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Abstract. The problen of mining spatiotenporal patterns isfinding
sequences foevents that occufrequenty in spatiotenpord datasets.
Spatiotenporal datasets store they@ution d objects @er time. Examples
include sequencef sensor fmages d a geographical rgion, data that
describes the location andovement d individual objects wer time, or
data tha describesthe evolution d natural phenmena, such agorest
coverageThe discovered patterns are sequendesvents that occumost
frequenyy. In this paperwe present DFS_MINE, a mealgorithm for fast
mining of frequent spatiotaporal patternsin environmentd data.
DFS_MINE, as its name suggests, uses a Depth-First-Search-like approach
to the problen which allovs very fast discoeries d long sequential
patterns. DFS_MINE peforms database scans to discoviequent
sequencegather than rgling on irformation stored inmain memory, which
has the advantage that theaunt d space required isninimal. Previous
approachesutilize a Breadth-First-Search-like approach and are not
efficient for discovering longrequent sequences. Moreover,threquire
storing inmain memory all occurrences foeachsequene in the database
and, as a result, theanaunt d spae neededis rathe large Experiments
show that the 1/O costfothe database scans st by the efficiency of the
DFS-like approach that ensurésst discovey of long frequen patterns.
DFS_MINEIis alsoidealfor mining frequent spatioteporal sequencesith
various spatial granularities. Spatial granujarifers to how fine or how
generalour view of the acewe are exaining is.

1 Introduction

In this paper,we consider the poblem of finding frequent patternof change in
spatiotenpord datasetsSpatiotenpord datasets store thevaution of ohects wer
time. Figure 1 presents an erple dataset that contains themfgeratures in the
United States The discovered patterns are sequences ofeets that occumost
frequenty. The importance of the kn@ledge of such patterns is\abus.

The task of disoeering such frequent patterns is ertedy challenging, sinethe
searchspae is extranely large. The problen becanes &en more challengingvhen
the sequences to be diseced are rather long. Despite the ubiguit spatiotenporal
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data, the problem of mining such data has not received a lot of attention. Previous
approaches include finding frequent sequential patterns in sequence data ([3], [8],
[14]), finding spatial association rules ([1], [2], [7]), clustering spatial datasets ([9],
[10]) or answering statistical queries in spatial datasets ([12], [13]). Most current
algorithms use a Breadth-First-Search approach. This has the disadvantage of
exhausting all sequences of length k before moving on to examining the sequences of
length k+1. Moreover, some of the existing solutions attempt to speed up the process
of discovery by minimizing the number of database scans and by storing all necessary
information in main memory. When the sequences to be mined are rather long, the
amount of space required is enormous.

In this paper, we present DFS_MINE, a new algorithm for discovering frequent
spatiotemporal sequences. The key features of our approach are: (1) DFS-MINE
uses the lattice-theoretic approach to decompose the original search space. (2) It
follows the concept of Depth-First-Search, that is, it tries to discover frequent
sequences of length k without exhausting all the frequent sequences of length k-1. It
uses information about frequent sequences already discovered to mine sequences of
greater length. It
backtracks, like
DFS, to sequences
of smaller length
when all longer
sequences of the

: : : hosen lattice path

Fig. 1. Example spatiotemporal dataset (temperatures in the Usﬁurn out to be non-

frequent, thus, en-
suring, fast discovery of long frequent patterns. (3) DFS_MINE does not enumerate
all frequent sequences in the database. It discovers very fast only the maximal
frequent sequences. (4) DFS_MINE determines the support of some sequences by
using the theoretical background of the lattice (5) DFS-MINE does not aim at
minimizing the database scans. It performs database scans to determine the
frequency of a set of sequences. Despite that fact, it achieves fast discovery of the
frequent sequences thanks to its DFS-like strategy. (6) It also does not require
enormous amounts of memory. It only needs minimal space to store just two
structures (the list of maximal frequent sequences and the list of minimal non
frequent sequences) that allow an efficient representation of the search space.
Experiments prove that DFS_MINE outperforms all existing solutions, as far as
both time and space are concerned, especially when the sequences to be discovered
are rather long.

