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Abstract. The problem of mining spatiotemporal patterns is finding 
sequences of events that occur frequently in spatiotemporal datasets. 
Spatiotemporal datasets store the evolution of objects over time. Examples 
include sequences of sensor images of a geographical region, data that 
describes the location and movement of individual objects over time, or 
data that describes the evolution of natural phenomena, such as forest 
coverage. The discovered patterns are sequences of events that occur most 
frequently. In this paper, we present DFS_MINE, a new algorithm for fast 
mining of frequent spatiotemporal patterns in environmental data. 
DFS_MINE, as its name suggests, uses a Depth-First-Search-like approach 
to the problem which allows very fast discoveries of long sequential 
patterns. DFS_MINE performs database scans to discover frequent 
sequences rather than relying on information stored in main memory, which 
has the advantage that the amount of space required is minimal. Previous 
approaches utilize a Breadth-First-Search-like approach and are not 
eff icient for discovering long frequent sequences. Moreover, they require 
storing in main memory all occurrences of each sequence in the database 
and, as a result, the amount of space needed is rather large. Experiments 
show that the I/O cost of the database scans is offset by the eff iciency of the 
DFS-like approach that ensures fast discovery of long frequent patterns. 
DFS_MINE is also ideal for mining frequent spatiotemporal sequences with 
various spatial granularities. Spatial granularity refers to how fine or how 
general our view of the space we are examining is. 

 

1   Introduction 

In this paper, we consider the problem of finding frequent patterns of change in 
spatiotemporal datasets. Spatiotemporal datasets store the evolution of objects over 
time. Figure 1 presents an example dataset that contains the temperatures in the 
United States The discovered patterns are sequences of events that occur most 
frequently. The importance of the knowledge of such patterns is obvious.  

The task of discovering such frequent patterns is extremely challenging, since the 
search space is extremely large. The problem becomes even more challenging when 
the sequences to be discovered are rather long. Despite the ubiquity of spatiotemporal
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data, the problem of mining such data has not received a lot of attention. Previous 
approaches include finding frequent sequential patterns in sequence data ([3], [8], 
[14]), finding spatial association rules ([1], [2], [7]), clustering spatial datasets ([9], 
[10]) or answering statistical queries in spatial datasets ([12], [13]). Most current 
algorithms use a Breadth-First-Search approach. This has the disadvantage of 
exhausting all sequences of length k before moving on to examining the sequences of 
length k+1. Moreover, some of the existing solutions attempt to speed up the process 
of discovery by minimizing the number of database scans and by storing all necessary 
information in main memory. When the sequences to be mined are rather long, the 
amount of space required is enormous.  

In this paper, we present DFS_MINE, a new algorithm for discovering frequent 
spatiotemporal sequences. The key features of our approach are: (1) DFS-MINE 
uses the lattice-theoretic approach to decompose the original search space. (2) It 
follows the concept of Depth-First-Search, that is, it tries to discover frequent 
sequences of length k without exhausting all the frequent sequences of length k-1. It 
uses information about frequent sequences already discovered to mine sequences of 

greater length. It 
backtracks, like 
DFS, to sequences 
of smaller length 
when all longer 
sequences of the 
chosen lattice path 
turn out to be non-
frequent, thus, en-

suring, fast discovery of long frequent patterns. (3) DFS_MINE does not enumerate 
all frequent sequences in the database. It discovers very fast only the maximal 
frequent sequences. (4) DFS_MINE determines the support of some sequences by 
using the theoretical background of the lattice (5) DFS-MINE does not aim at 
minimizing the database scans. It performs database scans to determine the 
frequency of a set of sequences. Despite that fact, it achieves fast discovery of the 
frequent sequences thanks to its DFS-like strategy. (6) It also does not require 
enormous amounts of memory. It only needs minimal space to store just two 
structures (the list of maximal frequent sequences and the list of minimal non 
frequent sequences) that allow an efficient representation of the search space. 
Experiments prove that DFS_MINE outperforms all existing solutions, as far as 
both time and space are concerned, especially when the sequences to be discovered 
are rather long. 

Finally, we study the problem of mining spatiotemporal patterns in 
environmental data in various levels of spatial granularity. Spatial granularity 
refers to how fine or how general our view of the given space is. Whether we are 
mining in the very fine level of the cities or counties in the US or the very 
general level of the fifty states, DFS_MINE’s strategy is ideal for mining in 
various spatial granularity levels, because, as we will show, it uses the results of 
the previous level in order to discover faster the frequent sequences of the next 
level.  

Fig. 1. Example spatiotemporal dataset (temperatures in the US) 
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The rest of this paper is organized as follows: in section 2, we define the problem 
of mining frequent spatiotemporal sequences in environmental data. Section 3 
presents the necessary background on the concept of ‘the lattice’, which is used by 
DFS_MINE. In section 4, we present in detail the DFS_MINE algorithm. In section 5, 
we define the problem of mining in various spatial granularities and show how 
DFS_MINE is easily extended to address this problem as well. Section 6 briefly 
discusses related work on the subject and section 7 presents the results of the 
experiments we performed to evaluate DFS_MINE. Finally, we conclude in section 8. 

