
Efficient Mining of Spatiotemporal Patterns

Ilias Tsoukatos and Dimitrios Gunopulos

Computer Science Department, University of California Riverside
Riverside CA 92521 USA

{Etsouk,dg}@cs.ucr.edu

Abstract. The problem of mining spatiotemporal patterns is finding
sequences of events that occur frequently in spatiotemporal datasets.
Spatiotemporal datasets store the evolution of objects over time. Examples
include sequences of sensor images of a geographical region, data that
describes the location and movement of individual objects over time, or
data that describes the evolution of natural phenomena, such as forest
coverage. The discovered patterns are sequences of events that occur most
frequently. In this paper, we present DFS_MINE, a new algorithm for fast
mining of frequent spatiotemporal patterns in environmental data.
DFS_MINE, as its name suggests, uses a Depth-First-Search-like approach
to the problem which allows very fast discoveries of long sequential
patterns. DFS_MINE performs database scans to discover frequent
sequences rather than relying on information stored in main memory, which
has the advantage that the amount of space required is minimal. Previous
approaches utilize a Breadth-First-Search-like approach and are not
eff icient for discovering long frequent sequences. Moreover, they require
storing in main memory all occurrences of each sequence in the database
and, as a result, the amount of space needed is rather large. Experiments
show that the I/O cost of the database scans is offset by the eff iciency of the
DFS-like approach that ensures fast discovery of long frequent patterns.
DFS_MINE is also ideal for mining frequent spatiotemporal sequences with
various spatial granularities. Spatial granularity refers to how fine or how
general our view of the space we are examining is.

1 Introduction

In this paper, we consider the problem of finding frequent patterns of change in
spatiotemporal datasets. Spatiotemporal datasets store the evolution of objects over
time. Figure 1 presents an example dataset that contains the temperatures in the
United States The discovered patterns are sequences of events that occur most
frequently. The importance of the knowledge of such patterns is obvious.

The task of discovering such frequent patterns is extremely challenging, since the
search space is extremely large. The problem becomes even more challenging when
the sequences to be discovered are rather long. Despite the ubiquity of spatiotemporal

C.S. Jensen et al. (Eds.): SSTD 2001, LNCS 2121, pp. 425−442, 2001.
 Springer-Verlag Berlin Heidelberg 2001

data, the problem of mining such data has not received a lot of attention. Previous
approaches include finding frequent sequential patterns in sequence data ([3], [8],
[14]), finding spatial association rules ([1], [2], [7]), clustering spatial datasets ([9],
[10]) or answering statistical queries in spatial datasets ([12], [13]). Most current
algorithms use a Breadth-First-Search approach. This has the disadvantage of
exhausting all sequences of length k before moving on to examining the sequences of
length k+1. Moreover, some of the existing solutions attempt to speed up the process
of discovery by minimizing the number of database scans and by storing all necessary
information in main memory. When the sequences to be mined are rather long, the
amount of space required is enormous.

In this paper, we present DFS_MINE, a new algorithm for discovering frequent
spatiotemporal sequences. The key features of our approach are: (1) DFS-MINE
uses the lattice-theoretic approach to decompose the original search space. (2) It
follows the concept of Depth-First-Search, that is, it tries to discover frequent
sequences of length k without exhausting all the frequent sequences of length k-1. It
uses information about frequent sequences already discovered to mine sequences of

greater length. It
backtracks, like
DFS, to sequences
of smaller length
when all longer
sequences of the
chosen lattice path
turn out to be non-
frequent, thus, en-

suring, fast discovery of long frequent patterns. (3) DFS_MINE does not enumerate
all frequent sequences in the database. It discovers very fast only the maximal
frequent sequences. (4) DFS_MINE determines the support of some sequences by
using the theoretical background of the lattice (5) DFS-MINE does not aim at
minimizing the database scans. It performs database scans to determine the
frequency of a set of sequences. Despite that fact, it achieves fast discovery of the
frequent sequences thanks to its DFS-like strategy. (6) It also does not require
enormous amounts of memory. It only needs minimal space to store just two
structures (the list of maximal frequent sequences and the list of minimal non
frequent sequences) that allow an efficient representation of the search space.
Experiments prove that DFS_MINE outperforms all existing solutions, as far as
both time and space are concerned, especially when the sequences to be discovered
are rather long.

Finally, we study the problem of mining spatiotemporal patterns in
environmental data in various levels of spatial granularity. Spatial granularity
refers to how fine or how general our view of the given space is. Whether we are
mining in the very fine level of the cities or counties in the US or the very
general level of the fifty states, DFS_MINE’s strategy is ideal for mining in
various spatial granularity levels, because, as we will show, it uses the results of
the previous level in order to discover faster the frequent sequences of the next
level.

Fig. 1. Example spatiotemporal dataset (temperatures in the US)

426 I. Tsoukatos and D. Gunopulos

The rest of this paper is organized as follows: in section 2, we define the problem
of mining frequent spatiotemporal sequences in environmental data. Section 3
presents the necessary background on the concept of ‘the lattice’, which is used by
DFS_MINE. In section 4, we present in detail the DFS_MINE algorithm. In section 5,
we define the problem of mining in various spatial granularities and show how
DFS_MINE is easily extended to address this problem as well. Section 6 briefly
discusses related work on the subject and section 7 presents the results of the
experiments we performed to evaluate DFS_MINE. Finally, we conclude in section 8.