Finally, we study the problem of mining spatiotemporal patterns in
environmental data in various levels of spatial granularity. Spatial granularity
refers to how fine or how general our view of the given space is. Whether we are
mining in the very fine level of the cities or counties in the US or the very
general level of the fifty states, DFS_MINE’s strategy is ideal for mining in
various spatial granularity levels, because, as we will show, it uses the results of
the previous level in order to discover faster the frequent sequences of the next
level.
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The rest of this paper is organized as follows: in section 2, we define the problem
of mining frequent spatiotemporal sequences in environmental data. Section 3
presents the necessary background on the concept of ‘the lattice’, which is used by
DFS_MINE. In section 4, we present in detail the DFS_MINE algorithm. In section 5,
we define the problem of mining in various spatial granularities and show how
DFS_MINE is easily extended to address this problem as well. Section 6 briefly
discusses related work on the subject and section 7 presents the results of the
experiments we performed to evaluate DFS_MINE. Finally, we conclude in section 8.

2 Mining Spatiotemporal Patterns in Environmental Data

2.1 Definitions

The problem of mining sequential patterns in spatiotemporal data can be stated as
follows: Let A={A1, A, ..., A} be a set of distinct spatiotemporal attributes. For
example atmospheric pressure 8ndtemperature Tare two distinct attributes. A
spatiotemporal itenh; is a pair(A; , V;) whereA is an attribute inA andV; is a
value assigned to it. For examp[€, 90)is an item, meaning thaemperature
T=90F.

A spatiotemporal itemsd6 is a non-empty set of items of distinct attributes. An
itemset is denotedy, I, ..., k) wherel; is an item(A;, V). All attributesA; of the
items|; must be distinct. For example, items@1=(H=60, P=1000, T=90js a valid
itemset, while itemsdiS2=(T=70, T=90)is not. An itemset wittk items is calleck-

itemset A specific spatiotemporal event is a
spatiotemporal itemsetlS associated with some

PEEE locationLid; and some point in tintg. _

i hot A sequencesis an ordered list of itemselS, i.e.

! 8 9 12 13 . .

I i 5 an ordered list of spatiotemporal events, denoted as
§ P s S= (1IS-1S,-...51S) where IS, 1S, ..., IS are

i vt_" 3 - itemsets. A sequence witkh items is called &k-

BN sequenceFor examplg(T=70) - (T=90, P=1.1))is a

> 3-sequence, which means that in a certain location, in

¥ one point in time the temperature T was 70 and some

) . time later the temperatufiewas 90F and the pressure
Fig. 2.'Reverse-z' enumeration p 45 1 1atm. An item can occur only once in an
itemset, but it can occur multiple times in different
itemsets of a sequence. In the rest, we will use the synitiol§:2, ..., P1, P2, .to
denote different values for temperature, pressure and humidity, etc.

A sequenceSl= (IS -1S,-...-1S,) is asubsequencef another sequence2=
(1S -1, - ... - 1Sy), denoted a$1<S2 if there exist integerdl<i2<...<i, such that
ISiJ IS for all ISi. For example, sequenc@1-P1T2) is a subsequence of
(H1T1-P2-H2P1T2) since the sequence elemenfisH1T1 andP1T2H2P1T2
SequencgH1P1-T2)is not a subsequence {1P1T2)and vice versa. A sequence
S1is a supersequencef another sequenc82 denoted asS1> S2 if S2is a
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subsequence 31 A specific evenE has a unique identifier and contains a set of
items. A locationL also has a unique identififlocation-id or Lid). We use decimal
representation for thivcation-id The original space is partitioned in locations that
are enumerated in‘eeverse-z'manner. Figure 2 depicts the concept of'theerse-

Z’ enumeration. Each location has associated with it a list of e{lepts,, ..., E}.