2   Mining Spatiotemporal Patterns in Environmental Data 

2.1   Definitions 

The problem of mining sequential patterns in spatiotemporal data can be stated as 
follows: Let A={A1, A2, ..., Ad}  be a set of distinct spatiotemporal attributes. For 
example, atmospheric pressure P and temperature T are two distinct attributes. A 
spatiotemporal item I j is a pair (Aj , Vj) where Aj  is an attribute in A and Vj is a 
value assigned to it. For example (T, 90) is an item, meaning that temperature 
T=90F. 

A spatiotemporal itemset IS is a non-empty set of items of distinct attributes. An 
itemset is denoted (I1, I2, ..., Ik) where Ij is an item (Aj, Vj). All attributes Aj of the 
items Ij must be distinct. For example, itemset IS1=(H=60, P=1000, T=90) is a valid 
itemset, while itemset IS2=(T=70, T=90) is not. An itemset with k items is called k-

itemset. A specific spatiotemporal event is a 
spatiotemporal itemset IS associated with some 
location Lidj and some point in time tk.  

A sequence S is an ordered list of itemsets ISi, i.e. 
an ordered list of spatiotemporal events, denoted as 
S= (IS1→IS2→…→ISn) where IS1, IS2, ..., ISn are 
itemsets. A sequence with k items is called a k-
sequence. For example ((T=70)→(T=90, P=1.1)) is a 
3-sequence, which means that in a certain location, in 
one point in time the temperature T was 70 and some 
time later the temperature T was 90F and the pressure 
P was 1.1atm. An item can occur only once in an 
itemset, but it can occur multiple times in different 

itemsets of a sequence. In the rest, we will use the symbols: T1, T2, …, P1, P2, … to 
denote different values for temperature, pressure and humidity,  etc. 

A sequence S1= (IS1→IS2→...→ISn) is a subsequence of another sequence S2= 
(IS1→IS2→...→ISm), denoted as S1≤S2, if there exist integers i1<i2<…<i n such that 
ISi⊆ ISij for all ISi. For example, sequence (T1→P1T2) is a subsequence of 
(H1T1→P2→H2P1T2), since the sequence elements T1⊆H1T1 and P1T2⊆H2P1T2. 
Sequence (H1P1→T2) is not a subsequence of (H1P1T2) and vice versa. A sequence 
S1 is a supersequence of another sequence S2, denoted as S1≥ S2, if S2 is a 

Fig. 2. ‘Reverse-z’ enumeration 
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subsequence of S1. A specific event E has a unique identifier and contains a set of 
items. A location L also has a unique identifier (location-id or Lid). We use decimal 
representation for the location-id. The original space is partitioned in locations that 
are enumerated in a ‘reverse-z’ manner. Figure 2 depicts the concept of the ‘reverse-
z’ enumeration. Each location has associated with it a list of events {E1, E2, ..., En}. 

No location L has 
more than one 
event with the 
same time-stamp. 
This is because 
only one event 
can occur in a 
specific location 
in a specific point 
in time. The list 
of specific events 
associated with a 

location is sorted by time. Thus the list of events of a location is a sequence 
E1→E2→… →En, called the location-sequence. A location-sequence is L is said to 
contain a sequence S, if S≤ L, i.e. if S is a subsequence of the location-sequence L. 
The support or frequency of a sequence S, denoted σ(S), is the total number of times 
the sequence is encountered. Given a user specified threshold called minimum support 
(denoted min_sup), we say that a sequence is frequent if it occurs at least min_sup 
times. The set of frequent k-sequences is denoted Fk.  

2.2   The Problem 

Given a database D of location sequences and min_sup, the problem of mining 
spatiotemporal patterns is to find all frequent sequences in the database. For example 
consider figure 3, which presents the location sequences and the frequent sequences. 
The database has nine items (H1, H2, H3, P1, P2, P3, T1, T2, T3), sixteen locations 
and three points in time. The figure also shows all the frequent sequences with 
min_sup=50% or 8 locations. The maximal frequent sequences are: H2→T2→T3 and 
T1→H3P1→P2.  

Fig. 3. Example Environmental Database 
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3   The Lattice-Based Approach 

Here we assume that the reader is familiar with basic concepts of lattice theory (see 
[4] for more). Zaki [14] formulated the frequent sequence mining problem as a search 
problem in a search space. In this section we follow his treatment. Let P be a set. A 

partial order on P is a 
binary relation ≤ on P that 
is reflexive: (X ≤ X), anti-
symmetric (X ≤ Y and Y ≤ 
X imply X=Y) and  trans-
itive (X ≤ Y and Y ≤ Z 
imply X ≤ Z, for all X, Y, Z 
∈ P). A partially ordered 
set L is called a lattice if 
the two binary operations: 
join (denoted as X∨Y) and 
meet (denoted as X∧Y) 
exist for all X, Y ∈ L. L is 
a complete lattice if the 
join and meet exist for 

arbitrary subsets of L. 

