107

D1-82-0989

ORGANIZATION AND MAINTENANCE OF LARGE
ORDERED INDICES
by
R. Bayer
and

E. McCreight

Mathematical and Information Sciences Report No., 20
Mathematical and Information Sciences Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES

July 1970

ABSTRACT

Organization and maintenance of an index for a dynamic random
access file is considered. It is assumed that the index must be kept
on some pseudo random access backup store like a disc or a drum. The
index organization described allows retrieval, insertion, and deletion
of keys in time proportional to logkI where I 1is the size of the
index and k is a device dependent natural number such that the per-
formance of the scheme becomes near optimal. Storage utilization is at
least 50% but generally much higher. The pages of the index are organized
in a special data-structure, so-called B-trees. The scheme is analyzed,
performance bounds are obtained, and a near optimal k is computed.
Experiments have been performed with indices up to 100,000 keys. An
index of size 15,000 (100,000) can be maintained with an average of 9

(at least 4) transactions per second on an IBM 360/44 with a 2311 disc.
Key Words and Phrases: Data structures, random access files, dynamic
index maintenance, key insertion, key deletion, key retrieval, paging,

information retrieval.

CR Categories: 3,70, 3.73, 3.74.

10

109

1. Introduction

In this paper we consider the problem of organizing and maintaining
an index for a dynamically changing random access file. By an index
we mean a collection of index elements which are pairs (x,a) of fixed
size physically adjacent data items, namely a key x and some associated
information «a. The key x identifies a unique element in the index,
the associated information is typically a pointer to a record or a
collection of records in a random access file. For this paper the

associated information is of no further interest.

We assume that the index itself is so voluminous that only rather
small parts of it can be kept in main store at one time. Thus the bulk
of the index must be kept on some backup store. The class of backup
stores considered are pseudo random access dgvices which have a rather
long access or wait time--as opposed to a true random access device like
core store--and a rather high data rate once the transmission of physically
sequential data has been initiated. Typical pseudo random access devices

are: fixed and moving head discs, drums, and data cells,

Since the data file itself changes, it must be possible not only ¢
to search the index and to retrieve elements, but also to delete and to
insert keys——more accurately index elements-——economically. The index
organization described in this paper always allows retrieval, insertion,
and deletion of keys in time proportional to logkI or better, where I
is the size of the index, and k 1is a device dependent natural number

which describes the page size such that the performance of the maintenance

110

and retrieval scheme becomes near optimal.

" In more illustrative terms theoretical analysis and actual experi-
ments show that it is possible to maintain an index of size 15000
with an average of 9 retrievals, insertions, and deletions per second
in real time on an IBM 360/44 with a 2311 disc as backup store. According
to our theoretical analysis, it should be possible to maintain an
index of size 1500000 with at least two transactions per

second on such a configuration in real time.

The index is organized in pages of fixed size capable of holding up
to 2k keys, but pages need only be partially filled. Pages are the

blocks of information transferred between main store and backup store.

The pages themselves are the nodes of a rather specialized tree,
a so-called B~tree, described in the next section. In this paper these
trees grow and contract in only one way, namely nodes split off a brother,
or two brothers are merged or ‘catenated" into a single node. The splitting
and catenation procesées are initiated at the leaves only and propagate
toward the root. If the root node splits, a new root must be introduced,
and this is the only way in which the height of the tree can increase.

The opposite process occurs if the tree contracts.

There are, of course, many competitive schemeé, e.g., hash-coding,
for organizing an index. For a large class of applications the scheme

presented in this paper offers significant advantages over others:

i)

ii)

iii)

iv)

Storage utilization is at least 50% at any time and should

be considerably better in the average.

Storage is requested and released as the file grows and con-
tracts. There is no congestion problem or degradation of

performance if the storage occupancy is very high.

The natural order of the keys is maintained and allows pro-
cessing based on that order like: find predecessors and

successors; search the file sequentially to answer queries;
skip, delete, retrieve a number of records starting from a

given key.