DATABASE

L(;d Tuone F.\anm Lid TI(I)IIE E ;;L:]l L};d Tl(l)ne IP’;T;]:: ]Ilzd TI(I)HE }’\I‘L‘“[ FREQUENT SEQUENGES
0 1 2 il 1 2 3 1 2 12 1 H3PI Frequent Frequent Frequent
0 2 p13 |4l 2 P3T3 > | 7 WP o py  |l-seq 2-sequences |BSESCH
1 0 213 | 5 0 I 9 0 w213 | 13 0 Il H2 8 | H2>T2 8 [H25T25T3 8
1 1 2 5 1 H3PI 9 1 2 13 1 H3PI H3 8 | H2»T3 8| TI>H3PI 8
1 2 T3 5 2) P2 9 2 HIT3 | 13 2 P2 Pl 8 12573 8 | TIsH3-P2 8
2 0 PIH2 | 6 0 TI 10 0 Ti 14 0 H2 P28 | 11,13 8 | TIoPI>P2 8
2 1 T2 6 1 H3P1 10 1 H3PL | 14 1 T2 T8 1y ,p 8| H3PI>P2 8
2 2 HIT3 | 6 2 P2 08 2 P2 14 2 I3 8 1 ,m 8 Frequent |
3 0 W [ 7 o il m o0 1 [ 15 0 I DS 13P1 8| 4-sequences
3 1 12 7 1 H3P1 11 1 H3PL |15 1 H3P1 135P2 8 | TISIRPIoP2 8
3 2 | HIT3 [ 2 P2 i i P2 15 2 P2 PIsPY 8

t=0 t=1 =2

Ce w8 0 i1 g 18 100 1 1415 No locationL has
iTt  T1 {H2 ! T1 H3P H3P1 T2 H3 P1 P2 P2 T3 P2  ore than one

i ] 9 12 13 | 8 9 12 13% | 8 9 12 131 event with the
PIH2H2T3 1 P3T3HIT3 H1 P2 .
i . | T2 | T2 {3 Pz P1 ] R HITP2 . same time-stamp.

P2 H2’ 710 71" 12" T2 Hapingpy wiT3 w3 p2- P2 This is because
; i I . R T B S R only one event
'H2 H213s H2 | 71 T2 T2 T2H3p1 P3T3 T3 PT3 P2 can occur in a
e ‘ ' specific location
in a specific point
Fig. 3. Example Environmental Database in time. The list
of specific events
associated with a
location is sorted by time. Thus the list of events of a location is a sequence
E;-E,-... -E, called the location-sequence. A location-sequendeiss said to
contain a sequence S,SE L, i.e. if Sis a subsequence of the location-sequdnce
The supportor frequencyof a sequenc8, denotedo(S), is the total number of times
the sequence is encountered. Given a user specified thresholdwailedim support
(denotedmin_sup, we say that a sequence is frequent if it occurs at heistsup
times. The set of frequent k-sequences is dertgted

X X X

2.2 The Problem

Given a databas® of location sequences amdin_sup the problem of mining
spatiotemporal patterns is to find all frequent sequences in the database. For example
consider figure 3, which presents the location sequences and the frequent sequences.
The database has nine itefhil, H2, H3, P1, P2, P3, T1, T2, T3)ixteen locations

and three points in time. The figure also shows all the frequent sequences with
min_sup50% or 8 locations. The maximal frequent sequencedH&re:T2- T3 and
T1-H3P1-P2
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3 The Lattice-Based Approach

Here we assume that the reader is familiar with basic concepts of lattice theory (see
[4] for more). Zaki [14] formulated the frequent sequence mining problem as a search
problem in a search space. In this section we follow his treatmen® heta set. A
partial order onP is a
binary relation< on P that

is reflexive: (X< X), anti-
symmetric (X< YandY <

X imply X=Y) and trans-

itve X <YandY =< Z

imply X< Z,forall X, Y, Z

0 P). A partially ordered

setL is called a lattice if

the two binary operations

join (denotedas X[¥) and

meet (denoted as X7¥)

exist for allX, YO L. L is

a complete lattice if the

join and meet exist for

.-
@:T?;”/

Fig. 4. Lattice induced by the maximal sequences
T1-H3P1-P2and H2. T2 T3

arbitrary subsets df.

