
Nearest Neighbor Queries *

Nick Roussopoulos Stephen Kelley Fr6d6ric Vincent

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

A frequently encountered type of query in Geographic

Information Systems is to find the k nearest neighbor

objects to a given point in space. Processing such queries

requires substantially different search algorithms than those

for location or range queries. In this paper we present an

efficient branch-and-bound R-tree traversaJ algorithm to find

the nearest neighbor object to a point, and then generalize it

to finding the k nearest neighbors. We also discuss metrics

for an optimistic and a pessimistic search ordering strategy

as well as for pruning. Finally, we present the results of

several experiments obtained using the implementation of

our algorithm and examine the behavior of the metrics and

the scalabfity of the algorithm.

1 INTRODUCTION

The efficient implementation of Nearest Neighbor (NN)

queries is of a particular interest in Geographic Informa-

tion Systems (GIS). For example, a user may point to a

specific location or an object on the screen, and request

the system to find the five nearest objects to it in the

database. Another situation where NN query is useful

is when the user is not familiar with the layout of the

spatial objects. In the case of an astrophysics database,

finding the nearest star to a given point in the sky could

involve multiple unsuccessful searches with varying win-

dow sizes if we were to use a more traditional 2D range

query. Another even more complex query that could be

handled by an NN technique is to find the four nearest

stars which are at least ten light-years away.

The versatility of k nearest neighbors search increases

substantially if we consider all variations of it, such as

the k furthest neighbors, or when it is combined with

*This research was sponsored partially by the National Science
Foundation under grant BIR 9318183, by ARPA under contract
003195 Ve100ID, and by NASA/USRA under contract 5555-09.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

?Machinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD’95,San Jose, CA USA
Q 1995 ACM 0-89791-731 -6/95/0005.. $3.50

other spatial queries such as find the k NN to the East of

a location, or even spatial joins with NN join predicate,

such as find the three closest restaurants for each of two

different movie theaters,

Efficient processing of NN queries requires spatial

data structures which capitalize on the proximity of

the objects to focus the search of potential neighbors

only, There is a wide variety of spatial access methods

[Same89]. However, very few have been used for NN.
In [Same90], heuristics are provided to find objects in

quadtrees. The exact k-NN problem, is also posed

for hierarchical spatial data structures such as the PM

quadtree. The proposed solution is a top-down recursive

algorithm which first goes down the quadtree, exploring
the subtree that contains the query point, in order

to get a first estimate of the NN location. Then

it backtracks and explores remaining subtrees which

potentially contain NN until no subtree needs be visited.

In [FBF77] a NN algorithm for k-d-trees was proposed

which was later refined in [Spro91].

R-trees [Gutt84], Packed R-trees [Rous85], [Kame94],

R-tree variations [SRF87], [Beck90] have been primarily

used for overlap/containment range queries and spatial

join queries [BKS93] based on overlap/containment.

In this paper, we provide an efficient branch-and-

bound search algorithm for processing exact k-NN

queries for the R-trees, introduce several metrics for

ordering and pruning the search tree, and perform

several experiments on synthetic and real-world data

to demonstrate the performance and scalability of our

approach. To the best of our knowledge, neither NN

algorithms have been developed for R-trees, nor similar

metrics for NN search. We would also like to point out

that, although the algorithm and these metrics are in

the context of R-trees, they are directly applicable to

all other spatial data structures.

Section 2 of the paper contains the theoretical

foundation for the nearest neighbor search. Section 3
describes the algorithm and the metrics for ordering

the search and pruning during it. Section 4 has the

experiments with the implementation of the algorithm.

The conclusion is in section 5.

71

2 NEAREST NEIGHBOR SEARCH

USING R-TREES

R-trees were proposed as a natural extension of B-

trees in higher than one dimensions [Gutt84]. They

combine most of the nice features of both B-trees and

quadtrees. Like B-trees, they remain balanced, while

they maintain the flexibility of dynamically adjusting

their grouping to deal with either dead-space or dense

areas, like the quad trees do. The decomposition used in

R-trees is dynamic, driven by the spatial data objects.

And with appropriate split algorithms, if a region of
an n-dimensional space includes dead-space, no entry in

the R-tree will be introduced.