If retrievals, insertions, and deletions come in batches,
very efficient essentially sequential processing of the index
is possible by presorting the transactions on their keys

and by using a simple prepaging algorithm.

111

11

2. B-Trees
Def. 2.1: Let h 2 0 be an integer, k a natural number. A directed
tree T is in the class 7T(k,h) of B-trees if T is either empty (h=0)

or has the following properties:

i) Each path from the root to any leaf has the same length h,

also called the height of T, i.e., h = number of nodes in path.

ii) Each node except the root and the leaves has at least k + 1

sons. The root is a leaf or has at least two sons.
iii) Each node has at most 2k + 1 sons,

Number of Nodes in B-Trees: Let N_, and N be the minimal and
min max

maximal number of nodes in a B-tree T ¢ 1(k,h). Then

N =142 ((k+1)0 + D! 4+ L+ (k+1)h_2> =1 +—§- ((k+l)h_1—l)

for h 2 2. This also holds for h = 1. Similarly one obtains

h-1
i 1 h
N = g @ent = ((zk+1) -1); 021

max .
i=0

Upper and lower bounds for the number N(T) of nodes of T e 1(k,h) are

given by:
N(T) =0 4if T e t(k,0); 2.1
1+ 2 (0D) Snem S5 (@e)P-1) othervise.

Note that the classes t1(k,h) need not be disjoint.

3.

The Data Structure and Retrieval Algorithm

To repeat, the pages on which the index is stored are the nodes of

a B-tree

T ¢ t(k,h) and can hold up to 2k keys. In addition the

data structure for the index has the following properties:

i)

ii)

iii)

Each page holds between k and 2k keys (index elements)
except the root page which may hold between 1 and 2k

keys.

Let the number of keys on a page P, which is not a leaf, be

L. Then P has 2 + 1 sons.

Within each page P the keys are sequential in increasing
order: xi, Kyy wves Xz; k £ 2 2 2k except for the root page
for which 1 2 & = 2k. Furthermore, P contains & + 1
pointers Pgs> Pys +-e>» pz to thesons of P. On leaf pages

these pointers are undefined. Logically a page is then

organized as shown in Figure 1.

Po

X1

7777 /

aq P1 Xo 0y Py . X, oy P, unuch
//%deL

LLLLLL

iv)

Figure 1. Organization of a Page

The ai are the associated information in the index element
(xi,ai). The triple (xi’ai’pi) or--omitting di--thc pair

(Xi’pi) is also called an cntry.

Let P(pi) be the page to which Py points, let K(pi)

113

114

be the set of keys on the pages of that maximal subtree of
which P(pi) is the root. Then for the B-trees considered here

the following conditions shall always hold:

(Vy € K(po»(y < %) (3.1
(vy e k() Gy <y <xy)5 &= L,2,...0m1 (3.2)
(vy e k) Gxy < 9 ‘ (3.9

Figure 2 is an example of a B-tree in 1(2,3) satisfying all the above
conditions. 1In the figure the @, are not shown and the page pointers
are represented graphically. The boxes represent pages and the numbers

outside are page numbers to be used later.

Retrieval Algorithm: The flowchart in Figure 3 is an algorithm for

retrieving a key y. Let p,r,s be pointer variables which can also
assume the value "undefined" denoted as u. r points to the root and is
u if the tree is empty, ‘s does not serve any purpose for retrieval,
but will be used in the insertion algorithm. Let P(p) be the page to
which p 1is pointing, then xl,...,xk are the keys in P(p) and

Pgse-esPy the page pointers in P(p).

The retrieval algorithm is simple logically, but to program it for
a computer one would use an efficient technique, e.g., a binary search,

to scan a page.