Theorem 1 [14].Given a set E of events, the ordered set S of all possible sequences
on the items is a complete lattice in which join and meet are given by union and

intersection, respectively: D{Ae|eD E } = U A,
elJE
o{Ale0E} = A
ellE

The bottom element] of the sequence latticg is O={}, but the top element is
undefined since in the abstract the sequence lattice is infinite. However, in all
practical cases it is bounded and sparse. Figure 4 shows the sequence lattice induced
by the maximal frequent sequenc&q-H3P1-P2 and H2-T2-T3 for our
example database. Efficient algorithms for finding all frequent sequences are based on
the fact that all susequences of a frequent sequence have to be frequent.

4 DFS_MINE

In this section we present DFS_MINE in detail. The algorithm uses the lattice-
theoretic approach to decompose the original search space. Its strategy follows the
concept of Depth-First-Search: it tries to discover frequent sequences of length k+1
without exhausting all the frequent sequences of length k. The main idea is that if we
discover fast a frequent k-sequence, then we do not need to waste time examining all
of its subsequences, because they are certain to be frequent. A frequent k-sequence is
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intersected with all frequent items to generate all candidate (k+1)-sequences, which
are then scanned against the database. The only information DFS_MINE stores for
each sequence is theseless setbf each sequence. It also stores two structures: a list
of maximal frequent sequencéslaxFregList) and a list of minimal non frequent
sequencefMinNonFreqList).

4.1 General

Given the minimum threshold of suppdmin_sup),we scan the database once
looking for occurrences of items. The frequent items are kept in the list of frequent
items (Freqgltems). The items are inserted iRregltemsin a specific order, not
necessarily alphabetical. Whenever we scan and use the frequent iteéragltems

in later steps, we always respect that order. To generate all candidate 2-sequences, we
intersect all frequent items with each other in all possible combinations. This set is
also scanned against the database. The frequent 2-sequences are inserted in the list of
maximal frequent sequencéblaxFreqList) and the non-frequent 2-sequences are
inserted in the list of minimal non-frequent sequen@&@nNonFreqList). The
algorithm uses the frequent 2-sequences to mine frequent patterns. The non-frequent
2-sequences are used for pruning of longer non-frequent sequencesseldss Set

of a k-sequencé (S.Useless)s a set of items that must not be intersected with k-
sequencé.

4.2 Maximal Frequent Sequences List — Minimal Non-frequent Sequences List

DFS_MINE keeps a list of all maximal frequent sequences in memory. We define
‘maximal frequent sequenceas a sequence that is frequent and all of its
supersequences are non-frequent sequences or have not yet been found to be frequent
sequences. This list serves many purposes. First, it is the final result of the algorithm,
since, at the end, it contains all maximal frequent sequences discovered in the data-
base. Second, it is used for possibly determining whether a sequence is frequent or
not. When a new candidate sequeficis generated, we check whether it is a sub-
sequence of any of the sequenceMaxFreqList If there exists such a sequence in

the list, then, according to Lemma 1, sequeBds also frequent. A sequenéeis
inserted inMaxFreqListwhen all three of the following conditions hold: &)s not
already inMaxFreqList (2) S is not a subsequence of some maximal frequent se-
guence already iMaxFreqList (3) Swas scanned in the database and was found to
be frequent. In this case, we need to insert the new segbémbdéaxFreqList After

the insertion, we scan all sequences of length lessSHangthand check whether

they are subsequences $flf so, they are removed, since they are frequent but no
longer maximal. The structure is kept as a list of lists of sequences of equal length.
The list of the lengths is sorted in decreasing order of length. As a result, the longest
maximal sequences are kept in the beginning of the list. The reason for this is that the
longer a frequent sequence is, the more likely it is to be a supersequence of some
sequence&’ which is currently under consideration. By keeping only the maximal fre-
guent sequences, instead of all frequent sequences (maximal or not), we save a lot of
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space while maintaining all the necessary information to represent the lattice of
frequent sequences.