Leaf nodes of the R-tree cent ain entries of the form

(RECT, oid) where oid is an object-identifier and is

used as a a pointer to a data object and RECT is

an n-dimensional Minimal Bounding Rectangle (MBR)

which bounds the corresponding object. For example,

in a 2-dimensional space, an entry RECT will be of

the form (z~~~, z~ig~, y[~~, yhigh) which represents the

coordinates of the lower-left and upper-right corner of

the rectangle. The possibly composite spatial objects

stored at the leaf level are considered atomic, and are

not further decomposed into their spatial primitives,

i.e. quadrants, triangles, trapezoids, line segments, or

pixels. Non-leaf R-tree nodes contain entries of the form

(RECT, p) where p is a pointer to a successor node in

the next level of the R-tree, and REC’T is a minimal

rectangle which bounds all the entries in the descendent

node.

The term branching factor (or fan-out) can be used to

specify the maximum number of entries that a node can

have; each node of an R-tree with branching factor fifty,

for example, points to a maximum of fifty descendants

or leaf objects. To illustrate the way an R-tree is defined

on some space, Figure 1 shows a collection of rectangles

and Figure 2 the corresponding tree. Performance

of an R-tree search is measured by the number of

disk accesses (reads) necessary to find (or not find)

the desired object(s) in the database. So, the R-tree

branching factor is chosen such that the size of a node

is equal to (or a multiple of) the size of a disk block or

file system page.

2.1 Metrics for Nearest Neighbor Search

Given a query point P and an object O enclosed in

its MBR, we provide two metrics for ordering the

NN search. The first one is based on the minimum
distance (MINDIST) of the object O from P. The

second metric is based on the minimum of the maximum

possible distances (MINMAXDIST) from P to a face

(or vertex) of the MBR containing O. MINDIST and

MINMAXDIST offer a lower and an upper bound on
the actual distance of O from P respectively. These

bounds are used by the nearest neighbor algorithm to

.............. ...

~~[~] q

..........

LL.m........k.l‘q...........................
‘n:

...............

I
M a,L

N

c;

. ..:

Figure 1: Collection of Rect angles

EIIfiEl Iw ‘Jld F-F-h-7

Figure 2: R-tree Construction

72

order and efficiently prune the paths of the search space

in an R-tree.

Definition 1 A rectangle R in Euclidean space E(n)

of dimension n, will be defined by the two endpoints S

and T of its major diagonal:

R = (S, T)

where S=[sl, sz, ..., s*] and T= [tl, tz,..., t~]

andsi<tiforl~i~n.

Minimum Distance (MINDIST) The first metric

we introduce is a variation of the classic Euclidean

distance applied to a point and a rectangle. If the point

is inside the rectangle, the distance between them is

zero. If the point is outside the rectangle, we use the

square of the Euclidean distance between the point and

the nearest edge of the rectangle. We use the square

of the Euclidean distance because it involves fewer and

less costly computations. To avoid confusion, whenever

we refer to distance in this paper, we will in practice be

using the square of the distance and the construction of

our metrics will reflect this.

Definition 2 The distance of a point P in E(n) from a

rectangle R in the same space, denoted J41NDIST(P, R),

2s:

AIIIVDIST(P, R) = 5 lpi – r~ [2

i=l

where

{

Si if pi < si;

r~ = ti if pi > ti;

Pi otherwise.

Lemma 1 The distance of definition 2 is equal to the

square of the minimal Euclidean distance from P to any

pozni on the perimeter of R.

Proof: If P is inside R, then MINDIST = O which is

less than or equal to the distance of P from any point

on the perimeter of R. If P is on the perimeter, again

MINDIST = O and so is equal to the square of minimal

Euclidean distance of P from its closest point on the

perimeter, namely itself.

If P is outside R and j coordinates, j = 1,2,.. ., n– 1
of P satisfy sj < pj ~ tj,then MINDIST measures the

square of the length of a perpendicular segment from

P to an edge, for j = 1 or to a plane for j = 2, or
a hyperface for j > 3. If none of the pj coordinates

fall between (si, t;), then MINDIST is the square of the

distance to the closest vertex of R by the way of selecting
I’i .

Notice that computing MINDIST requires only linear

in the number of dimensions, O(n), operations.

I)efinition 3 The minimum distance of a poznt P from

a spatial object o, denoted by II(P, 0)11, M:

11(~,o)ll= rnd’jj 1P;- Xilz,
i=l

VX=[q,..., zn]eo).