Cost of Retrieval: Let h be the height of the page tree. Then at

most h pages must be scanned and therefore fetched from backup store

to retrieve a key y. We will now derive bounds for h for a given index

115

X9puyl UR 103 (7)1 UT 21n3Idniig eieq v g 2and1g
Gl vl €l 2l
L
oz 61 8L L
8
GC vZ €T T ol

6 9

ALY Vg
€
Sud

S-—u

P-py

Figure 3.

Retrieval Algorithm

11¢

of size I. The minimum and maximum number I and I of keys
min max

in a B-tree of pages in 1(k,h) are:

h-1
14+ k<2 (el 2L '1> =20 -1

-~
i

min
max

h
o ferent-1) h
1 = 2k<——————2k > = (2k+1) 1

This is immediate from (2.1) for h 2> 1. Thus we have as sharp bounds

for the height h:

I+1
< < Jnaiiviie >
1og2k+1(1+1) <h 21+ logk+1< 5 > for 121,

(3.1)

=
]

0 for I = 0.

117

4. Key Insertion

The algorithm in Figure 4 inserts a single key y into an index
described in Section 3. The variable s 1is a page pointer set by the
retrieval algorithm pointing to the last page that was scanned or having

the value u if the page tree is empty.

Splitting a Page: If a page P 1in which an entry should be inserted
is already full, it will be split into two pages. Logically first insert
the entry into the sequence of entries in P--which is assumed to be in

main store--resulting in a sequence

s (5P)5 (%,5P,) 545 (%)

2k+1’p2k+1

Now put the subsequence po,(xl,pl),...,(xk,pk) into P and introduce

a new page P' to contain the subsequence

Pict1> Begp 2 Prean) » g aaPreg) oo s (R 0Py) -

Let Q be the father page of P. Insert the entry (xk+l,p'), where

p' points to P', into Q. Thus P' becomes a brother of P.

Inserting (xk+1,p') into Q may, of course, cause Q to split
too, and so on, possibly up to the root. If the splitting page P is
the root, then we introduce a new root page Q containing p,(xk+l,p')

where p points to P and p' to P'.

Note that this insertion process maps B-trees with parameter k
into B-trees with parameter k, and preserves properties (3.1), (3.2),

and (3.3).

118

To illustrate the insertion process, insertion of key 9 into the

tree in Figure 5 with parameter k = 2 results in the tree in Figure

2.

split page
routine
for P(s)

S

apply retrieval
algorithm for
key y

YES

found y?
NO
s=u?
NO
is P(s) full?

NO

insert entry
(y,w)in P(s)

STOP

YES

YES

tree is empty,
create root
page with y

(1) Key vy

Figure 4.

successful
insertion

'

Insertion Algorithm

is already in index, take appropriate action.

118

12

(2°2)2 Ut 2InI0n13S Xopur

"¢ 2and1g

ST vZ €T Tz

0C 61 81 LI

Sl yLEL T

o]

8 L 9

é

8

L

S 1z S o djecd

A

121

5. Cost of Retrievals and Insertions

To analyze the cost of maintaining an index and retrieving keys
we need to know how many pages must be fetched from the backup store
into main store and how many pages must be written onto the backup store.
For our analysis we make the following assumption: Any page, whose content
is examined or modified during a single retrieval, insertion, or deletion
of a key, is fetched or paged out respectively exactly once. It will
become clear during the course of this paper that a paging area to hold

h + 1 pages in main store is sufficient to do this.

Any more powerful paging scheme, like, e.g., keeping the root page
permanently locked in main store, will, of course, decrease the number
of pages which must be fetched or paged out. We will not, however,

analyze such schemes, although we have used them in our experiments.

- . £
Denote by fmin (fmax) the minimal (maximal) number of pages

fetched, and by W (wmax) the minimal (maximal) number of pages

in

written,

Cost of Retrieval: From the retrieval algorithm it is clear that for

retrieving a single key we get

Cost of Insertion: For inserting a single key the least work is required

if no page splitting occurs, then

12

Most work is required if all pages in the retrieval path including
the root page split into two. Since the retrieval path contains h

pages and we have to write a new root page, we get:
f =h; w =2h+ 1

Note that h always denotes the height of the old tree. Although
this worst bound is sharp, it is not a good measure for the amount of

work which must generally be done for inserting one key.