Theorem 1 [14]. Given a set E of events, the ordered set S of all possible sequences 
on the items is a complete lattice in which join and meet are given by union and 

intersection, respectively:  { }∨ ∈ =
∈

A e E Ae e
e E

| � ,              

{ }∧ ∈ =
∈

A e E Ae e
e E

| �  

The bottom element ⊥ of the sequence lattice S is ⊥={}, but the top element is 
undefined since in the abstract the sequence lattice is infinite. However, in all 
practical cases it is bounded and sparse. Figure 4 shows the sequence lattice induced 
by the maximal frequent sequences T1→H3P1→P2 and H2→T2→T3 for our 
example database. Efficient algorithms for finding all frequent sequences are based on 
the fact that all susequences of a frequent sequence have to be frequent. 

4   DFS_MINE 

In this section we present DFS_MINE in detail. The algorithm uses the lattice-
theoretic approach to decompose the original search space. Its strategy follows the 
concept of Depth-First-Search: it tries to discover frequent sequences of length k+1 
without exhausting all the frequent sequences of length k. The main idea is that if we 
discover fast a frequent k-sequence, then we do not need to waste time examining all 
of its subsequences, because they are certain to be frequent. A frequent k-sequence is 

Fig. 4. Lattice induced by the maximal sequences 
T1→H3P1→P2 and H2→T2→T3 
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intersected with all frequent items to generate all candidate (k+1)-sequences, which 
are then scanned against the database. The only information DFS_MINE stores for 
each sequence is the ‘useless set’ of each sequence. It also stores two structures: a list 
of maximal frequent sequences (MaxFreqList) and a list of minimal non frequent 
sequences (MinNonFreqList).  

4.1   General 

Given the minimum threshold of support (min_sup), we scan the database once 
looking for occurrences of items. The frequent items are kept in the list of frequent 
items (FreqItems). The items are inserted in FreqItems in a specific order, not 
necessarily alphabetical. Whenever we scan and use the frequent items in FreqItems 
in later steps, we always respect that order. To generate all candidate 2-sequences, we 
intersect all frequent items with each other in all possible combinations. This set is 
also scanned against the database. The frequent 2-sequences are inserted in the list of 
maximal frequent sequences (MaxFreqList) and the non-frequent 2-sequences are 
inserted in the list of minimal non-frequent sequences (MinNonFreqList). The 
algorithm uses the frequent 2-sequences to mine frequent patterns. The non-frequent 
2-sequences are used for pruning of longer non-frequent sequences. The Useless Set 
of a k-sequence S (S.Useless) is a set of items that must not be intersected with k-
sequence S.  

4.2   Maximal Frequent Sequences List – Minimal Non-frequent Sequences List 

DFS_MINE keeps a list of all maximal frequent sequences in memory. We define 
‘maximal frequent sequence’ as a sequence that is frequent and all of its 
supersequences are non-frequent sequences or have not yet been found to be frequent 
sequences. This list serves many purposes. First, it is the final result of the algorithm, 
since, at the end, it contains all maximal frequent sequences discovered in the data-
base. Second, it is used for possibly determining whether a sequence is frequent or 
not. When a new candidate sequence S is generated, we check whether it is a sub-
sequence of any of the sequences in MaxFreqList. If there exists such a sequence in 
the list, then, according to Lemma 1, sequence S is also frequent. A sequence S is 
inserted in MaxFreqList when all three of the following conditions hold: (1) S is not 
already in MaxFreqList, (2) S is not a subsequence of some maximal frequent se-
quence already in MaxFreqList, (3) S was scanned in the database and was found to 
be frequent. In this case, we need to insert the new sequence S in MaxFreqList. After 
the insertion, we scan all sequences of length less than S.Length and check whether 
they are subsequences of S. If so, they are removed, since they are frequent but no 
longer maximal. The structure is kept as a list of lists of sequences of equal length. 
The list of the lengths is sorted in decreasing order of length. As a result, the longest 
maximal sequences are kept in the beginning of the list. The reason for this is that the 
longer a frequent sequence is, the more likely it is to be a supersequence of some 
sequence S’ which is currently under consideration. By keeping only the maximal fre-
quent sequences, instead of all frequent sequences (maximal or not), we save a lot of 
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space while maintaining all the necessary information to represent the lattice of 
frequent sequences.  

Dually, DFS_MINE also keeps a list of all minimal non-frequent sequences in 
memory. We define ‘minimal non frequent sequence’ as a sequence that is non-
frequent and all of its subsequences are frequent sequences. This list is used for 
pruning sequences. When a new candidate sequence S is generated, we check whether 
it is a supersequence of any of the sequences in MinNonFreqList, that is, if there 
exists any sequence in MinNonFreqList that is a subsequence of sequence S. If there 
exists such a sequence in the list, then, according to Lemma 1, sequence S is also non-
frequent. A sequence S is inserted in MinNonFreqList when all three of the following 
conditions hold: (1) S is not already in MinNonFreqList, (2) S is not a supersequence 
of some minimal non-frequent sequence already in MinNonFreqList (3) S was 
scanned in the database and was found to be non-frequent. In this case, we need to 
insert the new sequence S in MinNonFreqList. After the insertion, we scan all 
sequences of length greater than S.Length and check whether they are supersequences 
of S. If so, they are removed, since they are non-frequent but no longer minimal. The 
structure is kept as a list of sequences sorted in increasing order of length.  