2 Mining Spatiotemporal Patterns in Environmental Data

2.1 Definitions

The problem of mining sequential patterns in spatiotemporal data can be stated as
follows: Let A={A1, A2, ..., Ad} be a set of distinct spatiotemporal attributes. For
example, atmospheric pressure P and temperature T are two distinct attributes. A
spatiotemporal item I j is a pair (Aj , Vj) where Aj is an attribute in A and Vj is a
value assigned to it. For example (T, 90) is an item, meaning that temperature
T=90F.

A spatiotemporal itemset IS is a non-empty set of items of distinct attributes. An
itemset is denoted (I1, I2, ..., Ik) where Ij is an item (Aj, Vj). All attributes Aj of the
items Ij must be distinct. For example, itemset IS1=(H=60, P=1000, T=90) is a valid
itemset, while itemset IS2=(T=70, T=90) is not. An itemset with k items is called k-

itemset. A specific spatiotemporal event is a
spatiotemporal itemset IS associated with some
location Lidj and some point in time tk.

A sequence S is an ordered list of itemsets ISi, i.e.
an ordered list of spatiotemporal events, denoted as
S= (IS1→IS2→…→ISn) where IS1, IS2, ..., ISn are
itemsets. A sequence with k items is called a k-
sequence. For example ((T=70)→(T=90, P=1.1)) is a
3-sequence, which means that in a certain location, in
one point in time the temperature T was 70 and some
time later the temperature T was 90F and the pressure
P was 1.1atm. An item can occur only once in an
itemset, but it can occur multiple times in different

itemsets of a sequence. In the rest, we will use the symbols: T1, T2, …, P1, P2, … to
denote different values for temperature, pressure and humidity, etc.

A sequence S1= (IS1→IS2→...→ISn) is a subsequence of another sequence S2=
(IS1→IS2→...→ISm), denoted as S1≤S2, if there exist integers i1<i2<…<i n such that
ISi⊆ ISij for all ISi. For example, sequence (T1→P1T2) is a subsequence of
(H1T1→P2→H2P1T2), since the sequence elements T1⊆H1T1 and P1T2⊆H2P1T2.
Sequence (H1P1→T2) is not a subsequence of (H1P1T2) and vice versa. A sequence
S1 is a supersequence of another sequence S2, denoted as S1≥ S2, if S2 is a

Fig. 2. ‘Reverse-z’ enumeration

427Efficient Mining of Spatiotemporal Patterns

subsequence of S1. A specific event E has a unique identifier and contains a set of
items. A location L also has a unique identifier (location-id or Lid). We use decimal
representation for the location-id. The original space is partitioned in locations that
are enumerated in a ‘reverse-z’ manner. Figure 2 depicts the concept of the ‘reverse-
z’ enumeration. Each location has associated with it a list of events {E1, E2, ..., En}.

No location L has
more than one
event with the
same time-stamp.
This is because
only one event
can occur in a
specific location
in a specific point
in time. The list
of specific events
associated with a

location is sorted by time. Thus the list of events of a location is a sequence
E1→E2→… →En, called the location-sequence. A location-sequence is L is said to
contain a sequence S, if S≤ L, i.e. if S is a subsequence of the location-sequence L.
The support or frequency of a sequence S, denoted σ(S), is the total number of times
the sequence is encountered. Given a user specified threshold called minimum support
(denoted min_sup), we say that a sequence is frequent if it occurs at least min_sup
times. The set of frequent k-sequences is denoted Fk.

2.2 The Problem

Given a database D of location sequences and min_sup, the problem of mining
spatiotemporal patterns is to find all frequent sequences in the database. For example
consider figure 3, which presents the location sequences and the frequent sequences.
The database has nine items (H1, H2, H3, P1, P2, P3, T1, T2, T3), sixteen locations
and three points in time. The figure also shows all the frequent sequences with
min_sup=50% or 8 locations. The maximal frequent sequences are: H2→T2→T3 and
T1→H3P1→P2.

Fig. 3. Example Environmental Database

428 I. Tsoukatos and D. Gunopulos

3 The Lattice-Based Approach

Here we assume that the reader is familiar with basic concepts of lattice theory (see
[4] for more). Zaki [14] formulated the frequent sequence mining problem as a search
problem in a search space. In this section we follow his treatment. Let P be a set. A

partial order on P is a
binary relation ≤ on P that
is reflexive: (X ≤ X), anti-
symmetric (X ≤ Y and Y ≤
X imply X=Y) and trans-
itive (X ≤ Y and Y ≤ Z
imply X ≤ Z, for all X, Y, Z
∈ P). A partially ordered
set L is called a lattice if
the two binary operations:
join (denoted as X∨Y) and
meet (denoted as X∧Y)
exist for all X, Y ∈ L. L is
a complete lattice if the
join and meet exist for

arbitrary subsets of L.

Theorem 1 [14]. Given a set E of events, the ordered set S of all possible sequences
on the items is a complete lattice in which join and meet are given by union and

intersection, respectively: { }∨ ∈ =
∈

A e E Ae e
e E

| � ,

{ }∧ ∈ =
∈

A e E Ae e
e E

| �

The bottom element ⊥ of the sequence lattice S is ⊥={}, but the top element is
undefined since in the abstract the sequence lattice is infinite. However, in all
practical cases it is bounded and sparse. Figure 4 shows the sequence lattice induced
by the maximal frequent sequences T1→H3P1→P2 and H2→T2→T3 for our
example database. Efficient algorithms for finding all frequent sequences are based on
the fact that all susequences of a frequent sequence have to be frequent.