If we consider an index in which keys are only retrieved or inserted,
but no keys are deleted, then we can derive a bound for the average amount

of work to be done for building an index of 1 keys as follows:

Each page split causes one (or two if the root page splits) new
pages to be created. Thus the number of page splits occurring in building
an index of 1 items is bounded by n(I) - 1, where n(I) is the number of
pages in the tree. Since each page has at least k keys, except the root page

which may have only 1, we get: n(I) =< L ; 1 + 1, Each single page split

causes at most 2 additional pages to be written. Thus the average
number of pages written per single key insertion due to page splitting

is bounded by

@@ -1 -2

=

A page split does not require any additional page retrievals. Thus in

the average for an index without deletions we get for a single insertion:

6. Deletion Process

In a dynamically changing index it must be necessary to delete
keys. The algorithm of Figure 6 deletes one key y from an index and
maintains our data structure properly. It first locates the key, say
;- To maintain the data structure properly, v is deleted if it is
on a leaf, otherwise it must be replaced by the smallest key in the
subtree whose root is P(pi). This smallest key is found by going
from P(pi) along the p, pointers to the leaf page, say L, and
taking the first key in L. Then this key, say Xy, is deleted from
L. As a consequence L may contain fewer than k keys and a catena-

tion or underflow between L and an adjacent brother is performed.

Catenation: Two pages P and P' are called adjacent brothers if
they have the same father Q and are pointed to by adjacent pointers
in Q. P and P' can be catenated, if together they have no more than

2k keys, as follows: The three pages of the form
Q.

1
...,(yj_l,p).(yj,p),(yj+1,pj+1)...,

P pr
Youn

)
Po» (Xpsp)seenn (40,0 Pos (X, 1Py

can be replaced by two pages of the form:

Q
---,(Y'_I,P):(Yj+1,Pj+1),---

1 ‘

[PO,(XI,Pl)x-~-,(XE,PQ),(yj,Pé):(Xz+1:PZ+]),---

123

As a consequence of deleting the entry (yj,p') from Q it is now
possible that Q contains fewer than k keys and special action must
be taken for . This process may propagate up to the root of the

tree.

Underflow: If the sum of the number of keys in P and P' dis greater
than 2k, then the keys in P and P' can be equally distributed,

the process being called an underflow, as follows:

Perform the catenation between P and P' resulting in too large
a P, This is possible since P is in main store. Now split P
"

in the middle" as described in Section 4 with some obvious minor modi-

fications.

Note that underflows do not propagate. Q is modified, but the

number of keys in it is not changed.

To illustrate the deletion process consider the index in Figure 2.

Deleting key 9 results in the index in Figure 5.

12

apply retrieval
algorithm for y

y found?
YES

y on leaf
page?

NO

NO

YES

retrieve pages
down to leaf
along P, pointers

;

replace y by
first key on
leaf page

delete first
key on leaf

delete y
| from leaf

if necessary,
perform
catenations
and underflow

125

deletion

(1) The key to be deleted is not in index, take appropriate action.

Figure 6.

Deletion Algorithm

7. Cost of Deletions

For a successful deletion, i.e., if the key y to be deleted is in
the index, the least amount of work is required if no catenations or

underflows are performed and y is in a leaf. This requires:

f . =h; w_o. =1;
min min

If y is not in a leaf and no catenations or underflows occur,

then

A maximal amount of work must be done if all but the first two pages
in the retrieval path are catenated, the son of the root in the retrieval

path has an underflow, and the root is modified. This requires:

£ = 2h - 1; w =h + 1;
max max

As in the case of the insertion process the bounds obtained are
sharp, but very far apart and assumed rarely except in pathological
examples. To obtain a more useful measure for the average amount of
work necessary to delete a key, let us consider a '"pure deletion process'
during which all keys in an index I are deleted, but no keys are

inserted.