Theorem 1 Given a point P and an MBR R enclosing

a set of objects O = {oi, 1 < i < m], the following is

true:

Proof: If P is inside R, then MINDIST = O which is

less than the distance of any object within R including

one that may be touching P. If P is outside R, then

according to lemma 1, VX on the perimeter of R,

MINDIST(F’, R) < II(P, X)1].

MINDIST is used to determine the closest object to P

from all those enclosed in R, The equality in the above

theorem holds when an object of R touches the circle

with center P and radius the square root of MINDIST.

When searching an R-tree for the nearest neighbor

to a query point P, at each visited node of the R-tree,

one must decide which MBR to search first. MI NDIST

offers a first approximation of the NN distance to every

MBR of the node and, therefore, can be used to direct

the search.

In general, deciding which MBR to visit first in order

to minimize the total number of visited nodes is not that

straightforward. In fact, in many cases, due to dead

space inside the MBRs, the NN might be much further

than MINDIST, and visiting first the MBR with the

smallest MINDIST may result in fake-drops, i.e. visits

to unnecessary nodes. For this reason, we introduce a

second metric MINMAXDIST. But first, the following

lemma is necessary.

Lemma 2 The MBR Face Property: Every face (t. e.

edge in dimension 2, rectangle in dimension 3 and

‘hype rface ’ in higher dimensions) of any h4BR (at any

level of the R-tree) contains at least one point of some

spatial object in the DB. (See figures 3 and ~).

Proof: At the leaf level in the R-tree (object level),

assume by contradiction that one face of the enclosing

MBR does not touch the enclosed object. Then, there

exists a smaller rectangle that encloses the object which

contradicts the definition of the Minimum Bounding

Rectangle. For the non-leaf levels, we use an induction
on the level in the tree of the MBR. Assume any level
k >0 MBR has the MBR face property, and consider an

MBR at level k +1. By the definition of an MBR, each

face of that MBR touches an MBR of lower level, and

73

therefore, with a leaf object by applying the inductive

hypothesis.

%

r—
———— ———— ———— —

L vel i+~ MBR Level i.1 III 11I I
I 1I------------II

I
I
i
I
I
I
I
I
I

1
1
1
1

1
I

——— ——— —

I

Zach edge of the MBR at level i is in contact

with a graphic object of the DB. (The same

property applies for the MBRs at level i+l)

Figure3: MBRFace Property in 2-Space

I

,,’
.

,’
.

,.’

,,’

Enclosed MBRs or Objects

Figure4: MBR Face Property in 3-Space

Minimax Distance (MINMAXDIST) In orderto

avoid visiting unnecessary MBRs, we should have an

upper bound of the NN distance to any object inside
an MBR. This will allow us to prune MBRs that

have MINDIST higher than this upper bound. The

Eollowingdistance construction (called MINMAXDIST)

is being introduced to compute the minimum value of

all the maximum distances between the query point

and points on the each of the n axes respectively. The

MINMAXDIST guarantees there isanobject within the

MBR at a distance less than or equal to MINMAXDIST,

Definition Given a point P in E(n) and an MBR

R = (S, T) of the same dimension ality, we define

MINMAXDIST(P, R) as:

iWINMAXDIST(P, R) =

min (lp~ – rrn~12 + ~ lpi – rM~12)
l<k<n. . ,#k

I<t<n

where:

rmk =

{

Sk ~fpk < &.?!.#;
and

tk otherwise.

rftf~ =
{

s~ ifp~ ~ v;

ti otherwise.

This construction can be described as follows: For

each k select the hyperplane Hk = rmk which contains

the closer of the two faces of the MBR orthogonal

to the kzh space axis. (One of these faces has

Hk = sk and the other has Hk = Tk). The point

Vk! = (?’kfl, rkfz,..., r&fk-l)rmk,r~k+lj. ... r~n), is

the farthest vertex from P on this face. MINMAXDIST

then, is the minimum of the squares of the distance to

each of these points.

Notice that this expression can be efficiently imple-

mented, in O(n) operations by first computing S =

~l<i<~ lpi – r~i!z, (the distance from P to the fur-
thest vertex on the MBR), then iteratively selecting the

minimum of S – IPk ‘~~k12+lPk–rm~12forl<k<n.

Theorem 2 Gwen a point P and an MBR R enclosing

a set of objects O = {oi, 1< i < m}, the following prop-

erty holds: 30 ~ O, II(P, 0)1] < MINMAXDIST(P, R).