Dually, DFS_MINE also keeps a list of all minimal non-frequent sequences in
memory. We definéminimal non frequent sequencas a sequence that is non-
frequent and all of its subsequences are frequent sequences. This list is used for
pruning sequences. When a new candidate seq&aaenerated, we check whether
it is a supersequence of any of the sequencedinNonFreqList that is, if there
exists any sequence MinNonFregListthat is a subsequence of sequefick there
exists such a sequence in the list, then, according to Lemma 1, se§igatso non-
frequent. A sequencgis inserted inMinNonFregListwhen all three of the following
conditions hold: (15 is not already ilMinNonFregList (2) Sis not a supersequence
of some minimal non-frequent sequence alreadyMinNonFreqList (3) S was
scanned in the database and was found to be non-frequent. In this case, we need to
insert the new sequencg in MinNonFreqList After the insertion, we scan all
sequences of length greater tf&ahengthand check whether they are supersequences
of S If so, they are removed, since they are non-frequent but no longer minimal. The
structure is kept as a list of sequences sorted in increasing order of length.

4.3 Generating Sequences

DFS_MINE generates (k+1)-sequences by using a k-sequence and intersecting it with
all frequent itemd; that are irFregltemsbut not in the useless set of k-sequeBdg

[ Fregltems - S.Uselesslhe intersection of an itefwith a k-sequenc8 involves
inserting the item in all
possible positions in the k-

ASBHC+E | ABoC+C |~ T T T
E>A>B>CY CorABHCY Q:iﬁfi\@ ARZAZADS sequence. We use the sym-
AESB>C v ACHBHC v | [/ Tp p| X  bol SET(S+) to express the
S AR o> oo S8 of candidate (ket)-se
ASBoSESC Y | ASBaCaC —~ quences that result from the
ASBSCE  « ABoCC X e intersection of k-sequenc®
A—>BoCoHEY  A>BoC—CX :\-ﬁj’fif‘) with item I;. There are two
(@) (b) (€) kinds of resulting sequences
. resulting: (a) the sequences
Fig. 5. Generating Sequences in which the item is inserted

as part of an existing itemset

and (b) the sequences in
which the item is inserted as a separate itemset. An itemset cannot contain more than
one copy of the same item. As a result, some of the resulting candidate sequences are
rejected. Figures 5a and 5b present an example. By performing intersection in this
way though, we may generate duplicate sequences. Figure 5c presents a possible
situation: from the same 3-sequente.A-A, we can get the same 5-sequence
AD - A AD through two different paths. To avoid generating duplicate sequences,
we redefine the way intersection is performed.

Definition 1. Intersection of k-sequence S with item |
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When we intersect sequenSewith item 1, we insert item in all possible positions
that follow its rightmost occurrence. If the item does not occur at all in the sequence,
then it is inserted in all positions.

In figure 5c, insertingD only in positions following its rightmost occurrence
prevents the generation of duplicates.

4.4 Examining the Candidate Sequences Generated

After intersecting sequen@with iteml; and generating each new (k+1)-sequesice

we checkMinNonFreqList looking for any minimal non-frequent sequence that may
be subsequences &. If there exists such a sequenceMmNonFreqgList then
apparently S’ is non-frequent as well, it is pruned directly and removed from
SET(S+)). Otherwise, we checklaxFreqList looking for any maximal frequent se-
quence that may be a supersequenceS'oflf there exists such a sequence in
MaxFreqList then apparentl$’ is frequent as well, and does not need be scanned in
the database because it is already determined to be frequent. It remains, though, in
SET(S+]), because it may generate longer frequent sequences. If no sequence in
MaxFreqListwas found to be a supersequence of sequ&hdlen it remains in
SET(S+)) and it has to be scanned against the database.