Disregarding for the moment catenations and underflows we may get
f1 = h and w, = 2 for each deletion at worst. But this is the best

bound obtainable if one considers an example in which keys are always

deleted from the root page.

12¢

127

Each deletion causes at most one underflow, requiring f, = 1

additional fetches and w, = 2 additional writes.
The total number of possible catenations is bounded by

I -1
I

n(I) - 1, which is at most Each catenation causes 1

additional fetch and 2 additional writes, which results in an average

f-L(Bh) oL
3 I\ k k
o 2 Isly 2
3'I(k> k

Thus in the average we get:

1
£ o= f v f,+E ch+ 14

2 2
= + + < + + == 4 4+ =
w Wl w W3 2 2 i .

~

8. Page Overflow and Storage Utilization

In the scheme described so far utilization of back~up store
may be as low as 507 in extreme cases--disregarding the root page-—-if
all pages contain only k keys. This could be improved by avoiding

certain page splits.

An overflow between two adjacent brother pages P and P' can be
performed as follows: Assume that a key must be inserted in P and
P is already full, but P' is not full. Then the key is inserted
into the key~sequence in P and an underflow as described in Section 6
between the resulting sequence and P' is performed. This avoids the
need to split P into two pages. Thus a page will be split only if

both adjacent brothers are full, otherwise an overflow occurs.

In an index without deletions overflows will increase the storage
utilization in the worst cases to about 66%. If both insertions and
deletions occur, then the storage utilization may of course again be as
low as 50%. For most practical applications, however, storage utilization

should be improved appreciably with overflows.

One could, of course, consider a larger neighborhood of pages than
just the adjacent brothers as candidates for overflows, underflows,

and catenations and increase the minimal storage occupancy accordingly.

Bounds for the cost of insertions for a scheme with overflows are

easily derived as:

min min

max

For a pure insertion process one obtains as bounds for the average

cost:

=

2
fa <h+ 2+ E; wa < 3+

It is easy to construct examples in which each insertion causes an
overflow, thus these bounds cannot be improved very much without special

assumptions about the insertion process.

129

9. Maintenance Cost for Index with Insertions and Deletions

’ The main purpose of this paper is to develop a data structure which
allows economical maintenance of an index in which retrievals, insertions,
and deletions must be done in any order. We will now derive bounds on

the processing cost in such an environment.

The derivation of bounds for retrieval cost did not make any assump-
tions about the order of insertions or deletions, so they are still valid.
Also, the minimal and maximal bounds for the cost of insertions and dele-
tions were derived without any such assumptions and are still valid. The
bounds derived for the average cost, however, are no longer valid if

insertions and deletions are mixed.

The following example shows that the upper bounds for the average
cost cannot be improved appreciably over the upper bounds of the cost

derived for a single retrieval or deletion.

Example: Consider the trees T, in Figure 2 and T, in Figure 5.

Deleting key 9 from T2 leads to Ts’ and inserting key 9 in T5
leads back to T2. Consider a sequence of alternating deletions and

insertions of key 9 being applied starting with T,.
Case 1: No page overflows, but only page splits occur:

i) Each deletion of key 9 from T, requires:
3 retrievals to locate key 9, namely pages 1, 2, 6.
1 retrieval of brother 5 of page 6 to find out that

pages 5 and 6 can be catenated.

131

2 pages, namely 5 and 2 are modified and must be written.

Pages 6 and 3 are deleted from the tree T,.

2
[=}
2]
h
]

5 and w=2, But £=5=2h-1=f and
: max

ii) Each insertion of key 9 into T, requires:

2 retrievals to locate slot for 9 in page 5.
5 pages mustbe written, namely 1, 2, 3, 5, 6.