74

Proof: Because of lemma 2, we know that each

MBR’s face is touching at least one object within the

MBR. Since the definition of MINMAXDIST produces

an estimate of the NN distance to an object touching

its MBR at the extremity of one of its faces, this

guarantees that MINMAXDIST is greater than or equal

to the NN distance. On the other hand, a point object

located exactly at the vertex of the MBR at distance

MINMAXDIST would contradict the proposition that

one could find a smaller distance than MINMAXDIST

as an upper bound of the NN distance.

Theorem 2 says that MINMAXDIST is the minimum

distance that guarantees the presence of an object O in

R whose distance from P is within this distance, A value

larger or equal to MINMAXDIST would always ‘catch’

some object inside an MBR, but a smaller distance could

‘miss’ some object.

Figures 5 and 6 illustrate MINDIST and MIN-

MAXDIST in a 2-Space and 3-Space respectively.

F

T>~,M=,,zx[....” . . . MIN14AXDIST
,..-, ,.

-...” c
. . . .,.

.,. /

MI NMAXD I S ~...-.-. /.

Figure 5: MINDIST and MINMAXDIST in 2-Space

I

I%..

MINNAXDIST(P, R)
MINDIsT (P, R)

Figure 6: MINDIST and MINMAXDIST 3-Space

3 Nearest Neighbor Algorithm for

R-trees

In this section we present a branch-and-bound R-tree

traversal algorithm to find the k-NN objects to a given

query point. We first discuss the merits of using the

MINDIST and MINMAXDIST metrics to order and

prune the search tree, then we present the algorithm

for finding 1-NN and finally, generalize the algorithm

for finding the k-NN.

3.1 MINDIST and MINMAXDIST for

Ordering and Pruning the Search

Branch-and-bound algorithms have been studied and

used extensively in the areas of artificial intelligence and

operations research [HS78]. If the ordering and pruning

heuristics are chosen well, they can significantly reduce

the number of nodes visited in a large search space,

Search Ordering: The heuristics we use in our

algorithm and in the following experiments are based on

orderings of the MINDIST and MINMAXDIST metrics.

The MINDIST ordering is the optimistic choice, while

the MINMAXDIST metric is the pessimistic (though

not worst case) one. Since MINDIST estimates the
distance from the query point to any enclosed MBR or

data object w the minimum distance from the point to

the MBR itself, it is the most optimistic choice possible.

Due to the properties of MBRs and the construction

of it, MINMAXDIST produces the most pessimistic

ordering that need ever be considered.

In applying a depth first traversal to find the NN

to a query point in an R-tree, the optimal MBR visit

ordering depends not only on the distance from the

query point to each of the MBRs along the path(s)

from the root to the leaf node(s), but also on the

size and layout of the MBRs (or in the leaf node

case, objects) within each MBR. In particular, one

can construct examples in which the MINDIST metric

ordering produces tree traversals that are more costly

(in terms of nodes visited) than the MINMAXDIST

metric,

This is shown in figure 7, where the MINDIST metric

ordering will lead the search to MBR1 which would

require of opening up Ml 1 and M12. If on the other

hand, MINMAXDIST metric ordering was used, visiting

MBR2 would result in an smaller estimate of the actual

distance to the NN (which will be found to be in M21)

which will then eliminate the need to examine M 11 and

M12. The MINDIST ordering optimistically assumes

that the NN to P in MBR Al is going to be close

to MINDIST(M, P), which is not always the case.

Similarly, counterexamples could be constructed for any
predefine ordering.

As we stated above, the MINDIST metric produces

most optimistic ordering, but that is not always the

75

3.2 Nearest Neighbor Search Algorithm

‘F
22

,, 21
MBR2

The NN Is somewhere In there

1. MINDIST ordering: If we visit MBR1 first, we have to visit Ml 1, M12,
MBR2 and M21 before finding the NN.

2. MINMAXDIST ordering: If we visit MBR2 first, and then M21,
when we eventually visit MBR1, we can prune Ml 1 and Ml 2.

Figure 7: MINDIST is not always the better ordering

best choice. Many other orderings are possible by

choosing metrics which compute the distance from the

query point to faces or vertices of the MBR which are

further away. The importance of MINMAXDIST(P,M)
is that it computes the smallest distance between point

P and MBR M that guarantees the finding of an object

in M at a Euclidean distance less than or equal to
MINMAXDIST(P,M).

