ication Programming for
elational Databases

Cyrus Shahabi
Computer Science Department
University of Southern California
shahabi@usc.edu

- Overview
- JDBC Package
- Connecting to databases with JDBC

1 Executing select queries
1 Executing update queries

Overview

- Role of an application: Update databases, extract
info, through:

- User interfaces
1 Non-interactive programs

- Development tools (Access, Oracle):
1 For user Interfaces

1 Programming languages (C, C++, Java,...):
~ User Interfaces
1 Non-Interactive programs

7 More professional

C. Shahabi

Client server architecture

- Database client:

1 Connects to DB to manipulate data:
- Software package
Application (incorporates software package)

- Client software:
1 Provide general and specific capabilities

- Oracle provides different capabilities as
Sybase (its own methods, ...)

lfoLob Client server architecture

~ Client-Server architectures:

o 2 tier
o 3 tier

~ Layer 1:
1 user interface

1 Layer 2:
- Middleware

~ Layer 3:
- DB server

1 Middleware:

- Server for client
1 Client for DB

C. Shahabi

I
User and Application layer

User
Interface

User
Interface

Application

Application

~N pd
N W

G

Middleware

Y

Application

Application

FIGURE 8.1

A variety of client-server architectures for information systems

Client server architecture

- Example: Web interaction with DB

1 Layer 1: web browser
1 Layer 2: web server + cgi program
1 Layer 3: DB server

User and Application Layer
Web
Browser

Middleware

Layer
Database : Database
Application Pl Systeam Application
|
\ -~
Database
Server Layer

Database Database Database
Server Server Server
FIGURE 8.2 '

Architecture of a Web site supported by databases

C. Shahabi

Client server architecture

- Application layer (1):
1 User interfaces
1 Other utilities (report generator, ...)
1 Connect to middleware
1 Can connect to DB too
1 Can have more than one connection

1 Can issue SQL, or invoke methods in lower
layers.

1 Middleware layer (2):
1 More reliable than user applications

Database interaction in Access

~ Direct interaction with DB
1 For implementing applications
- Not professional

1 Developer edition:
- Generates stand alone application

- Access application:
1 GUI + “Visual Basic for Applications” code

Database interaction in Access

- Connection to DB through:

1 Microsoft Jet database engine
- Support SQL access
- Different file formats

1 Other Database Connectivity (ODBC)
Support SQL DBs
Requires driver for each DB server

 Driver allows the program to become a client for
DB

Client behaves Independent of DB server

C. Shahabi

Database interaction in Access

1 Making data source available
to ODBC application:

Install ODBC driver manager
o . P
Install specific driver for a DB FOgrm

server Client Computer

Database should be registered gﬁi?

for ODBC manager Manager

How application works with data
Driver Driver
source:

- Contacts driver manager to
request for specific data source S Coreier

7 Manager finds appropriate driver
for the source Server

Database

FIGURE 8.3
The ODBC architecture for database access

C. Shahabi

Database interaction in Java

- Includes:

1 Java.sql package
- Set of classes

- Supports JDBC (java database connectivity?)
strategy, independent of the DB server

1 Difference between JDBC and ODBC:

JDBC driver manager is part of the application

C. Shahabi

Database interaction in Embedded SQL

- Extension of a language (C++,C) with new commands:
Void addEmployee(char *ssn, char *lasthame,

char *firstname) {

« Exec SQL
— Insert into customer(ssn, lastname, firsthame)
values(:ssn, :lasthame, :firsthame)

Not legal language

Compilation precedes by a translation preprocessor from
embedded SQL into legal C

1 Advantages: ???
~ Disadvantages:

Not portable between database systems
Difficult debugging

C. Shahabi

IDBC: Architecture

- Four Architectural Components:

7 Application (initiates and terminates
connections, submits SQL statements)

1 Driver manager (load JDBC driver)

1 Driver (connects to data source, transmits
requests and returns/translates results and
error codes)

. Data source (processes SQL statements)

C. Shahabi

JDBC Architecture (Contd.)

Four types of drivers:
Bridge:

- Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and
JDBC driver needs to be available on each client.

Direct translation to native APIl, nhon-Java driver:

- Translates SQL commands to native API of data source.
Need OS-specific binary on each client.

Network bridge:

1 Send commands over the network to a middleware
server that talks to the data source. Needs only small
JDBC driver at each client.

Direction translation to native API via Java driver:

- Converts JDBC calis directly to network protocol used
by DBMS. Needs DBMS-specific Java driver at each
client.