Thus

=
1
ul
"
B
+
=
I
€

Case 2: Consider a scheme with page overflows.

i) Deletion of key 9 leads to the same results as in Case 1.

ii) Insertion of key 9 requires:
2 retrievals to locate slot for 9 on page 5.
2 retrievals of brothers 4 and 7 of 5 to find out that
5 must be split.
5 pages must be written as in Case 1.
Thus:

f=4=23n-~-2

n
[

max

w=5=72h+1

(1]
€

max

Analogous examples can be constructed for arbitrary h and k.

From the analysis it is clear that the performance of our scheme depends

on the actual sequence of insertions and deletions. The interference

between insertions and deletions may degrade the performance of the
scheme as opposed to doing insertions or deletions only. But even in

the worst cases this interference degrades the performance at most by a

factor of 3.

It is an open question how important this interference is in any
actual applications and how relevant our worst case analysis is.
Although the derivable cost bounds are worse, the scheme with overflows

performed better in our experiments than the scheme without overflows.

133

£9) B 3O UOTIST®Q 10 ‘UOTIISSUI ‘TRASTIISDY STJuUFS ® I0J $I1S0D jJo B[qel /[dInT1I
M 103 °TqeuTeiqo punoq iaddn 3seq : n
sa8ed Jo 9s13-g Jo adjouexed : A
@313-g 3o y81ay : y
19§ X3pufl 3Jo 32ls ! I
ualjtam so8ed jJo xsqunu : m
psyo393 saded jo isqunu : 3
T+4Yz =n T+y=mn T+Ug =0 T+ =2 T+y=mn T+U =4 0=n
Xeu
¢- 4 =3 T-4 =3 Yys=73 T-uUe =3 T-4 =3 =7 y=3
T+uzsa T+ESNST-Y T+uz A diegsm diysm Ai1sn 0=n 1aded
4 4 4 ut pSATaASPp
- 53 T-u 33 u=3 F+z+uss |T+T4+u>g ys=3 us3 se a8e1sae
T =n T==s T=nn IT=n I1=mn IT=n 0=n
utw
=73 =3 y=7z U=13 U=1 =3 I1=3
MOTJI2A0 | SmOTJIIdA0 1IN0 MOTIIBA0 MOTIISA0 | SMOTIisa0 Ino SMOTJIADA0 | TeadTaIax
Yita | -Yy3Ta 10 yaTA noyira Yirs 3ng | -yaTa 10 Yra jnoyyta pue
¢uoT3aTap SsuoTjaasur ¢SUOT3STap { ‘Suoraa[sp Ino ¢8U0T3I9SUT | SuoTIsTap Ino
Y3ITH XOpUT YITM XSpUT YITA X9pUT —UITM XOPUT { INOYITA XIPUT -Uy3tM X3IpuTt

UT uoT3I3SUT

UT UOT3IDTOPp

Ul UOT3ABSUT

Ul UOTIIISUT

uy UoFISTIPp

Uf UOF3IISSUT

16. Choice of k
The performance of our scheme depends on the parameter k. Thus
care should be taken in choosing k to make the performance as good as

possible.

To obtain a very rough approximation to the performance of the

scheme we make the following assumptions:

i) The time spent for each page which is written or fetched can

be expressed in the form:

a + B(2k+1) + v 2n(vk+l)

a: fixed time spent per page, e.g., average disc seek time
plus fixed CPU overhead, etc.

B: transfer time per page entry.

y: constant for the logarithmic part of the time, e.g.,
for a binary search.

v: factor for average page occupancy, 1 X v 5 2,

We assume that modifying a page does not require moving keys within
a page, but that the necessary channel subcommands are generated to
write a page by concatenating several pieces of information in main
store. This is the reason for our assumption that fetching and writing

a page takes the same time.

i) The average number of pages fetched and written per single
transaction in an environment of mixed retrievals, insertions,

and deletions is approximately proportional-—-see Figure 7--to

h, say &h. The total time T spent per transaction can

then be approximated by:

T = 6h(a+s(2k+l)+y 2n(vk+l» . Approximating h itself by:

h ~ logvk+1(1+l) where I is the size of the index, we get:

Ta Ta =6 logvk+1(1+l)(u+8(2k+l)+7 2n(vk+l»

Now one easily obtains the minimum of Ta if k 1is chosen such

that:

- %«w+nzn@ma)-(n£@ = £(k,v)
Neglecting CPU time, k is a number which is characteristic for
the device used as backup store. To obtain a near optimal page size

for our test examples we assumed o = 50 ms and B = 90 us. According
to the table in Figure 8 an acceptable choice should be 64 < k < 128.
For reasons of programming convenience we chose k = 60 resulting in a

page size of 120 entries.

k £(k,1) £(k,2)
2.000060E+29 1.591675+00 3.0R7107e00
4.00000E+00 7.004376+50 L077507+0]

£.0000G+0
1.60000R+01
3.200000+01

G U0000R+01 I,1307
1,286007+C2 NL062317+
2.R0000F+02 2,23022
2 C.37752°%
03 1.215287
'3 2.71560¢C
3 5.805L7 74"
3 1,312000+7°5
th T.052355M40R
b 6.158777+0
1.322587+0C
Figure 8. The Function

2,285300+91
£.3322021+01
1.658700E+402

Choice of k

1.375720+2¢6

fk,v)

dta

L1 ET e
LOIThTIEM
LBGETLESlD
A701050+07?
Tiravirens

b}

I A &)

LY LI
AR Iy A ol g

TN
LIETEATe
Lon0Tere
SR3HTTeNL
pocITrenn
Al Ak S
fLfF100nrens

T.413n0 7400

R I B e

for Optimal

135

The size of the index which can be stored for

tree of a certain height can be seen from Figure 9.

Height of
page tree

LN

Figure 9.

Minimum
index size

1

121
7441
453961

Height of Page Tree and
Index Size

k = 60

in a page

Maximum
index size

120

14640
1771560
214358880

11. Experimental Results

The algorithms presented here were programmed and their performance
measured during various experiments. The programs were run
on an IBM 360/44 computer with a 2311 disc unit as a backup store, For
the index element size chosen (14 8-bit characters) and index size
generally used (about 10,000 index elements), the average access mechanism
delay for this unit is about 50 ms, after which information transfer
takes place at the rate of about 90 us per index element. From these two
parameters, our analysis predicts an optimal page size (2k) on the order

of 120 index elements.

The programming included a simple demand paging scheme to take advan-
tage of available core storage (about 1250 index elements' worth) and thus
to attempt to reduce the number of physical disc operations. In the
following section by virtual disc read we mean a request to the paging
scheme that a certain disc page be available in core; a virtual disc
read will result in a physical disc read only if there is no copy of
the requested disc page already in the paging area of core storage. A

virtual disc write is defined analogously.

At the time of this writing ten experiments had been performed.
These experiments were intended to give us an idea of what kind of
performance to expect, what kind of storage utilization to expect, and

so forth. For us the specification of an experiment consists of choosing

1) whether or not to permit overflows on insertion,

2) a number of index elements per page, and

137

3) a sequence of transactions to be made against an initially

empty index.

At several points during the performance of an experiment certain per-
formance variables are recorded. From these the performance of the
algorithms according to various performance measures can be deduced; to

wit

1) 7% storage utilization

2) average number of virtual disc reads/transaction

3) average number of physical disc reads/transaction

4) average number of virtual disc writes/insertion or deletion
A5) average number of physical discvwrites/insertion or deletion

6) average number of transactions/second.

We now summarize the experiments. Each experiment was divided into
several phases, and at the end of .each of these the performance variables

were measured. Phases are denoted by numbers within parentheses.