4.3   Generating Sequences 

DFS_MINE generates (k+1)-sequences by using a k-sequence and intersecting it with 
all frequent items Ij that are in FreqItems but not in the useless set of k-sequence S (Ij 
∈ FreqItems - S.Useless). The intersection of an item Ij with a k-sequence S involves 

inserting the item in all 
possible positions in the k-
sequence. We use the sym-
bol SET(S+Ij) to express the 
set of candidate (k+1)-se-
quences that result from the 
intersection of k-sequence S 
with item Ij. There are two 
kinds of resulting sequences 
resulting: (a) the sequences 
in which the item is inserted 
as part of an existing itemset 
and (b) the sequences in 

which the item is inserted as a separate itemset. An itemset cannot contain more than 
one copy of the same item. As a result, some of the resulting candidate sequences are 
rejected. Figures 5a and 5b present an example. By performing intersection in this 
way though, we may generate duplicate sequences. Figure 5c presents a possible 
situation: from the same 3-sequence A→A→A, we can get the same 5-sequence 
AD→A→AD through two different paths. To avoid generating duplicate sequences, 
we redefine the way intersection is performed.  

Definition 1. Intersection of k-sequence S with item I 

Fig. 5. Generating Sequences 
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When we intersect sequence S with item I, we insert item I in all possible positions 
that follow its rightmost occurrence. If the item does not occur at all in the sequence, 
then it is inserted in all positions.  

In figure 5c, inserting D only in positions following its rightmost occurrence 
prevents the generation of duplicates.  

4.4   Examining the Candidate Sequences Generated 

After intersecting sequence S with item Ij and generating each new (k+1)-sequence S’, 
we check MinNonFreqList, looking for any minimal non-frequent sequence that may 
be subsequences of S’. If there exists such a sequence in MinNonFreqList, then 
apparently S’ is non-frequent as well, it is pruned directly and removed from 
SET(S+Ij). Otherwise, we check MaxFreqList, looking for any maximal frequent se-
quence that may be a supersequence of S’. If there exists such a sequence in 
MaxFreqList, then apparently S’ is frequent as well, and does not need be scanned in 
the database because it is already determined to be frequent. It remains, though, in 
SET(S+Ij), because it may generate longer frequent sequences. If no sequence in 
MaxFreqList was found to be a supersequence of sequence S’ then it remains in 
SET(S+Ij) and it has to be scanned against the database. 

4.5   List of Candidate Sequences – candList(S) 

We use the symbol �
UselessSFreqListIj

jISSETScandList
.

)()(
−∈

+=  to express the set of all 

sets SET(S+Ij).. In order to store candList(S) in memory we use a ‘list of lists’ 
structure. Each node of the list is associated with an item Ij and SET(S+Ij). This 
structure is used for determining more items to be inserted in the useless set of the 
sequence. The process will be explained in detail in a later subsection. 

4.6   Adding Items to S.Useless 

When intersecting k-sequence S with all items Ij in FreqItems-S.Useless, each iteration j 
produces SET(S+Ij). At the end of each iteration, after SET(S+Ij) has been generated, item 
Ij is inserted in the Useless set of the sequence S, because all possible candidate sequences 
that can result from the intersection have already been produced. As a result, during 
iteration j, when item Ij is intersected with sequence S, the Useless set of sequence S 
contains all items Ik with j>k≥1. This is very important for avoiding duplicates. 

4.7   Inheriting the Useless Set 

The Useless set of a k-sequence S contains important information that must not be 
ignored when we examine each one of the (k+1)-sequences that k-sequence S gen-
erated. The Useless set of k-sequence S is ‘inherited’ by the (k+1)-sequences gen-
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erated by S for two reasons: (1) to avoid generation of duplicates and (2) to avoid 
generation of sequences that are certain to be non-frequent.  

4.7.1   Inheritance against Duplicate Sequences 

Assume a k-sequence S that is intersected with item A which produces SET(S+A). Then 
each (k+1)-sequence in SET(S+A) is intersected with item B. We use the symbol 
SET(S+A,B) to express the set of these candidate (k+2)-sequences. Assume now we 

intersect the k-sequence S first with B to 
get SET(S+B), and then intersect each 
one of the resulting (k+1)-sequences with 
A to get SET(S+B,A). Apparently, 
SET(S+A,B)= SET(S+B,A). The reason 
for this is the way that (k+1)-sequences 
are generated from a k-sequence and an 
item, by inserting the item in all possible 
positions in the k-sequence. As a result, 
the two sets should not be examined 
twice. Figure 6 presents this argument 
visually. To avoid the above scenario, 
when intersecting a k-sequence S with an 

item Ij in FreqItems-S.Useless to produce the SET(S+Ij), then all items Ik with j>k≥1 that 
were before Ij in FreqItems must not be intersected with any of these (k+1)-sequences in 
SET(S+Ij). For this reason, the useless set of each one of the (k+1)-sequences in 
SET(S+Ij) must contain all items Ik with j>k≥1, To achieve this, we force all (k+1)-
sequences of SET(S+Ij) to inherit S.Useless from k-sequence S when they are created, 
since, during each iteration j, all items Ik, with j>k≥1, are in the S.Useless  