4 DFS_MINE

In this section we present DFS_MINE in detail. The algorithm uses the lattice-
theoretic approach to decompose the original search space. Its strategy follows the
concept of Depth-First-Search: it tries to discover frequent sequences of length k+1
without exhausting all the frequent sequences of length k. The main idea is that if we
discover fast a frequent k-sequence, then we do not need to waste time examining all
of its subsequences, because they are certain to be frequent. A frequent k-sequence is

Fig. 4. Lattice induced by the maximal sequences
T1→H3P1→P2 and H2→T2→T3

429Efficient Mining of Spatiotemporal Patterns

intersected with all frequent items to generate all candidate (k+1)-sequences, which
are then scanned against the database. The only information DFS_MINE stores for
each sequence is the ‘useless set’ of each sequence. It also stores two structures: a list
of maximal frequent sequences (MaxFreqList) and a list of minimal non frequent
sequences (MinNonFreqList).

4.1 General

Given the minimum threshold of support (min_sup), we scan the database once
looking for occurrences of items. The frequent items are kept in the list of frequent
items (FreqItems). The items are inserted in FreqItems in a specific order, not
necessarily alphabetical. Whenever we scan and use the frequent items in FreqItems
in later steps, we always respect that order. To generate all candidate 2-sequences, we
intersect all frequent items with each other in all possible combinations. This set is
also scanned against the database. The frequent 2-sequences are inserted in the list of
maximal frequent sequences (MaxFreqList) and the non-frequent 2-sequences are
inserted in the list of minimal non-frequent sequences (MinNonFreqList). The
algorithm uses the frequent 2-sequences to mine frequent patterns. The non-frequent
2-sequences are used for pruning of longer non-frequent sequences. The Useless Set
of a k-sequence S (S.Useless) is a set of items that must not be intersected with k-
sequence S.

4.2 Maximal Frequent Sequences List – Minimal Non-frequent Sequences List

DFS_MINE keeps a list of all maximal frequent sequences in memory. We define
‘maximal frequent sequence’ as a sequence that is frequent and all of its
supersequences are non-frequent sequences or have not yet been found to be frequent
sequences. This list serves many purposes. First, it is the final result of the algorithm,
since, at the end, it contains all maximal frequent sequences discovered in the data-
base. Second, it is used for possibly determining whether a sequence is frequent or
not. When a new candidate sequence S is generated, we check whether it is a sub-
sequence of any of the sequences in MaxFreqList. If there exists such a sequence in
the list, then, according to Lemma 1, sequence S is also frequent. A sequence S is
inserted in MaxFreqList when all three of the following conditions hold: (1) S is not
already in MaxFreqList, (2) S is not a subsequence of some maximal frequent se-
quence already in MaxFreqList, (3) S was scanned in the database and was found to
be frequent. In this case, we need to insert the new sequence S in MaxFreqList. After
the insertion, we scan all sequences of length less than S.Length and check whether
they are subsequences of S. If so, they are removed, since they are frequent but no
longer maximal. The structure is kept as a list of lists of sequences of equal length.
The list of the lengths is sorted in decreasing order of length. As a result, the longest
maximal sequences are kept in the beginning of the list. The reason for this is that the
longer a frequent sequence is, the more likely it is to be a supersequence of some
sequence S’ which is currently under consideration. By keeping only the maximal fre-
quent sequences, instead of all frequent sequences (maximal or not), we save a lot of

430 I. Tsoukatos and D. Gunopulos

space while maintaining all the necessary information to represent the lattice of
frequent sequences.

Dually, DFS_MINE also keeps a list of all minimal non-frequent sequences in
memory. We define ‘minimal non frequent sequence’ as a sequence that is non-
frequent and all of its subsequences are frequent sequences. This list is used for
pruning sequences. When a new candidate sequence S is generated, we check whether
it is a supersequence of any of the sequences in MinNonFreqList, that is, if there
exists any sequence in MinNonFreqList that is a subsequence of sequence S. If there
exists such a sequence in the list, then, according to Lemma 1, sequence S is also non-
frequent. A sequence S is inserted in MinNonFreqList when all three of the following
conditions hold: (1) S is not already in MinNonFreqList, (2) S is not a supersequence
of some minimal non-frequent sequence already in MinNonFreqList (3) S was
scanned in the database and was found to be non-frequent. In this case, we need to
insert the new sequence S in MinNonFreqList. After the insertion, we scan all
sequences of length greater than S.Length and check whether they are supersequences
of S. If so, they are removed, since they are non-frequent but no longer minimal. The
structure is kept as a list of sequences sorted in increasing order of length.

4.3 Generating Sequences

DFS_MINE generates (k+1)-sequences by using a k-sequence and intersecting it with
all frequent items Ij that are in FreqItems but not in the useless set of k-sequence S (Ij
∈ FreqItems - S.Useless). The intersection of an item Ij with a k-sequence S involves

inserting the item in all
possible positions in the k-
sequence. We use the sym-
bol SET(S+Ij) to express the
set of candidate (k+1)-se-
quences that result from the
intersection of k-sequence S
with item Ij. There are two
kinds of resulting sequences
resulting: (a) the sequences
in which the item is inserted
as part of an existing itemset
and (b) the sequences in

which the item is inserted as a separate itemset. An itemset cannot contain more than
one copy of the same item. As a result, some of the resulting candidate sequences are
rejected. Figures 5a and 5b present an example. By performing intersection in this
way though, we may generate duplicate sequences. Figure 5c presents a possible
situation: from the same 3-sequence A→A→A, we can get the same 5-sequence
AD→A→AD through two different paths. To avoid generating duplicate sequences,
we redefine the way intersection is performed.

