name).

� Classes: A group of objects with the same attributes and
methods. Hence, the attributes and the associated methods are
defined once for the class rather than separately for each object.

� The instances of a class are those objects belonging to a class.

Attributes

16

OO Concepts - Inheritance

� Subclasses: A class of objects that is defined as a
special case of a more general class (the process of
forming subclasses is called specialization).

� Superclass: A class of objects that is defined as a
general case of a number of special classes (the
process of forming a superclass is called
generalization). All instances of a subclass are also
instances of its superclass.

� Inheritance: By default, a subclass inherits all the
properties of its superclass (or it can redefine some
(or all) of the inherited methods). Additionally, it
may define its own unique properties.

17

� Single inheritance: When a subclass inherits from
no more than one superclass (note: forming class
hierarchies is permissible here).

� Multiple inheritance: When a subclass inherits
from more than one superclass (note: a
mechanism is required to resolve conflicts when
the Superclasses have the same attributes and/or
methods). Due to its complexity, not all OO
languages and database systems support this
concept.

� Overriding: To redefine an inherited property by
defining the same property differently at the
subclass level.

OO Concepts - Inheritance

18

Chapter 9: ObjectChapter 9: Object--Relational Relational
DatabasesDatabases

� Nested Relations

� Complex Types

� Inheritence

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

19

ObjectObject--Relational Data ModelsRelational Data Models
� Extend the relational data model by including

object orientation and constructs to deal with
added data types.

� Allow attributes of tuples to have complex
types, including non-atomic values such as
nested relations.

� Preserve relational foundations, in particular
the declarative access to data, while
extending modeling power.

� Upward compatibility with existing relational
languages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

20

Nested RelationsNested Relations

� Motivation:
� Permit non-atomic domains (atomic ≡ indivisible)

� Example of non-atomic domain: set of integers,or set of tuples
• Composite attributes; multi-valued attributes

� Allows more intuitive modeling for applications with complex
data

� Intuitive definition:
� allow relations whenever we allow atomic (scalar) values —

relations within relations

� Retains mathematical foundation of relational model

� Violates first normal form.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

21

Example of a Nested RelationExample of a Nested Relation

� Example: library information system

� Each book has
� title,

� a set of authors,

� Publisher, and

� a set of keywords

� Non-1NF relation books

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

22

Complex Types and SQL:1999Complex Types and SQL:1999
� Extensions to SQL to support complex

types include:
� Collection and large object types

• Nested relations are an example of collection types

� Structured types

• Nested record structures like composite attributes

� Inheritance

� Object orientation

• Including object identifiers and references

� Our description is mainly based on the
SQL:1999 standard
� Not fully implemented in any database system currently

� But some features are present in each of the major commercial database
systems

• Read the manual of your database system to see what it supports

� We present some features that are not in SQL:1999

• These are noted explicitly

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

23

Collection TypesCollection Types

� Set type (not in SQL:1999)
create table books (

…..
keyword-set setof(varchar(20))
……

)

� Sets are an instance of collection types. Other
instances include
� Arrays (are supported in SQL:1999)

• E.g. author-array varchar(20) array[10]
• Can access elements of array in usual fashion:

• E.g. author-array[1]
� Multisets (not supported in SQL:1999)

• I.e., unordered collections, where an element may occur multiple
times

� Nested relations are sets of tuples
• SQL:1999 supports arrays of tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

24

Structured and Collection TypesStructured and Collection Types

� Structured types can be declared and used in SQL

create type Publisher as
(name varchar(20),
branch varchar(20))

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

� Note: setof declaration of keyword-set is not supported by SQL:1999

� Using an array to store authors lets us record the order of the authors

� Structured types can be used to create tables

create table books of Book
� Similar to the nested relation books, but with array of authors

instead of set

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

25

Structured and Collection Types Structured and Collection Types
(Cont.)(Cont.)

� Structured types allow composite
attributes of E-R diagrams to be
represented directly.

� Unnamed row types can also be used in
SQL:1999 to define composite attributes
� E.g. we can omit the declaration of type Publisher and instead use the

following in declaring the type Book

publisher row (name varchar(20),
branch varchar(20))

� Similarly, collection types allow
multivalued attributes of E-R diagrams to
be represented directly.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

26

Structured Types (Cont.)Structured Types (Cont.)
� We can create tables without creating an intermediate type

� For example, the table books could also be defined as follows:
create table books

(title varchar(20),
author-array varchar(20) array[10],
pub-date date,
publisher Publisher
keyword-list setof(varchar(20)))

� Methods can be part of the type definition of a structured type:

create type Employee as (
name varchar(20),
salary integer)

method giveraise (percent integer)
� We create the method body separately

create method giveraise (percent integer) for Employee
begin
set self.salary = self.salary + (self.salary * percent) / 100;

end

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

27

InheritanceInheritance
� Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

� Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))
create type Teacher
under Person
(salary integer,
department varchar(20))

� Subtypes can redefine methods by using overriding method in place of
method in the method declaration

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

28

Multiple InheritanceMultiple Inheritance
� SQL:1999 does not support multiple inheritance

� If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:

create type Teaching Assistant
under Student, Teacher

� To avoid a conflict between the two occurrences of department we can
rename them

create type Teaching Assistant
under
Student with (department as student-dept),
Teacher with (department as teacher-dept)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

29

Table InheritanceTable Inheritance
� Table inheritance allows an object to have multiple types by allowing an

entity to exist in more than one table at once.

� E.g. people table: create table people of Person

� We can then define the students and teachers tables as subtables of people

create table students of Student
under people

create table teachers of Teacher
under people

� Each tuple in a subtable (e.g. students and teachers) is implicitly present
in its supertables (e.g. people)

� Multiple inheritance is possible with tables, just as it is possible with
types.

create table teaching-assistants of Teaching Assistant
under students, teachers

� Multiple inheritance not supported in SQL:1999

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

30

Table Inheritance: Consistency Table Inheritance: Consistency
Requirements Requirements

� SQL:1999 Consistency requirements on
subtables and supertables.
� Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and
teachers)

� That is, overlap participation is not supported (at most one, cannot
be 2)

� Partial participation is supported (at most one, can be 0)