4.7.2  Inheritance against Non-frequent Sequences 

Assume we are intersecting 2-sequence S=A→B with items D and E. Figure 7 shows 
all the 3-sequences that are produced. Column (a) shows the 4-sequences produced 
from the intersection of S with E. Column (b) shows the 3-sequences produced from 

the intersection of S with D. Let’s 
assume that all sequences of column (a) 
turn out to be non-frequent and that some 
of the sequences in column (b) are 
frequent. Assume we are now examining 
the frequent sequence S’=D→A→B of 
column (b) and we intersect it with item 
E. We get the sequences in column (c). 
But as it can easily be seen from figure 7, 
all 4-sequences of column (c) have some 
3-sequence of column (a) as a 

subsequence and cannot be frequent. As a result, E is a useless item for all the other 

Fig. 6. Sequences generated more than once 

Fig. 7. Generated Sequences 
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(k+1)-sequences. To summarize, if SET(S+Ik)= Ø, for some item Ik, then item Ik is 
inserted in the useless set of all (k+1)-sequences in all the other sets SET(S+Ij).  

4.8   Correctness of the DFS_MINE Algorithm 

We present two theorems that ensure the correctness of the DFS_MINE algorithm. 
Their proofs are included in the full version of the paper. 

Theorem 2. DFS_MINE does not generate any sequence twice. 

Theorem 3. DFS_MINE does not miss any frequent sequence. 

4.9   DFS_MINE: Implementation – Putting It All Together 

DFS_MINE(min_sup, D) 
  FreqItems={Frequent Items or 1-sequences}; 
  Freq2Seqs={Frequent 2-sequences}; 
  //insert all non frequent 2-sequences in MinNonFreqList 
  MinNonFreqList={all non frequent 2-sequences}; 
  MaxFreqList={ }; 
  //calling DFS on the frequent 2-sequences 
  For all sequences S in Freq2Seqs do  
    DFS_VISIT(S, MaxFreqList, min_sup, D);  

Fig. 8. Pseudocode for DFS_MINE algorithm 

DFS_VISIT(S, MaxFreqList, min_sup, D) 
  CandList={ }; 
  //generate sequences from the intersection of S with I j   
  For all frequent items I j  ∈ FreqItems-S.Useless 
    GenerateSequences(S, I j  , SET(S+I j ) ); 
    CandList=CandList ∪ SET(S+I j ); 
    S.Useless=S.Useless ∪ {I j }; 
    If (there are sequences is CandList to be scanned) 
        ScanSeqs(D, min_sup, CandList); 
    MoreUseless={ }; 
    For all sets of sequences SET(S+I j ) in CandList 
       //checking for more useless items 
      if (SET(S+I j ))== ∅,  MoreUseless=MoreUseless ∪ {I j }; 
      else for all sequences S i  in SET(S+I j ) 
         //if frequent, insert it in MaxFreqList 
         if (S i .freq>=min_sup)MaxFreqList=MaxFreqList ∪{S i };          
         //if not, insert it in MinNonFreqList 
         else  MinNonFreqList=MinNonFreqList ∪{S i };  
    //call DFS_VISIT recursively on all frequent sequences 
    For all sequences S i  in CandList 
       S i .Useless=S i .Useless ∪ MoreUseless;  
       DFS_VISIT(S i , MaxFreqList, min_sup, D);  

Fig. 9. Pseudocode for function DFS_VISIT 
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Figure 8 shows the pseudocode for the DFS_MINE algorithm. Figure 9 shows the 
pseudocode for function DFS_VISIT. This is the function that performs the recursive 
DFS-like mining process. Sequence S is intersected with all items in FreqItems-
S.Useless. We create candList to store the sets SET(S+Ij). After each iteration j, item Ij 
is inserted in S.Useless. If there are any SET(S+Ij)=Ø, item Ij is an additional useless 
item that needs to be inherited by all the resulting (k+1)-sequences. We keep all these 
items in list MoreUseless. We scan against the database all sequences in candList that 
are not known to be frequent. We update MaxFreqList and MinNonFreqList accord-
ingly, in case we have discovered some maximal frequent or minimal non-frequent 
sequence respectively. Each sequence S’ in all SET(S+Ij), for all Ij, inherits all the 
items in MoreUseless. Finally, we call function DFS_VISIT(S’) on each one of them 
to continue the recursive DFS-like process.  