Definition 1. Intersection of k-sequence S with item I

Fig. 5. Generating Sequences

431Efficient Mining of Spatiotemporal Patterns

When we intersect sequence S with item I, we insert item I in all possible positions
that follow its rightmost occurrence. If the item does not occur at all in the sequence,
then it is inserted in all positions.

In figure 5c, inserting D only in positions following its rightmost occurrence
prevents the generation of duplicates.

4.4 Examining the Candidate Sequences Generated

After intersecting sequence S with item Ij and generating each new (k+1)-sequence S’,
we check MinNonFreqList, looking for any minimal non-frequent sequence that may
be subsequences of S’. If there exists such a sequence in MinNonFreqList, then
apparently S’ is non-frequent as well, it is pruned directly and removed from
SET(S+Ij). Otherwise, we check MaxFreqList, looking for any maximal frequent se-
quence that may be a supersequence of S’. If there exists such a sequence in
MaxFreqList, then apparently S’ is frequent as well, and does not need be scanned in
the database because it is already determined to be frequent. It remains, though, in
SET(S+Ij), because it may generate longer frequent sequences. If no sequence in
MaxFreqList was found to be a supersequence of sequence S’ then it remains in
SET(S+Ij) and it has to be scanned against the database.

4.5 List of Candidate Sequences – candList(S)

We use the symbol �
UselessSFreqListIj

jISSETScandList
.

)()(
−∈

+= to express the set of all

sets SET(S+Ij).. In order to store candList(S) in memory we use a ‘list of lists’
structure. Each node of the list is associated with an item Ij and SET(S+Ij). This
structure is used for determining more items to be inserted in the useless set of the
sequence. The process will be explained in detail in a later subsection.

4.6 Adding Items to S.Useless

When intersecting k-sequence S with all items Ij in FreqItems-S.Useless, each iteration j
produces SET(S+Ij). At the end of each iteration, after SET(S+Ij) has been generated, item
Ij is inserted in the Useless set of the sequence S, because all possible candidate sequences
that can result from the intersection have already been produced. As a result, during
iteration j, when item Ij is intersected with sequence S, the Useless set of sequence S
contains all items Ik with j>k≥1. This is very important for avoiding duplicates.

4.7 Inheriting the Useless Set

The Useless set of a k-sequence S contains important information that must not be
ignored when we examine each one of the (k+1)-sequences that k-sequence S gen-
erated. The Useless set of k-sequence S is ‘inherited’ by the (k+1)-sequences gen-

432 I. Tsoukatos and D. Gunopulos

erated by S for two reasons: (1) to avoid generation of duplicates and (2) to avoid
generation of sequences that are certain to be non-frequent.

4.7.1 Inheritance against Duplicate Sequences

Assume a k-sequence S that is intersected with item A which produces SET(S+A). Then
each (k+1)-sequence in SET(S+A) is intersected with item B. We use the symbol
SET(S+A,B) to express the set of these candidate (k+2)-sequences. Assume now we

intersect the k-sequence S first with B to
get SET(S+B), and then intersect each
one of the resulting (k+1)-sequences with
A to get SET(S+B,A). Apparently,
SET(S+A,B)= SET(S+B,A). The reason
for this is the way that (k+1)-sequences
are generated from a k-sequence and an
item, by inserting the item in all possible
positions in the k-sequence. As a result,
the two sets should not be examined
twice. Figure 6 presents this argument
visually. To avoid the above scenario,
when intersecting a k-sequence S with an

item Ij in FreqItems-S.Useless to produce the SET(S+Ij), then all items Ik with j>k≥1 that
were before Ij in FreqItems must not be intersected with any of these (k+1)-sequences in
SET(S+Ij). For this reason, the useless set of each one of the (k+1)-sequences in
SET(S+Ij) must contain all items Ik with j>k≥1, To achieve this, we force all (k+1)-
sequences of SET(S+Ij) to inherit S.Useless from k-sequence S when they are created,
since, during each iteration j, all items Ik, with j>k≥1, are in the S.Useless

4.7.2 Inheritance against Non-frequent Sequences

Assume we are intersecting 2-sequence S=A→B with items D and E. Figure 7 shows
all the 3-sequences that are produced. Column (a) shows the 4-sequences produced
from the intersection of S with E. Column (b) shows the 3-sequences produced from

the intersection of S with D. Let’s
assume that all sequences of column (a)
turn out to be non-frequent and that some
of the sequences in column (b) are
frequent. Assume we are now examining
the frequent sequence S’=D→A→B of
column (b) and we intersect it with item
E. We get the sequences in column (c).
But as it can easily be seen from figure 7,
all 4-sequences of column (c) have some
3-sequence of column (a) as a

subsequence and cannot be frequent. As a result, E is a useless item for all the other

Fig. 6. Sequences generated more than once

Fig. 7. Generated Sequences

433Efficient Mining of Spatiotemporal Patterns

(k+1)-sequences. To summarize, if SET(S+Ik)= Ø, for some item Ik, then item Ik is
inserted in the useless set of all (k+1)-sequences in all the other sets SET(S+Ij).

4.8 Correctness of the DFS_MINE Algorithm

We present two theorems that ensure the correctness of the DFS_MINE algorithm.
Their proofs are included in the full version of the paper.

Theorem 2. DFS_MINE does not generate any sequence twice.