El: 25 elements/page, overflow permitﬁéd.
(1) 10000 insertions sequential by key,‘
€2) 50 insertioms, 50 retrievals, and 100 deletions uniformly
random in the key space.
E2: 120 elements/page; otherwise identical to El.
E3: 250 elements/page; otherwise identical to El.
E4: 120 elements/page, overflow permitted.
(1) 10000 insertions sequential by key,

(2) 1000 retrievals uniformly random in key space,

13

E5:

E6:

E7:

E9:

E10:

3
120
1
(2)
(&)

10000 sequential deletions.
elements/page, overflow not permitted.

5000 insertions uniformly random in key space,
1000 retrievals uniformly random in key space,

5000 deletions uniformly random in key space.

Overflow permitted; otherwise identical to ES5.

120
1
(2)

250

120

()

(2)

(3)

(4)

elements/page, overflow permitted.
5000 insertions sequential by key,

6000 each insertions, retrievals, and deletions uniformly
random in key space.

elements/page; otherwise identical to ES8.

elements/page, overflow permitted.
100,000 insertions sequential by key,
1000 each insertions, deletions, and retrievals uniformly
random in key space,
100 group retrievals uniformly random in key space, where
a group is a sequence of 100 consecutive keys (statistics
on the basis of 10000 transactions),
10000 insertions sequential by key, to merge uniformly

with the elements inserted in phase (1).

139

% Storage

used VR/T* PR/T VW/I or D PW/I or T/Sec.
E1(D) 99.8 2.2) 2.3 .04 66.1
E1(2) 91.5 4.4 1.62 2.7 1.5 6.6
E2(1) 99.2 1.0 0 1.0 .008 94.5
E2(2) 87.3 2.5 1.15 1.3 1.1 6.7
E3(1) 97.6 1.0 0 1.0 .004 100.0
E3(2) 84.7 2.4 1.08 1.3 1.1 5.2
E4(1) 99.2 1.0 0 1.0 .008 94.5
E4(2) 99.2 2.0 —— — — 19.5
E4(3) — 2.0 .01 2.0 0 74,1
E5 (1) 67.1 1.0 .55 1.0 .56 17.0
E5(2) 67.1 2.0 .83 -— -— 18.2
E5(3) - 4.0 .68 2.2 .65 12.4
E6(1) 86.7 1.1 .55 1.1 .54 17.1
E6(2) 86.7 2.0 .79 — — 24.;
E6(3) -— 4.0 .65 2.2 .62 13.4
E7(1) 96.9 1.0] 1.0 .008. 111.9
E7(2) 76.8 2.3 .83 1.3 .88 . 13.1
E8(1) 84.5 1.3 .87 1.3 .85 10.1
E8(2) 83.9 3.7 1.00 3.0 1.00 9.5
E9 (1) 86. 4 1.1 .84 1.0 .82 8.5
E9(2) 85.2 2.3 .94 1.1 .96 8.2
E10(1) 99.8 1.9 0 1.9 .008 91.7
E10(2) 82.1 4.1 1.94 1.8 1.54 4.2
E10(3) 82.1 4.0 .03 — — 75.7
E10(4) 83.8 2.2 .10 2.2 .11 38.0

*These numbers are somewhat misleading for deletions, due to the way the deleti
To find the necessary
reads, for sequential deletions subtract one from the number shown, and for
random deletions subtract one and multiply the result by about 0.5.

were programmed into the experiments.

number of virtu:

References:
Adelson-Velskii, G. M. and Lundis, E. M. An Information Orgauizaiion

Algorithm. DANSSSR, No. 2, 1962.

Foster, C. C. Information Storage and Retrieval Using AVL Trees.

Proe. ACM 20th Nat'l. Conf. (1965), pp. 192-205.

Gladun, V. P. Storage Organization for Key Search and Recording.

Cybernetics, Vol. 1, No. 4, August 1965.

Landauer, W. I. The Balanced Tree and Its Utilization in Information
Retrieval. IEEE Trans. on Electronic Computers, Vol. EC-12, No. 6,

December 1963,

Sussenguth, E. H., Jr. The Use of Tree Structures for Processing

Files., Comm. ACM, Vol. 6, No. 5, May 1963.