 
 

  

Fig. 10. DFS_MINE example 

4.10   DFS_MINE Example 

In this subection we present an example of how the algorithm works. Let’s assume 3 
frequent items (A,B,C) and a k-sequence S with S.Useless=∅. MaxFreqList and 
MinNonFreqList are also available. We intersect with A to get SET(S+A) which 
inherits S.Useless=∅. We check MaxFreqList and MinNonFreqList for each sequence 
in SET(S+A) to determine whether it is frequent or not. Item A is added to S.Useless 
to reflect the fact that the intersection with A has been completed. The same process is 
repeated for B and C and S.Useless is updated each time. When S has been intersected 
with all items, we scan the database for the sequences whose support is unknown. 
Let’s assume that all sequences in SET(S+C) turn out to be non-frequent. Item C is 
then inserted in the Useless set of all sequences in SET(S+A) and SET(S+B) to reflect 
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the fact that the intersection with C will yield only non-frequent sequences. 
MaxFreqList and MinNonFreqList are updated accordingly with any new maximal 
frequent or minimal non-frequent sequences, respectively, that may have been dis-
covered in this step. We then pick the first (k+1)-sequence S’ in SET(S+A) and repeat 
the same process. All steps of the procedure described above can be seen in figures 
10a through 10e. 

5  Mining Frequent Spatiotemporal Sequences with Various 
Spatial Granularities 

In this section, we are studying the problem of mining spatiotemporal sequences in 
various spatial granularities. So far, we have been studying the mining of frequent 
sequences in the given space. In the example database of figure 2, the given area had 16 
distinct locations. It is very interesting, though, to generalize spatially the results we 
have found so far and mine frequent sequences in a higher level of spatial granularity. 
For example, we may have environmental data for all cities in the US. As a first step, 
we can discover frequent sequences, by mining the data considering each city 
independently from the others. But it is also interesting to examine the problem more 
generally by mining frequent sequences in the counties of the US, or even more 
generally, in the states of the US. We say that mining sequences by city is mining in 
level 0 of spatial granularity, mining sequences by county is level 1 and mining by state 
is level 2. Therefore, the concept of spatial granularity level can be defined as the 
number of times we have generalized the original space we are examining. The way to 
change spatial granularity level is by joining certain subregions into one region and by 
considering the data that belonged to each subregion to belong to the new region we just 
created. We can apply the same algorithm (with certain modifications) in order to 
determine frequent sequences in these greater regions. The sequences that were found to 
be frequent in a lower level will still be frequent. In addition to these, we will show that 
other sequences, which were not frequent before, may also turn out to be frequent.  

5.1   The Problem 

Given a database D of environmental data, a minimum support threshold min_sup and 
the level of spatial granularity gran_lev, the problem of mining frequent spatio-
temporal patterns in various spatial granularities is to find all frequent sequences in 
the database for each level of spatial granularity, from level 0 to level gran_lev. 

The key observation in mining in various spatial granularities is that the sequences that 
are frequent in level j-1 will also be frequent in level j. Also, sequences that were not 
frequent in level j-1, may now turn out to be frequent in level j. As a result, when moving 
in a higher level of spatial granularity, we can benefit a lot by using the frequent sequences 
that we just discovered in level j-1 as starting points and build on them to discover even 
longer frequent sequences in level j. DFS_MINE’s strategy is ideal for taking advantage of 
that observation, exactly because it forms candidate (k+1)-sequences by intersecting a k-
sequence with all frequent items in all possible positions in the k-sequence.  
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5.2   Joining Subregions 

To create a new region we join subregions together. We assume that we always join 
four subregions. We also assume that the 
original space contains a number of 
original regions that is a power of four. To 
join subregions into one, we use the 
following formula 









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j
ij

k

Lid
Lid

4

0  for 

i=0,1,2,…N, where i stands for the i-th 
distinct location-id of spatial granularity 
level 0 and N is the total number of 
locations we have initially. Lidk

j  stands 

for the k-th distinct location-id of spatial 
granularity level j. As a result, k=0,1,2,… N j/ 4 . Also, j=0,1,2…gran_lev. By using 
the above formula, we can calculate the location-ids of the new regions that we have 
in level j. For example, figure 11a shows the original space in the example database 
with the 16 distinct locations. Figure 11b shows how these 16 distinct locations are 
joined into groups of four to form the new four regions.  Figure 11b also shows that 
the ‘reverse-z’ enumeration is preserved.  

5.3   Implementation 

As we said, the environmental data does not change; it is just its locality that changes. 
By joining four subregions of level j-1 into a new greater region in level j, the events 
that occur in each one of these subregions are now considered to occur in the same 
location. As a result, all events of those four subregions need to be included in the 
location sequence of the new greater region. The location sequence of the new region 

Lidk
j will contain all events that are occurring in any of the regions for which the 
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yields the same value. Now that we are merging the events of the 

(a) Level 0              (b) Level 1 
Fig. 11. Two different spatial granularities 

Fig. 14. Maximal Frequent Sequences in level 1 

Fig. 13. Location sequences in level  

Fig. 12. Mining in level 1 
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four subregions together, we may have in the same itemset more than one items with 
the same attribute but with different values, which was against the valid definition of 
itemset (section 2). We need to relax this requirement and allow a location sequence 
to consist of itemsets containing items with the same attribute but with different 
values for the same attribute. Figure 12 shows the original space when we mine in 
spatial granularity level=1. Figure 13 shows all new four location-sequences.  