Search Pruning: We utilize the two theorems we

developed to formulate the following three strategies to

prune MBRs during the search:

1. an MBR M with MINDIST(P,M) greater than the

MINMAXDIST(P,M’) of another MBR M’ is dis-

carded because it cannot contain the NN (theorems

1 and 2). We use this in downward pruning.

2. an actual distance from P to a given object O

which is greater than the MINMAXDIST(P,M) for

an MBR M can be discarded (actually replaced by

it as an estimate of the NN distance) because M

contains an object O’ which is nearer to P (theorem

2). This is also used in downward pruning.

3. every MBR M with MINDIST(P,M) greater than

the actual distance from P to a given object O is

discarded because it cannot enclose an object nearer

than O (theorem 1). We use this in upward pruning.

Although we specify only the use of MINMAXDIST

in downward pruning, in practice, there are situations

where it is better to apply MINDIST (and in fact

strategy 3) instead. For example, when there is no dead

space (or at least very lit tie) in the nodes of the R-tree,

MINDIST is a much better estimate of II(P, N)ll, the

actual distance to the NN than is MINMAXDIST, at

all levels in the tree. So, it will prune more candidate

MBRs than will MINMAXDIST.

The algorithm presented here implements an ordered

depth first traversal. It begins with the R-tree root node

and proceeds down the tree. Originally, our guess for

the nearest neighbor distance (call it Nearest) is infinity.

During the descending phase, at each newly visited non-

leaf node, the algorithm computes the ordering metric

bounds (e.g. MINDIST, Definition 2) for all its MBRa

and sorts them (associated with their corresponding

node) into an Active Branch List (ABL). We then

apply pruning strategies 1 and 2 to the ABL to remove
unnecessary branches. The algorithm iterates on this

ABL until the ABL is empty: For each iteration, the

algorithm selects the next branch in the list and applies

itself recursively to the node corresponding to the MBR

of this branch. At a leaf node (DB objects level),

the algorithm calls a type specific distance function for

each object and selects the smaller dist ante between

current value of Nearest and each computed value and

updates Nearest appropriately. At the return from the

recursion, we take this new estimate of the NN and

apply pruning strategy 3 to remove all branches with

M1ND1S7’(P, M) > Nearest for all MBRs M in the

ABL.

See Figure 8 for the pseudo-code description of the

algorithm.

3.3 Generalization: Finding the k Nearest

Neighbors

The algorithm presented above can be easily generalized

to answer queries of the type: Find The k Nearest

Neighbors to a given Query Point, where k is greater

than zero.

The only differences are:

● A sorted buffer of at most k current nearest neigh-

bors is needed.

● The MBRa pruning is done according to the distance

of the furthest nearest neighbor in this buffer.

The next section provides experimental results using

both MINDIST and MINMAXDIST.

4 Experimental Results

We implemented our k-NN search algorithm and de-
signed and carried out our experiments in order to
demonstrate the capability and usefulness of our NN

search approach as applied to GIS type of queries. We

examined the behavior of our algorithm as the number

of neighbors increased, the cardinality of the data set

size grew, and how the MINDIST and MINMAXDIST

metrics affected performance.

We performed our experiments on both publically

available real-world spatial data sets and synthetic data

sets. The real-world data sets included segment based

76

RECURSIVE PROCEDURE

nearestNeighborSearch (Node, Point, Nearest)

NODE Node // Current NODE

POINT Point // Search POINT

NEARESTN Nearest // Nearest Neighbor

//Local Variables

NODE newNode

BRANCHARRAY branchList

integer dist, last, i

// At leaf level - compute distance

If Node.type = LEAF

Then

For i := 1 to Node#count

dist := objectDIST(Point,

If (dist < Nearest .dist)

Nearest .dist := dist

to actual objects

Node. branchi.rect)

Nearest .rect := Node. branchi .rect

// Non-leaf level - order, prune and visit nodes

Else

// Generate Active Branch List
genBranchList(Point, Node, branchList)

// Sort ABL based on ordering metric values

sortBranchList(branchList)

// Perform Downward Pruning

// (may discard all branches)
last = pruneBranchList(Node, Point, Nearest,

branchList)

// Iterate through the Active Branch List

For i := 1 to last

newNode := Node. branchbranChList,

// Recursively visit child nodes

nearestNeighborSearch(newNode, Point,

Nearest)

// Perform Upward Pruning

last := pruneBranchList(Node, Point, Nearest,

branchList)

Figure 8: Nearest Neighbor Search Pseudo-Code

TIGER data files for the city of Long Beach, CA and

Montgomery County, MD, and observation records from

the International Ultraviolet Explorer (1.U.E) satellite

from N. A.S.A. Our examples will be from the Long

Beach data, which consists of 55,000 street segments

stored as pairs of latitude and longitude coordinates.