4.5 List of Candidate SequencesceandList(S)

We use the symbotandLis{S) = USET(S+ I,) to express the set of all
ljOFreqList-S.Useless

sets SET(S+)).. In order to storecandList(S)in memory we use a ‘list of lists’

structure. Each node of the list is associated with an ifeamd SET(S+]). This

structure is used for determining more items to be inserted insgless sebf the

sequence. The process will be explained in detail in a later subsection.

4.6 Adding Items toS.Useless

When intersecting k-sequengewith all itemsl; in Fregltems-S.Uselessach iteration
producesSET(S+)). At the end of each iteration, afBET(S+) has been generated, item

lj is inserted in th&Jseless sedf the sequencs because all possible candidate sequences
that can result from the intersection have already been produced. As a result, during
iteration j, when iteml; is intersected with sequen&: the Useless sebf sequences
contains all itemé, with j>k >1. This is very important for avoiding duplicates.

4.7 Inheriting the Useless Set
The Useless sebf a k-sequenc& contains important information that must not be

ignored when we examine each one of the (k+1)-sequences that k-se§ugce
erated. TheUseless sebf k-sequence is ‘inherited’ by the (k+1)-sequences gen-
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erated bysS for two reasons: (1) to avoid generation of duplicates and (2) to avoid
generation of sequences that are certain to be non-frequent.

4.7.1 Inheritance against Duplicate Sequences

Assume a k-sequen&that is intersected with ited which produceSET(S+A) Then
each (k+1)-sequence IBET(S+A is intersected with itenB. We use the symbol
SET(S+A,B)to express the set of these candidate (k+2)-sequences. Assume now we

intersect the k-sequen&first with B to

get SET(S+B) and then intersect each

one of the resulting (k+1)-sequences with

A to get SET(S+B,A). Apparently,
SET(S+A,B)= SET(S+B,A)The reason
for this is the way that (k+1)-sequences
are generated from a k-sequence and an
item, by inserting the item in all possible
positions in the k-sequence. As a result,
the two sets should not be examined
twice. Figure 6 presents this argument
‘iﬁsually. To avoid the above scenario,
when intersecting a k-sequerBeavith an
item|; in Freqgltems-S.Useless produce th&ET(S+), then all itemg, with j>k >1 that
were beford; in Fregltemsmust not be intersected with any of these (k+1)-sequences in
SET(S+)). For this reason, the useless set of each one of the (k+1)-sequences in
SET(SH) must contain all item$, with j>k>1, To achieve this, we force all (k+1)-
sequences AdBET(S+)) to inheritS.Uselessrom k-sequenc& when they are created,
since, during each iteratignall itemsl,, with j>k =1, are in theS.Useless

SET(S+B,B)

Fig. 6. Sequences generated more than on

4.7.2 Inheritance against Non-frequent Sequences

Assume we are intersecting 2-sequeieé - B with itemsD andE. Figure 7 shows
all the 3-sequences that are produced. Column (a) shows the 4-sequences produced
from the intersection o% with E. Column (b) shows the 3-sequences produced from

the intersection ofS with D. Let's

ASBIE | ASB+D | DASBHE assume that all sequences of column (a)
E->A-B D—A—B [ E->D>AB turn out to be non-frequent and that some
AE—B AD—B DE-sa-alh of the sequences in column (b) are
A—E=B - 1A-DSB I DHESASE frequent. Assume we are now examinin
A—BE A—BD D—->AE—-B ’ — g
ABE  ASBoD  DASESB the frequent sequencg'=D ~A-B of
Non-frequent D>A>BE column (b) and we intersect it with item

(a) (b)Y D>A>BE (¢) E. We get the sequences in column (c).