Theorem 3. DFS_MINE does not miss any frequent sequence.

4.9 DFS_MINE: Implementation – Putting It All Together

DFS_MINE(min_sup, D)
 FreqItems={Frequent Items or 1-sequences};
 Freq2Seqs={Frequent 2-sequences};
 //insert all non frequent 2-sequences in MinNonFreqList
 MinNonFreqList={all non frequent 2-sequences};
 MaxFreqList={ };
 //calling DFS on the frequent 2-sequences
 For all sequences S in Freq2Seqs do
 DFS_VISIT(S, MaxFreqList, min_sup, D);

Fig. 8. Pseudocode for DFS_MINE algorithm

DFS_VISIT(S, MaxFreqList, min_sup, D)
 CandList={ };
 //generate sequences from the intersection of S with I j
 For all frequent items I j ∈ FreqItems-S.Useless
 GenerateSequences(S, I j , SET(S+I j));
 CandList=CandList ∪ SET(S+I j);
 S.Useless=S.Useless ∪ {I j };
 If (there are sequences is CandList to be scanned)
 ScanSeqs(D, min_sup, CandList);
 MoreUseless={ };
 For all sets of sequences SET(S+I j) in CandList
 //checking for more useless items
 if (SET(S+I j))== ∅, MoreUseless=MoreUseless ∪ {I j };
 else for all sequences S i in SET(S+I j)
 //if frequent, insert it in MaxFreqList
 if (S i .freq>=min_sup)MaxFreqList=MaxFreqList ∪{S i };
 //if not, insert it in MinNonFreqList
 else MinNonFreqList=MinNonFreqList ∪{S i };
 //call DFS_VISIT recursively on all frequent sequences
 For all sequences S i in CandList
 S i .Useless=S i .Useless ∪ MoreUseless;
 DFS_VISIT(S i , MaxFreqList, min_sup, D);

Fig. 9. Pseudocode for function DFS_VISIT

434 I. Tsoukatos and D. Gunopulos

Figure 8 shows the pseudocode for the DFS_MINE algorithm. Figure 9 shows the
pseudocode for function DFS_VISIT. This is the function that performs the recursive
DFS-like mining process. Sequence S is intersected with all items in FreqItems-
S.Useless. We create candList to store the sets SET(S+Ij). After each iteration j, item Ij
is inserted in S.Useless. If there are any SET(S+Ij)=Ø, item Ij is an additional useless
item that needs to be inherited by all the resulting (k+1)-sequences. We keep all these
items in list MoreUseless. We scan against the database all sequences in candList that
are not known to be frequent. We update MaxFreqList and MinNonFreqList accord-
ingly, in case we have discovered some maximal frequent or minimal non-frequent
sequence respectively. Each sequence S’ in all SET(S+Ij), for all Ij, inherits all the
items in MoreUseless. Finally, we call function DFS_VISIT(S’) on each one of them
to continue the recursive DFS-like process.

Fig. 10. DFS_MINE example

4.10 DFS_MINE Example

In this subection we present an example of how the algorithm works. Let’s assume 3
frequent items (A,B,C) and a k-sequence S with S.Useless=∅. MaxFreqList and
MinNonFreqList are also available. We intersect with A to get SET(S+A) which
inherits S.Useless=∅. We check MaxFreqList and MinNonFreqList for each sequence
in SET(S+A) to determine whether it is frequent or not. Item A is added to S.Useless
to reflect the fact that the intersection with A has been completed. The same process is
repeated for B and C and S.Useless is updated each time. When S has been intersected
with all items, we scan the database for the sequences whose support is unknown.
Let’s assume that all sequences in SET(S+C) turn out to be non-frequent. Item C is
then inserted in the Useless set of all sequences in SET(S+A) and SET(S+B) to reflect

435Efficient Mining of Spatiotemporal Patterns

the fact that the intersection with C will yield only non-frequent sequences.
MaxFreqList and MinNonFreqList are updated accordingly with any new maximal
frequent or minimal non-frequent sequences, respectively, that may have been dis-
covered in this step. We then pick the first (k+1)-sequence S’ in SET(S+A) and repeat
the same process. All steps of the procedure described above can be seen in figures
10a through 10e.

5 Mining Frequent Spatiotemporal Sequences with Various
Spatial Granularities

In this section, we are studying the problem of mining spatiotemporal sequences in
various spatial granularities. So far, we have been studying the mining of frequent
sequences in the given space. In the example database of figure 2, the given area had 16
distinct locations. It is very interesting, though, to generalize spatially the results we
have found so far and mine frequent sequences in a higher level of spatial granularity.
For example, we may have environmental data for all cities in the US. As a first step,
we can discover frequent sequences, by mining the data considering each city
independently from the others. But it is also interesting to examine the problem more
generally by mining frequent sequences in the counties of the US, or even more
generally, in the states of the US. We say that mining sequences by city is mining in
level 0 of spatial granularity, mining sequences by county is level 1 and mining by state
is level 2. Therefore, the concept of spatial granularity level can be defined as the
number of times we have generalized the original space we are examining. The way to
change spatial granularity level is by joining certain subregions into one region and by
considering the data that belonged to each subregion to belong to the new region we just
created. We can apply the same algorithm (with certain modifications) in order to
determine frequent sequences in these greater regions. The sequences that were found to
be frequent in a lower level will still be frequent. In addition to these, we will show that
other sequences, which were not frequent before, may also turn out to be frequent.