For the synthetic data experiments, we generated test

data files of lK, 2K, 4K, 8K, 16K, 32K, 64K, 128K and

256K points (stored as rectangles) in a grid of 8K by

8K. The points were unique and randomly generated

using a different seed value for each data set. We then

generated 100 equally spaced query points in the 8K by

8K space.

We built the R-tree indexes by first presorting the
data files using a Hilbert [Jaga90] number generating

function, and then applying a modified version of

[Rous85] R-tree packing technique according to the

suggestion of [Kame94]. The branching factor of both
the terminal and non-terminal nodes was set to be

approximately 50 in all indexes,

In Figure 9 we see the average of 100 queries for

each of several different numbers of nearest neighbors

for both the MINDIST and MINMAXDIST ordering

metrics applied to the Long Beach data. We generated

three uniform sets of querys of 100 points each based on

regions of the Long Beach, CA data set. The first set

was from a sparse (few or no segments at all) region of

the city, the second was from a dense (large number of

segments per unit area), and the third was a uniform

sample from the MBR of the whole city map. We then

executed a series of nearest neighbor queries for each of

the query points in each of these regions and plotted the

average number of nodes accessed against the number

of nearest neighbors.

am 2a20 4acQ m.m 20.00 I mm 12am
No. of Ntighbm

Figure 9: MINDIST and MINMAXDIST Metric Com-
parison

For this experiment we see that graphs of the MIN-

MAXDIST ordered searches were similar in shape to the

graphs of the MINDIST ordered searches but the num-

ber of pages accessed was consistently, approximately

20% higher. MINMAXDIST performed the worst in

dense regions of the various data sets which was not

surprising. It turned out that in all the experiments

77

we performed comparing the two metrics, the results

were similar to this one. Since this occurred with both

real world and (pseudo) randomly distributed data, we

surmise that for spatially sorted and packed R-trees,

MINDIST is the ordering metric of choice. So, for the

sake of clarity and simplicity, the rest of the figures will

show the results of the MINDIST metric only.

Figure 10 shows the results of an experiment using

synthetic data. We ran and averaged the results from

the 100 equally spaced query points for 25 different

values of k NN (ranging from 1 to 121) on the lK, 4K,

16K, 64K and 256K data sets. We graphed the results as

the (average) number of pages (nodes) accessed versus

the number of nearest neighbors searched for,

Nearest Neighhor Scalability . Synthetic Data
,WSAcra6d I

$5-SK
]8.00

-POilui

&frcPXr-

16.00 ~
,&x.F& .-.

14.00

~k.=..

12.00
/ d. ,

.@r~- T.it f%iZI - .

/ - -----

laoa
w. -----

8.00

4,04 --

N. of Nci2htcm
ace 2am 4am WX2 8am lcam 12am

Figure 10: Synthetic Data Experiment 1 Results

From the experimental behavior, we can make two

observations, First, aa the number of nearest nei~hbors

increased the number of pages accessed grew in a linear

ratio with a (small) fractional constant of proportional-

ity. Since all the synthetic data sets were created with

the same node cardinality (approximately 50), the de-

gree of similarity of the curves strongly suggests that

this is the dominant term in the components of the con-

stant of proportionality (at least in spatially ordered

data sets). Second, as the data set size grew, the aver-

age number of page accesses grew sublinearly and clus-

tered in three distinct groupings (producing a banded

pattern) as the number of neighbors increased. The fact

that the 4K, 16K and 64K curves were so close to each

other gave us the insight to run the next experiment.

In the experiment of Figure 11, we examined the

correlation between the increase in the size of the

data set with the number of nodes accessed for a

limited number of nearest neighbor queries. We plotted

the number of pages accessed against the logarithm

(base 2) of the data set size in terms of kilobytes (so

[og2(2561<) = 8) for each of 1, 16, 32,64 and 128 nearest

neighbor queries. We noticed in this graph the curves

appeared to be piecewise linear step functions. We then

examined the height of the R-trees and observed that

the steps appear at the points where the height of the

tree increases. The lK R-tree index has a depth of 1,

the 2K index has a depth of 2, the 4K, 8K, 16K, 32K

Database Size Scalability - Synthetic Dats
w—

2CUX2 I 128-Nei

18.CKI

.K.N::&&’&

/ .
wmi~fii%- “ “ .