But as it can easily be seen from figure 7,
all 4-sequences of column (c) have some
3-sequence of column (@) as a
subsequence and cannot be frequent. As a ré&sidta useless item for all the other

Fig. 7. Generated Sequences
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(k+1)-sequences. To summarize SET(S+k)= @, for some itemly, then itemly is
inserted in the useless set of all (k+1)-sequences in all the othBEJEE+]).

4.8 Correctness of the DFS_MINE Algorithm

We present two theorems that ensure the correctness of the DFS_MINE algorithm.
Their proofs are included in the full version of the paper.

Theorem 2.DFS_MINE does not generate any sequence twice.

Theorem 3.DFS_MINE does not miss any frequent sequence.

4.9 DFS_MINE: Implementation — Putting It All Together

DFS_MINE(min_sup, D)
Freqltems={Frequent Items or 1-sequences};
Freq2Seqgs={Frequent 2-sequences};
/linsert all non frequent 2-sequences in MinNonFreqgList
MinNonFreqgList={all non frequent 2-sequences},
MaxFreqList={ };
/Icalling DFS on the frequent 2-sequences
For all sequences S in Freq2Seqs do
DFS_VISIT(S, MaxFreqgList, min_sup, D);

Fig. 8. Pseudocode for DFS_MINE algorithm

DFS_VISIT(S, MaxFreqgList, min_sup, D)

CandList={ };
/lgenerate sequences from the intersection of S with | i
For all frequent items | i OFreqltems-S.Useless
GenerateSequences(S, | i SET(S+ ));
CandList=CandList O SET(S+ );
S.Useless=S.Useless oft kL

If (there are sequences is CandList to be scanned)
ScanSeqgs(D, min_sup, CandList);
MoreUseless={ };
For all sets of sequences SET(S+I i) in CandList
/Ichecking for more useless items
if (SET(S+I i)== 0O, MoreUseless=MoreUseless ofl k%
else for all sequences S i InSET(S+l )
/lif frequent, insert it in MaxFreqList
if (S i .freg>=min_sup)MaxFreqgList=MaxFreqgList o{si}
/lif not, insert it in MinNonFreqList
else MinNonFreqgList=MinNonFreqgList o{sik
/lcall DFS_VISIT recursively on all frequent sequences
For all sequences S i in CandList
S i.Useless=S ;.Useless [ MoreUseless;
DFS_VISIT(S i, MaxFreqList, min_sup, D);

Fig. 9. Pseudocode for function DFS_VISIT
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Figure 8 shows the pseudocode for the DFS_MINE algorithm. Figure 9 shows the
pseudocode for functioBDFS_VISIT This is the function that performs the recursive
DFS-like mining process. Sequen€eis intersected with all items iRkreqltems-
S.UselessWe createandListto store the seSET(S+{). After each iteratiof, iteml;

is inserted inS.Uselesslf there are anBET(S+)=@, iteml; is an additional useless
item that needs to be inherited by all the resulting (k+1)-sequences. We keep all these
items in listMoreUselessWe scan against the database all sequenaesdListthat

are not known to be frequent. We upditexFregListandMinNonFregListaccord-

ingly, in case we have discovered some maximal frequent or minimal non-frequent
sequence respectively. Each sequence S’ iSBEII(S+), for all I;, inherits all the
items inMoreUselessFinally, we call functiorDFS_VISIT(SJon each one of them

to continue the recursive DFS-like process.

MaxFreglList
MaxFregList MaxFreqList -
-3l MinNonFreqList
R SET(S+A) i Chel gl ][>
MinNonFregList Useless=- inNonFregLis ; —
OO0+ 3 LIl »]» (SET(S+A) / SET(S+B)
NA Useless=Z/ “Useless={A}-
eleer s 8 Lissless=FAL (b) 5l (c)
l_,':._u]c'-;a: {A B}/
MaxFreqlist 9 MaxFreqglist
ol Ly (FER R
MinNonFregList A MinNonFreaList
.- T T
All_Non Frequent s — All Non Frequent
SET(S+A)) / SET(S+B) " / SEI(S+C SETIS+A) SET(S+B) ~~ SET(S+C
Useless=/ “Useless={A}~ “Useless={A.BL- Useless={C L~/ “Useless={A,CL/"Useless={A B}
) [ A B 3 A v
N\ A /B e Database A /B =
5 ~C Scan “ 5 ~ C
Useless={A.B.C} ~ {d) Useless={A.B.CL {e)