As we mine in a higher level of granularity, the number of locations decreases by a 
factor of 4. min_sup, of course, does not change as a percentage. But the actual number of 
locations that an event must occur in to be considered frequent changes. For example, in 
the example database of figure 12, in level 0 with min_sup=50%, event P3 occurred in 
only 3 out of the 16 locations and was not frequent. But in level 1 with min_sup=50%, the 
same event P3 occurs in 3 out of the 4 locations, so it is frequent. This is an event that 
must from now on be intersected with frequent sequences to produce longer candidate 
sequences. For this reason, in level 0, when we scan the database for the first time, to 
discover the frequent items, we keep all items in list FreqItems, even the ones that are not 
frequent in level 0, because they may become frequent in higher levels. In each level we 
only use those items that have support greater than min_sup. 

As we have said, the main 1 idea is to discover even longer frequent sequences in 
level j by using the frequent sequences of level j-1 as starting points and by building 
on them. As a result, when mining in level j, we call function DFS_VISIT on all 
maximal frequent sequences of level j-1 and intersect them with all frequent items to 
produce all candidate sequences of greater length. This way, it is much faster to 
discover even large frequent sequences in the current level. Moreover, at the end of 
level j-1, MinNonFreqList contains all the minimal non-frequent sequences of level j-
1. When we move to level j, some of these minimal non-frequent sequences may now 
be frequent, for the same reasons that individual items may now be frequent. For this 
reason, we scan all sequences in MinNonFreqList against the database and determine 
the frequent ones. These along with the maximal frequent sequences of the previous 
level j will be the starting points for the mining process. 

Finally, we must clear the Useless set of each sequence S of the sequences of level 
j-1 that will be used as starting points in level j. This is because the whole process 
starts all over again and, as a result, even the items that were in S.Useless may now 
yield longer frequent sequences in level j.  

5.4   Putting It All Together in DFS_MINE 

We have shown what modifications are necessary to mine in multiple levels. Everything 
else remains the same. In the main function, we include a for-loop to implement the 
repeated procedure of mining in each level from level 0 to level gran_lev. MaxFreqList is 
the list of maximal sequences of the current level. SpatialList contains the maximal 
frequent sequences of each level. When mining in level j-1, we store the maximal frequent 
sequences in MaxFreqList. After finishing level j-1, we insert MaxFreqList in SpatialList, 
clear MaxFreqList and move to level j. In level j, we scan in the database the sequences of 
MinNonFreqList of the previous level j-1 to determine which ones of those are now 
frequent. We will use as starting points of level j the maximal frequent sequences 
(MaxFreqList) of the previous level and the sequences of MinNonFreqList that were 
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now found to be frequent. Finally, we need to slightly modify function DFS_VISIT 
too, as we need to pass the current level of spatial granularity as an input parameter.  

6   Related Work 

In this section, we briefly discuss some related work that has been done in the field 
([1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]). One approach is given 
by Agrawal-Srikant in [1] and by Mannila et al. in [8]. Other mining techniques for 
spatial data are given in [12] and [13] but they do not consider evolution in time. 
Similarly, the spatial association rules introduced in [9] also mainly consider data that 
does not change in time. Techniques for mining spatial and temporal data were also 
given by [5], [6], [11]. 

Out of the very few approaches proposed so far, SPADE[14] seems to be the most 
efficient one. Its key features are: (1) it uses a vertical id-list database format, where 
each sequence is associated with a list of locations in which it occurs along with the 
time stamps. The id-lists for each sequence are kept in main memory. (2) It uses a 
lattice-theoretic approach to decompose the original search space (lattice) into smaller 
lattices (equivalence classes [X] θk) which can be processed independently in main-
memory. (3) To generate a (k+1)-sequence, SPADE intersects two k-sequences with 
the same (k-1)-length prefix (4) all frequent sequences can be enumerated via simple 
id-list intersections. (5) SPADE minimizes I/O costs by reducing database scans. 

7   Experimental Results 

In this section, we compare the performance of our DFS_MINE with SPADE. 
SPADE was implemented exactly as described in [11]. Experiments were performed 
on a Quad Xeon 550Mhz processor with 2GB RAM. 

7.1   Synthetic Datasets 

The synthetic datasets mimic real world 
scenarios, in which locations have various 
values for attributes such as temperature, 
atmospheric pressure, humidity etc. The 
datasets are generated using the following 
process. First NI maximal itemsets of average 
size I are generated by choosing from N items. 
Then NS maximal sequences of average size S 
are created by assigning itemsets from NI to 
each sequence. Next, a location, in which an 
average number of C events (C points in time) 
occur, is created. Sequences in NS are assigned 
to different locations. We make sure at least 

Fig. 15. Synthetic Databases 
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one sequence has support 75% and one sequence has support 50%. The generation 
stops when D locations have been created. We set NS=5000, NI=25000, N=10000. 
Figure 15 shows the datasets with their parameter settings. The columns for ‘Length 
75%’ and ‘Length 50%’ specify the length of the longest sequence that had support at 
least 75% and 50% respectively. 
 
