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Overview

- Role of an application: Update databases, extract
info, through:

- User interfaces
1 Non-interactive programs

- Development tools (Access, Oracle):
1 For user Interfaces

1 Programming languages (C, C++, Java,... ):
~ User Interfaces
1 Non-Interactive programs

7 More professional
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Client server architecture

- Database client:

1 Connects to DB to manipulate data:
- Software package
Application (incorporates software package)

- Client software:
1 Provide general and specific capabilities

- Oracle provides different capabilities as
Sybase (its own methods, ...)




lfoLob Client server architecture

~ Client-Server architectures:

o 2 tier
o 3 tier

~ Layer 1:
1 user interface

1 Layer 2:
- Middleware

~ Layer 3:
- DB server

1 Middleware:

- Server for client
1 Client for DB
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A variety of client-server architectures for information systems




Client server architecture

- Example: Web interaction with DB

1 Layer 1: web browser
1 Layer 2: web server + cgi program
1 Layer 3: DB server

User and Application Layer
Web
Browser

Middleware

Layer
Database : Database
Application Pl Systeam Application
|
\ -~
Database
Server Layer

Database Database Database
Server Server Server
FIGURE 8.2 '

Architecture of a Web site supported by databases
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Client server architecture

- Application layer (1):
1 User interfaces
1 Other utilities (report generator, ...)
1 Connect to middleware
1 Can connect to DB too
1 Can have more than one connection

1 Can issue SQL, or invoke methods in lower
layers.

1 Middleware layer (2):
1 More reliable than user applications




Database interaction in Access

~ Direct interaction with DB
1 For implementing applications
- Not professional

1 Developer edition:
- Generates stand alone application

- Access application:
1 GUI + “Visual Basic for Applications” code




Database interaction in Access

- Connection to DB through:

1 Microsoft Jet database engine
- Support SQL access
- Different file formats

1 Other Database Connectivity (ODBC)
Support SQL DBs
Requires driver for each DB server

 Driver allows the program to become a client for
DB

Client behaves Independent of DB server
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Database interaction in Access

1 Making data source available
to ODBC application:

Install ODBC driver manager
o . P
Install specific driver for a DB FOgrm

server Client Computer

Database should be registered gﬁi?

for ODBC manager Manager

How application works with data
Driver Driver
source:

- Contacts driver manager to
request for specific data source S Coreier

7 Manager finds appropriate driver
for the source Server

Database

FIGURE 8.3
The ODBC architecture for database access
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Database interaction in Java

- Includes:

1 Java.sql package
- Set of classes

- Supports JDBC (java database connectivity?)
strategy, independent of the DB server

1 Difference between JDBC and ODBC:

JDBC driver manager is part of the application
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Database interaction in Embedded SQL

- Extension of a language (C++,C) with new commands:
Void addEmployee( char *ssn, char *lasthame,

char *firstname) {

« Exec SQL
— Insert into customer( ssn, lastname, firsthame )
values( :ssn, :lasthame, :firsthame )

Not legal language

Compilation precedes by a translation preprocessor from
embedded SQL into legal C

1 Advantages: ???
~ Disadvantages:

Not portable between database systems
Difficult debugging
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IDBC: Architecture

- Four Architectural Components:

7 Application (initiates and terminates
connections, submits SQL statements)

1 Driver manager (load JDBC driver)

1 Driver (connects to data source, transmits
requests and returns/translates results and
error codes)

. Data source (processes SQL statements)
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JDBC Architecture (Contd.)

Four types of drivers:
Bridge:

- Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and
JDBC driver needs to be available on each client.

Direct translation to native APIl, nhon-Java driver:

- Translates SQL commands to native API of data source.
Need OS-specific binary on each client.

Network bridge:

1 Send commands over the network to a middleware
server that talks to the data source. Needs only small
JDBC driver at each client.

Direction translation to native API via Java driver:

- Converts JDBC calis directly to network protocol used
by DBMS. Needs DBMS-specific Java driver at each
client.