5.1 The Problem

Given a database D of environmental data, a minimum support threshold min_sup and
the level of spatial granularity gran_lev, the problem of mining frequent spatio-
temporal patterns in various spatial granularities is to find all frequent sequences in
the database for each level of spatial granularity, from level 0 to level gran_lev.

The key observation in mining in various spatial granularities is that the sequences that
are frequent in level j-1 will also be frequent in level j. Also, sequences that were not
frequent in level j-1, may now turn out to be frequent in level j. As a result, when moving
in a higher level of spatial granularity, we can benefit a lot by using the frequent sequences
that we just discovered in level j-1 as starting points and build on them to discover even
longer frequent sequences in level j. DFS_MINE’s strategy is ideal for taking advantage of
that observation, exactly because it forms candidate (k+1)-sequences by intersecting a k-
sequence with all frequent items in all possible positions in the k-sequence.

436 I. Tsoukatos and D. Gunopulos

5.2 Joining Subregions

To create a new region we join subregions together. We assume that we always join
four subregions. We also assume that the
original space contains a number of
original regions that is a power of four. To
join subregions into one, we use the
following formula









=

j
ij

k

Lid
Lid

4

0 for

i=0,1,2,…N, where i stands for the i-th
distinct location-id of spatial granularity
level 0 and N is the total number of
locations we have initially. Lidk

j stands

for the k-th distinct location-id of spatial
granularity level j. As a result, k=0,1,2,… N j/ 4 . Also, j=0,1,2…gran_lev. By using
the above formula, we can calculate the location-ids of the new regions that we have
in level j. For example, figure 11a shows the original space in the example database
with the 16 distinct locations. Figure 11b shows how these 16 distinct locations are
joined into groups of four to form the new four regions. Figure 11b also shows that
the ‘reverse-z’ enumeration is preserved.

5.3 Implementation

As we said, the environmental data does not change; it is just its locality that changes.
By joining four subregions of level j-1 into a new greater region in level j, the events
that occur in each one of these subregions are now considered to occur in the same
location. As a result, all events of those four subregions need to be included in the
location sequence of the new greater region. The location sequence of the new region

Lidk
j will contain all events that are occurring in any of the regions for which the

formula 







j
iLid

4

0

yields the same value. Now that we are merging the events of the

(a) Level 0 (b) Level 1
Fig. 11. Two different spatial granularities

Fig. 14. Maximal Frequent Sequences in level 1

Fig. 13. Location sequences in level

Fig. 12. Mining in level 1

437Efficient Mining of Spatiotemporal Patterns

four subregions together, we may have in the same itemset more than one items with
the same attribute but with different values, which was against the valid definition of
itemset (section 2). We need to relax this requirement and allow a location sequence
to consist of itemsets containing items with the same attribute but with different
values for the same attribute. Figure 12 shows the original space when we mine in
spatial granularity level=1. Figure 13 shows all new four location-sequences.

As we mine in a higher level of granularity, the number of locations decreases by a
factor of 4. min_sup, of course, does not change as a percentage. But the actual number of
locations that an event must occur in to be considered frequent changes. For example, in
the example database of figure 12, in level 0 with min_sup=50%, event P3 occurred in
only 3 out of the 16 locations and was not frequent. But in level 1 with min_sup=50%, the
same event P3 occurs in 3 out of the 4 locations, so it is frequent. This is an event that
must from now on be intersected with frequent sequences to produce longer candidate
sequences. For this reason, in level 0, when we scan the database for the first time, to
discover the frequent items, we keep all items in list FreqItems, even the ones that are not
frequent in level 0, because they may become frequent in higher levels. In each level we
only use those items that have support greater than min_sup.

As we have said, the main 1 idea is to discover even longer frequent sequences in
level j by using the frequent sequences of level j-1 as starting points and by building
on them. As a result, when mining in level j, we call function DFS_VISIT on all
maximal frequent sequences of level j-1 and intersect them with all frequent items to
produce all candidate sequences of greater length. This way, it is much faster to
discover even large frequent sequences in the current level. Moreover, at the end of
level j-1, MinNonFreqList contains all the minimal non-frequent sequences of level j-
1. When we move to level j, some of these minimal non-frequent sequences may now
be frequent, for the same reasons that individual items may now be frequent. For this
reason, we scan all sequences in MinNonFreqList against the database and determine
the frequent ones. These along with the maximal frequent sequences of the previous
level j will be the starting points for the mining process.

Finally, we must clear the Useless set of each sequence S of the sequences of level
j-1 that will be used as starting points in level j. This is because the whole process
starts all over again and, as a result, even the items that were in S.Useless may now
yield longer frequent sequences in level j.

5.4 Putting It All Together in DFS_MINE

We have shown what modifications are necessary to mine in multiple levels. Everything
else remains the same. In the main function, we include a for-loop to implement the
repeated procedure of mining in each level from level 0 to level gran_lev. MaxFreqList is
the list of maximal sequences of the current level. SpatialList contains the maximal
frequent sequences of each level. When mining in level j-1, we store the maximal frequent
sequences in MaxFreqList. After finishing level j-1, we insert MaxFreqList in SpatialList,
clear MaxFreqList and move to level j. In level j, we scan in the database the sequences of
MinNonFreqList of the previous level j-1 to determine which ones of those are now
frequent. We will use as starting points of level j the maximal frequent sequences
(MaxFreqList) of the previous level and the sequences of MinNonFreqList that were

438 I. Tsoukatos and D. Gunopulos

now found to be frequent. Finally, we need to slightly modify function DFS_VISIT
too, as we need to pass the current level of spatial granularity as an input parameter.