JDBC package

. Collection of interfaces and classes:
DriverManager: Loads the driver
Driver: creates a connection
Connection: represents a collection
DatabaseMetaData: information about the DB server
Statement: executing queries
PreparedStatement: precompiled and stored query
CallableStatment: execute SQL stored procedures
ResultSet: results of execution of queries
ResultSetMetaData: meta data for ResultSet

- Reminder: Each JDBC package implements the
interfaces for specific DB server

C. Shahabi

L JDBC, different strategies

- Strategies to USE JDBC i
Program
1 JDBC-ODBC bridge
 Con: ODBC must be e
T U JDBC Packags iJDac Package ! JDBC Package i
JDBC-ODBC Oracle Il?;:tabase
1 JDBC database client ;; .
Cllent

- Con: JDBC driver for it
each server must be
available

7 JDBC middleware client

~ Pro: Only one JDBC
driver is required

Database Access Ore Sybase
- Application does not Computer
need direct connection FICURERA
tO DB (e g appl et) Strategies for implementing JDBC packages
0

Intermediary

C. Shahabi

Connecting with JDBC

- Database connection needs two pieces

1 JDBC package driver class name
- Package driver provide connection to DB

1 URL of the database

JDBC package designator
Location of the server
Database designator, in form of:

« Server name, Database name, Username,
password, ...

* Properties

C. Shahabi

Connecting to DB with JDBC

- Step 1: Find, open and load appropriate
driver
- 1. Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
- 2. Class.forName(“oracle.thin.Driver”);
3. Class.forName(“symantec.dbAnywhere.driver”);
Or:
4. DriverManager.registerDriver(your jdbc driver);

- Informs availability of the driver to “DriverManager”
(registers the driver with DriverManager)

© (Example 1)

C. Shahabi

Connecting to DB with JDBC

~ Step 2: Make connection to the DB
- Connection conn = DriverManager(URL, Properties);
* Properties: specific to the driver
- URL = Protocol + user

* Protocol= jdbc:<subprotocol>:<subname>
— E.g.: jdbc:odbc:mydatabase
— E.g.: jdbc:oracle:thin://oracle.cs.fsu.edu/bighit

(Example 1)

C. Shahabi

Connecting to DB with JDBC

| Step 3: Make Statement object

1 Used to send SQL to DB
- executeQuery(): SQL that returns table
- executeUpdate(): SQL that doesn’t return table
- Execute(): SQL that may return both, or different thing

- Step 4: obtain metadata (optional)
- DatabaseMetaData object
- getTimeDatefunctions: all date and time functions

~ (Example 2)

C. Shahabi

Executing select queries

- Step 5: issue select queries
- Queries that return table as result
1 Using statement object
1 Uses executeQuery() method

1 Return the results as ResultSet object
- Meta data in ResultSetMetaData object

1 Every call to executeQuery() deletes previous
results

© (Example 2)

Executing select queries

| Step 6: retrieve the results of select queries

~ Using ResultSet object
- Returns results as a set of rows
- Accesses values by column name or column number
- Uses a cursor to move between the results
- Supported methods:
- JDBC 1: scroll forward

« JDBC 2: scroll forward/backward, absolute/relative
positioning, updating resulits.

- JDBC 2: supports SQL99 data types(blob, clob,...)

Meta data in ResultSetMetaData:
Number of columns, Column names, column type name,

(Example 2)

C. Shahabi

Matching Java and SOL Data Types

SQL Type

Java class

ResultSet get method

BIT

Boolean

getBoolean()

CHAR

String

getString|()

VARCHAR

String

getString|()

DOUBLE

Double

getDouble()

FLOAT

Double

getDouble()

INTEGER

Integer

getInt()

REAL

Double

getFloat()

DATE

java.sql.Date

getDate()

TIME

java.sql.Time

getTime()

TIMESTAMP

java.sql.TimeStamp

getTimestamp()

C. Shahabi

Executing update queries

- Step 7: issue update queries

1 Queries that return a row count (integer) as result
- Number of rows affected by the query
=1 if error

1 Using statement object
1 Uses executeUpdate() method

- Meta data in ResultSetMetaData object

(Example 3)

Executing update queries

1 Step 8: More Advanced

71 Use PreparedStatement
- faster than regular Statement
- (Example 4)

1 Cursors
forward, backward, absolute/relative positions
(Example 5)

C. Shahabi

Mapping Objects

- To read attributes that are retrieved as
objects:

~ Example: Spatial data types

- (Example 6: it is for point, line and other types are
similar)

- Read “Oracle Spatial — User’s Guide and Reference”
« Chapter 2 for geometry types
« Chapter 9-14 for geometry functions

- Read “Oracle Spatial APl Document” for reading geometry
types in Java

C. Shahabi