 
7.2   Comparison of DFS_MINE with SPADE 

Figure 16 shows the results for DFS_MINE and SPADE. ‘OOM’  stands for ‘out of 
memory’. Figures 17a and 17b compare DFS_MINE with SPADE on the synthetic 
datasets for two values of minimum support: 75% and 50%. Both of these graphs are in 

logarithmic scale. 
Figures 17a and 17b 
clearly indicate that 
the performance gap 
increases as the 
length of the se-
quence to be mined 
increases. The reason 
for this is the DFS-
like strategy that 
DFS_MINE uses. As 
soon as a k-sequence 
is found, DFS_ 
MINE intersects it 
with all frequent 
items and generates 

all candidate (k+1)-sequences, in an attempt to discover a frequent (k+1)-sequence. 
DFS_MINE, exactly because it works in DFS-like manner, does not enumerate all k-
sequences before moving on to the (k+1)-sequences. This way, it skips examining all 
subsequences of some maximal frequent sequence, because they are certain to be frequent 
too, and achieves faster discovery of longer maximal sequences. DFS_MINE does not 
store the occurrences of sequences in id-list. Instead, it performs database scans each time 
a new sequence is discovered. That obviously costs time because of I/O, but its DFS-like 
approach that discovers long maximal frequent sequences much faster compensates for the 
time spent on database scans. 

On the other hand, SPADE uses a DFS-like approach only to a very short extent, 
since it only decomposes the original lattice to the [X] θ1 equivalence classes. Apart 
from that, it uses a BFS approach and examines all sequences of length k before 
moving on to the sequences of length k+1. This is clearly inefficient, because SPADE 
takes too long before discovering long frequent sequences.  

In general, the sequence problem is CPU bound, rather than I/O bound. This is due 
to the fact that the number of id-list intersections we need to perform (assuming we 
use SPADE) is exponential to the number of frequent items we have in the dataset. 
On the other hand, the cost of performing a database scan each time to determine the 
support of a sequence (assuming we use DFS_MINE) is only linear to the number of 

Fig. 16. Experimental results for DFS_MINE and SPADE 
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frequent items in the database. As a result, as the frequent sequences grow longer, scanning 
the dataset, however large that may be, becomes less expensive than performing all possible 
id-list intersections between k-sequences. 

As the figures 
show, for large data-
sets (more than 10 
MB) and rather short 
maximal frequent 
sequences (of length 
approximately 3-6), 
SPADE performs bet-
ter than DFS_ MINE. 
This is due to the fact 
that the sequences are 
rather short. As a 
result, the cost of the 
id-list intersections 
that SPADE performs 
is less than the cost of 
scanning a large data-
set, which is what 
DFS_MINE does. 
We experimented 

with equally large datasets (more than 10MB) that contained much longer maximal frequent 
sequences (of length approximately 25-30) and SPADE ran out of memory. 

This is another very important observation. As far as space is concerned, 
DFS_MINE is much more efficient than SPADE, as figure 17c shows. This is because 
DFS_MINE, inlike SPADE, does not need to store any significant amounts of 
information for each sequence. Our experiments showed that SPADE may require up 
to 1.5GB of memory. DFS_MINE, on the other hand, rarely did it use more than 5MB 
of memory. Figure 17c is also in logarithmic scale. 

Finally, as far as scaling is concerned, we performed a set of experiments where we 
increased the number of locations from 50000 to 500000. Figure 17d presents the 
results. As it can be seen, DFS_MINE performs really well even in this aspect. When 
the number of locations increases from 50000 to 100000 (a factor of 2), the required 
time increases by a factor much less than 2. Moreover, when the number of locations 
increases from 100000 to 500000 (a factor of 5), the required time increases by much 
less than a factor of 5.  

8   Conclusions 

In this paper, we presented DFS_MINE, a new algorithm for fast mining of frequent 
spatiotemporal patterns in environmental data. First, we defined the problem of min-
ing frequent spatiotemporal sequences. We then discussed in detail our solution: 
DFS_MINE, It uses a DFS-like approach to the problem, which allows very fast 

Fig. 17. Comparison between DFS_MINE and SPADE 
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discoveries of long sequential patterns. DFS_MINE does not enumerate all frequent 
sequences. Instead, it aims at discovering only the maximal frequent ones. When a max-
imal frequent sequence is discovered, we do not need to examine all of its sub-
sequences, since they are certain to be frequent. DFS_MINE performs database scans 
discover frequent sequences rather than relying on information stored in main memory. 
This has the advantage that the amount of space required is minimal. We also defined 
the problem of mining spatiotemporal sequences in various spatial granularities. We 
defined the concept of spatial granularity and showed that DFS_MINE’s strategy of 
using the results of the previous level to discover faster the frequent sequences of the 
next level is ideal for addressing this problem as well. The experiments that we 
performed showed that the I/O cost of the database scan that DFS_MINE performs is 
offset by the efficiency of the DFS-like approach that ensures fast discovery of long 
frequent patterns. DFS_MINE discovered long maximal frequent sequences faster than 
SPADE. The experiments also showed that DFS_MINE outperformed SPADE even as 
far as space requirements are concerned. DFS_MINE also had excellent scale-up 
properties with respect to the size of the database.  
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