6 Related Work

In this section, we briefly discuss some related work that has been done in the field
([1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]). One approach is given
by Agrawal-Srikant in [1] and by Mannila et al. in [8]. Other mining techniques for
spatial data are given in [12] and [13] but they do not consider evolution in time.
Similarly, the spatial association rules introduced in [9] also mainly consider data that
does not change in time. Techniques for mining spatial and temporal data were also
given by [5], [6], [11].

Out of the very few approaches proposed so far, SPADE[14] seems to be the most
efficient one. Its key features are: (1) it uses a vertical id-list database format, where
each sequence is associated with a list of locations in which it occurs along with the
time stamps. The id-lists for each sequence are kept in main memory. (2) It uses a
lattice-theoretic approach to decompose the original search space (lattice) into smaller
lattices (equivalence classes [X] θk) which can be processed independently in main-
memory. (3) To generate a (k+1)-sequence, SPADE intersects two k-sequences with
the same (k-1)-length prefix (4) all frequent sequences can be enumerated via simple
id-list intersections. (5) SPADE minimizes I/O costs by reducing database scans.

7 Experimental Results

In this section, we compare the performance of our DFS_MINE with SPADE.
SPADE was implemented exactly as described in [11]. Experiments were performed
on a Quad Xeon 550Mhz processor with 2GB RAM.

7.1 Synthetic Datasets

The synthetic datasets mimic real world
scenarios, in which locations have various
values for attributes such as temperature,
atmospheric pressure, humidity etc. The
datasets are generated using the following
process. First NI maximal itemsets of average
size I are generated by choosing from N items.
Then NS maximal sequences of average size S
are created by assigning itemsets from NI to
each sequence. Next, a location, in which an
average number of C events (C points in time)
occur, is created. Sequences in NS are assigned
to different locations. We make sure at least

Fig. 15. Synthetic Databases

439Efficient Mining of Spatiotemporal Patterns

one sequence has support 75% and one sequence has support 50%. The generation
stops when D locations have been created. We set NS=5000, NI=25000, N=10000.
Figure 15 shows the datasets with their parameter settings. The columns for ‘Length
75%’ and ‘Length 50%’ specify the length of the longest sequence that had support at
least 75% and 50% respectively.

7.2 Comparison of DFS_MINE with SPADE

Figure 16 shows the results for DFS_MINE and SPADE. ‘OOM’ stands for ‘out of
memory’. Figures 17a and 17b compare DFS_MINE with SPADE on the synthetic
datasets for two values of minimum support: 75% and 50%. Both of these graphs are in

logarithmic scale.
Figures 17a and 17b
clearly indicate that
the performance gap
increases as the
length of the se-
quence to be mined
increases. The reason
for this is the DFS-
like strategy that
DFS_MINE uses. As
soon as a k-sequence
is found, DFS_
MINE intersects it
with all frequent
items and generates

all candidate (k+1)-sequences, in an attempt to discover a frequent (k+1)-sequence.
DFS_MINE, exactly because it works in DFS-like manner, does not enumerate all k-
sequences before moving on to the (k+1)-sequences. This way, it skips examining all
subsequences of some maximal frequent sequence, because they are certain to be frequent
too, and achieves faster discovery of longer maximal sequences. DFS_MINE does not
store the occurrences of sequences in id-list. Instead, it performs database scans each time
a new sequence is discovered. That obviously costs time because of I/O, but its DFS-like
approach that discovers long maximal frequent sequences much faster compensates for the
time spent on database scans.

On the other hand, SPADE uses a DFS-like approach only to a very short extent,
since it only decomposes the original lattice to the [X] θ1 equivalence classes. Apart
from that, it uses a BFS approach and examines all sequences of length k before
moving on to the sequences of length k+1. This is clearly inefficient, because SPADE
takes too long before discovering long frequent sequences.

In general, the sequence problem is CPU bound, rather than I/O bound. This is due
to the fact that the number of id-list intersections we need to perform (assuming we
use SPADE) is exponential to the number of frequent items we have in the dataset.
On the other hand, the cost of performing a database scan each time to determine the
support of a sequence (assuming we use DFS_MINE) is only linear to the number of

Fig. 16. Experimental results for DFS_MINE and SPADE

440 I. Tsoukatos and D. Gunopulos

frequent items in the database. As a result, as the frequent sequences grow longer, scanning
the dataset, however large that may be, becomes less expensive than performing all possible
id-list intersections between k-sequences.

As the figures
show, for large data-
sets (more than 10
MB) and rather short
maximal frequent
sequences (of length
approximately 3-6),
SPADE performs bet-
ter than DFS_ MINE.
This is due to the fact
that the sequences are
rather short. As a
result, the cost of the
id-list intersections
that SPADE performs
is less than the cost of
scanning a large data-
set, which is what
DFS_MINE does.
We experimented

with equally large datasets (more than 10MB) that contained much longer maximal frequent
sequences (of length approximately 25-30) and SPADE ran out of memory.

This is another very important observation. As far as space is concerned,
DFS_MINE is much more efficient than SPADE, as figure 17c shows. This is because
DFS_MINE, inlike SPADE, does not need to store any significant amounts of
information for each sequence. Our experiments showed that SPADE may require up
to 1.5GB of memory. DFS_MINE, on the other hand, rarely did it use more than 5MB
of memory. Figure 17c is also in logarithmic scale.