JDBC package

. Collection of interfaces and classes:
DriverManager: Loads the driver
Driver: creates a connection
Connection: represents a collection
DatabaseMetaData: information about the DB server
Statement: executing queries
PreparedStatement: precompiled and stored query
CallableStatment: execute SQL stored procedures
ResultSet: results of execution of queries
ResultSetMetaData: meta data for ResultSet

- Reminder: Each JDBC package implements the
interfaces for specific DB server
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L JDBC, different strategies

- Strategies to USE JDBC i
Program
1 JDBC-ODBC bridge
 Con: ODBC must be e
T U JDBC Packags iJDac Package ! JDBC Package i
JDBC-ODBC Oracle Il?;:tabase
1 JDBC database client ;; .
Cllent

- Con: JDBC driver for it
each server must be
available

7 JDBC middleware client

~ Pro: Only one JDBC
driver is required

Database Access Ore Sybase
- Application does not Computer
need direct connection FICURERA
tO DB (e g appl et) Strategies for implementing JDBC packages
0

Intermediary
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Connecting with JDBC

- Database connection needs two pieces

1 JDBC package driver class name
- Package driver provide connection to DB

1 URL of the database

JDBC package designator
Location of the server
Database designator, in form of:

« Server name, Database name, Username,
password, ...

* Properties
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Connecting to DB with JDBC

- Step 1: Find, open and load appropriate
driver
- 1. Class.forName( “sun.jdbc.odbc.JdbcOdbcDriver” );
- 2. Class.forName( “oracle.thin.Driver” );
3. Class.forName( “symantec.dbAnywhere.driver” );
Or:
4. DriverManager.registerDriver( your jdbc driver );

- Informs availability of the driver to “DriverManager”
(registers the driver with DriverManager)

© (Example 1)
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Connecting to DB with JDBC

~ Step 2: Make connection to the DB
- Connection conn = DriverManager( URL, Properties);
* Properties: specific to the driver
- URL = Protocol + user

* Protocol= jdbc:<subprotocol>:<subname>
— E.g.: jdbc:odbc:mydatabase
— E.g.: jdbc:oracle:thin://oracle.cs.fsu.edu/bighit

(Example 1)
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Connecting to DB with JDBC

| Step 3: Make Statement object

1 Used to send SQL to DB
- executeQuery(): SQL that returns table
- executeUpdate(): SQL that doesn’t return table
- Execute(): SQL that may return both, or different thing

- Step 4: obtain metadata (optional)
- DatabaseMetaData object
- getTimeDatefunctions: all date and time functions

~ (Example 2)
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Executing select queries

- Step 5: issue select queries
- Queries that return table as result
1 Using statement object
1 Uses executeQuery() method

1 Return the results as ResultSet object
- Meta data in ResultSetMetaData object

1 Every call to executeQuery() deletes previous
results

© (Example 2)




Executing select queries

| Step 6: retrieve the results of select queries

~ Using ResultSet object
- Returns results as a set of rows
- Accesses values by column name or column number
- Uses a cursor to move between the results
- Supported methods:
- JDBC 1: scroll forward

« JDBC 2: scroll forward/backward, absolute/relative
positioning, updating resulits.

- JDBC 2: supports SQL99 data types(blob, clob,...)

Meta data in ResultSetMetaData:
Number of columns, Column names, column type name,

(Example 2)
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Matching Java and SOL Data Types

SQL Type

Java class

ResultSet get method

BIT

Boolean

getBoolean()

CHAR

String

getString|()

VARCHAR

String

getString|()

DOUBLE

Double

getDouble()

FLOAT

Double

getDouble()

INTEGER

Integer

getInt()

REAL

Double

getFloat()

DATE

java.sql.Date

getDate()

TIME

java.sql.Time

getTime()

TIMESTAMP

java.sql.TimeStamp

getTimestamp()
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Executing update queries

- Step 7: issue update queries

1 Queries that return a row count (integer) as result
- Number of rows affected by the query
=1 if error

1 Using statement object
1 Uses executeUpdate() method

- Meta data in ResultSetMetaData object

(Example 3)




Executing update queries

1 Step 8: More Advanced

71 Use PreparedStatement
- faster than regular Statement
- (Example 4)

1 Cursors
forward, backward, absolute/relative positions
(Example 5)
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Mapping Objects

- To read attributes that are retrieved as
objects:

~ Example: Spatial data types

- (Example 6: it is for point, line and other types are
similar)

- Read “Oracle Spatial — User’s Guide and Reference”
« Chapter 2 for geometry types
« Chapter 9-14 for geometry functions

- Read “Oracle Spatial APl Document” for reading geometry
types in Java
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