16.00

/ / “- –
7cFi&JiE&---

14.W ,, ------ T-Nei&l ‘- “

12.00
,----

/
#----

103I
,,, ,

/

aca // ‘; ------------- ,’,’/
-------- ? --------

(
&w — .

,.’; --.-- ------

. ..-. --.>;0
4.00

r ---
Log(2) (Sue m KB;

l!.oo 2.CKI 4.a2 cum 8.00

Figure 11: Synthetic Data Experiment 2 Results

and 64K data sets have a depth of 3, and the 128K and

the 256K data sets have a depth of 4.

This is an important observation because it shows

that the algorithm behaves well for ordered data sets

and the cost of NN increases linearly with the height of

the tree.

5 CONCLUSIONS

In this paper, we developed a branch-and-bound R-tree

traversal algorithm which finds the k Nearest Neighbors

of a given query point. We also introduced two metrics

that can be used to guide an ordered depth first spatial

search. The first metric, MINDIST, produces the

most optimistic ordering possible, whereas the second,

MINMAXDIST, produces the most pessimistic ordering

that ever need be considered. Although our experiments

have shown that MINDIST ordering was more effective
in the case where the data were spatially sorted,

other orderings or more sophisticated metrics using a

combination of them are possible and might prove useful

in the case where the R-tree was either not constructed

as well or subject to (many) updates. Nonetheless,

these two metrics were shown to be valuable tools in

effectively directing and pruning the Nearest Neighbor

search.

We implemented and thoroughly tested our k-NN

algorithm. The experiments on both real and synthetic

data sets showed that the algorithm scales up well
with respect to both the number of NN requested and

with size of the data sets. Further research on NN
queries in our group will focus on defining and analyzing

other metrics and how to characterize the behavior of
our algorithm in dynamic as well as static database

environments.

6 ACKNOWLEDGEMENTS

We would like to thank Christos Faloutsos for his

insightful comments and suggestions.

78

References

[Beck90] Beckmann, N., H.-P. Kriegel, R. Schneider

and B. Seeger, “The R*-tree: an efficient and

robust access method for points and rectangles,”

ACM SIGMOD, pp 322-331, May 1990.

[BKS93] Brinkhoff, T., Kriegel, H. P., and Seeger, B.,

“Efficient Processing of Spatial Joins Using R-

trees,” Proc. ACM SIGMOD, May 1993, pp. 237-

246.

[FBF77] Friedman, J. H., Bentley, J. L., and Finkel,

R. A., “An algorithm for finding the best matches
in logarithmic expected time,” ACM Trans. Math.

Software, 3, September 1977, pp. 209-226.

[Gutt84] Guttman, A,, “R-trees,: A Dynamic Index

Structure for Spatial Searching,” Proc. ACM SIG-

MOD, pp. 47-57, June 1984.

[HS78] Horowitz, E., Sahni, S., “Fundamentals of

Computer Algorithms,” Computer Science Press,

1978, pp. 370-421.

[Jaga90] Jagadish, H. V., “Linear Clustering of Objects

with Multiple Attributes,” Proc. ACM SIGMOD,

May 1990, pp. 332-342.

[Kame94] Kamel, I. and Faloutsos, C., “Hilbert R-

Tree: an Improved R-Tree Using Fractals,” Proc.

of VLDB, 1994, pp. 500-509,

[Rous85] Roussopoulos, N. and D. Leifker, “Direct

Spatial Search on Pictorial Databases Using Packed

R-trees,” Proc. ACM SIGMOD, May 1985.

[Same89] Samet, H., “The Design & Analysis Of Spatial

Data Structures,” Addison-Wesley, 1989.

[Same90] Samet, H., “Applications Of Spatial Data

Structures, Computer Graphics, Image Processing

and GIS,” Addison-Wesley, 1990.

[SRF87] Sellis T., Roussopoulos, N., and Faloutsos,

C., “The R+-tree: A Dynamic Index for Multi-

dimensional Objects,” Proc. 13th International

Conference on Very Large Data Bases, 1987, pp.

507-518.

[Spro91] Sproull, R. F., “Refinements to Nearest-

Neighbor Searching in k-Dimensional Trees,” Al-
gorithmic, 6, 1987, pp. 579-589.

79