Finally, as far as scaling is concerned, we performed a set of experiments where we
increased the number of locations from 50000 to 500000. Figure 17d presents the
results. As it can be seen, DFS_MINE performs really well even in this aspect. When
the number of locations increases from 50000 to 100000 (a factor of 2), the required
time increases by a factor much less than 2. Moreover, when the number of locations
increases from 100000 to 500000 (a factor of 5), the required time increases by much
less than a factor of 5.

8 Conclusions

In this paper, we presented DFS_MINE, a new algorithm for fast mining of frequent
spatiotemporal patterns in environmental data. First, we defined the problem of min-
ing frequent spatiotemporal sequences. We then discussed in detail our solution:
DFS_MINE, It uses a DFS-like approach to the problem, which allows very fast

Fig. 17. Comparison between DFS_MINE and SPADE

441Efficient Mining of Spatiotemporal Patterns

discoveries of long sequential patterns. DFS_MINE does not enumerate all frequent
sequences. Instead, it aims at discovering only the maximal frequent ones. When a max-
imal frequent sequence is discovered, we do not need to examine all of its sub-
sequences, since they are certain to be frequent. DFS_MINE performs database scans
discover frequent sequences rather than relying on information stored in main memory.
This has the advantage that the amount of space required is minimal. We also defined
the problem of mining spatiotemporal sequences in various spatial granularities. We
defined the concept of spatial granularity and showed that DFS_MINE’s strategy of
using the results of the previous level to discover faster the frequent sequences of the
next level is ideal for addressing this problem as well. The experiments that we
performed showed that the I/O cost of the database scan that DFS_MINE performs is
offset by the efficiency of the DFS-like approach that ensures fast discovery of long
frequent patterns. DFS_MINE discovered long maximal frequent sequences faster than
SPADE. The experiments also showed that DFS_MINE outperformed SPADE even as
far as space requirements are concerned. DFS_MINE also had excellent scale-up
properties with respect to the size of the database.

References

1. R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules, 20th VLDB,
Santiago, Chile, Sept. 1994

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast discovery of
association rules. Advances in Knowledge Discovery and Data Mining 1996

3. R. Agrawal, R. Srikant: Mining Sequential Patterns, Proc. of the Fifth Int'l Conference on
Extending Database Technology (EDBT), Avignon, France, March 1996

4. B.A. Davey, H.A. Priestley: Introduction to lattices and Order. Cambridge University
Press, 1990

5. Klosgen, W., 1995. Deviation and association patterns for subgroup mining in temporal,
spatial, and textual data bases. Proc. First International Conference on Rough Sets and
Current Trends in Computing, RSCTC`98, 1-18, Springer-Verlag, Berlin,.

6. Klosgen, W., 1998. Subgroup mining in temporal, spatial and textual databases. Proc. International
Symposium on Digital Media Information Base, 246-261, World Scientific, Singapore.

7. K. Koperksi, J. Han: Discovery of Spatial Association Rules in Geographic Information
Databases, 4th Int'l Symp. on Large Spatial Databases (SSD95), Maine, Aug. 1995.

8. H. Mannila, H. Toivonen, A. I. Verkamo: Discovery of frequent episodes in event
sequences. Report C-1997-15, University of Helsinki, Department of Computer Science,
February 1997.

9. R. T. Ng, J. Han: Efficient and Effective Clustering Methods for Spatial Data Mining.
VLDB 1994

10. J. Sander, M. Ester, H-P Kriegel, X. Xu: Density-Based Clustering in Spatial Databases:
The Algorithm GDBSCAN and Its Applications.

11. Stolorz, P., et al., 1995. Fast Spatio-Temporal Data Mining of Large Geophysical Sets.
Proc. First International Conference on Knowledge Discovery and Data Mining, Montreal,
Canada, 300-305, AAAI Press.

12. W. Wang, J. Yang, R. Muntz: STING: A Statistical Information Grid Approach to Spatial
Data Mining, 23rd VLDB Conference, Athens, Greece, Aug 1997.

13. W. Wang, J. Yang, R. Muntz: STING+: An Approach to Active Spatial Data Mining,
International Conference on Data Engineering (ICDE-99), Australia, March, 1999.

14. M. Zaki: Efficient Enumeration of Frequent Sequences, Machine Learning Journal 2001

442 I. Tsoukatos and D. Gunopulos

	1 Introduction
	2 Mining Spatiotemporal Patterns in Environmental Data
	2.1 Definitions
	2.2 The Problem

	3 The Lattice-Based Approach
	4 DFS_MINE
	4.1 General
	4.2 Maximal Frequent Sequences List – Minimal Non-frequent Sequences List
	4.3 Generating Sequences
	4.4 Examining the Candidate Sequences Generated
	4.5 List of Candidate Sequences – candList(S)
	4.6 Adding Items to S.Useless
	4.7 Inheriting the Useless Set
	4.7.1 Inheritance against Duplicate Sequences
	4.7.2 Inheritance against Non-frequent Sequences

	4.8 Correctness of the DFS_MINE Algorithm
	4.9 DFS_MINE: Implementation – Putting It All Together
	4.10 DFS_MINE Example

	5 Mining Frequent Spatiotemporal Sequences with Various
	5.1 The Problem
	5.2 Joining Subregions
	5.3 Implementation
	5.4 Putting It All Together in DFS_MINE

	6 Related Work
	7 Experimental Results
	7.1 Synthetic Datasets
	7.2 Comparison of DFS_MINE with SPADE

	8 Conclusions