Fig. 10.DFS_MINE example

4.10 DFS_MINE Example

In this subection we present an example of how the algorithm works. Let's assume 3
frequent items(A,B,C) and a k-sequenc8 with S.Useless&. MaxFregList and
MinNonFreqList are also available. We intersect withto get SET(S+A)which
inheritsS.Useless£]. We checkMaxFregListandMinNonFregListfor each sequence

in SET(S+A)to determine whether it is frequent or not. ItAns added td5.Useless

to reflect the fact that the intersection withas been completed. The same process is
repeated foB andC andS.Uselesss updated each time. Whé&rhas been intersected

with all items, we scan the database for the sequences whose support is unknown.
Let's assume that all sequencesSIBET(S+C)turn out to be non-frequent. Ite@ is

then inserted in thElseless sedf all sequences IBET(S+A)andSET(S+B)to reflect
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the fact that the intersection witl€ will yield only non-frequent sequences.
MaxFreqList and MinNonFreqListare updated accordingly with any new maximal
frequent or minimal non-frequent sequences, respectively, that may have been dis-
covered in this step. We then pick the first (k+1)-sequ&ae SET(S+A)and repeat

the same process. All steps of the procedure described above can be seen in figures
10a through 10e.

5 Mining Frequent Spatiotemporal Sequences with Various
Spatial Granularities

In this section, we are studying the problem of mining spatiotemporal sequences in
various spatial granularities. So far, we have been studying the mining of frequent
sequences in the given space. In the example database of figure 2, the given area had 16
distinct locations. It is very interesting, though, to generalize spatially the results we
have found so far and mine frequent sequences in a higher level of spatial granularity.
For example, we may have environmental data for all cities in the US. As a first step,
we can discover frequent sequences, by mining the data considering each city
independently from the others. But it is also interesting to examine the problem more
generally by mining frequent sequences in the counties of the US, or even more
generally, in the states of the US. We say that mining sequences by roityirig in

level O of spatial granularitymining sequences by countyével 1andmining by state

is level 2 Therefore, the concept apatial granularity levelcan be defined athe

number of times we have generalized the original space we are exariinigay to

change spatial granularity level is by joining certain subregions into one region and by
considering the data that belonged to each subregion to belong to the new region we just
created. We can apply the same algorithm (with certain modifications) in order to
determine frequent sequences in these greater regions. The sequences that were found to
be frequent in a lower level will still be frequent. In addition to these, we will show that
other sequences, which were not frequent before, may also turn out to be frequent.

5.1 The Problem

Given a databade of environmental data, a minimum support thresimoild_supand
the level of spatial granularitgran_ley the problem of mining frequent spatio-
temporal patterns in various spatial granularities is to find all frequent sequences in
the database for each level of spatial granularity, from level O todemel lev

The key observation in mining in various spatial granularities is that the sequences that
are frequent in levatl will also be frequent in levél Also, sequences that were not
frequent in level-1, may now turn out to be frequent in lejzehs a result, when moving
in a higher level of spatial granularity, we can benefit a lot by using the frequent sequences
that we just discovered in leviel as starting points and build on them to discover even
longer frequent sequences in levddFS_MINE's strategy is ideal for taking advantage of
that observation, exactly because it forms candidate (k+1)-sequences by intersecting a k-
sequence with all frequent items in all possible positions in the k-sequence.
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5.2 Joining Subregions

To create a new region we join subregions together. We assume that we always join
four subregions. We also assume that the

o T ST (TS I S original space contains a number of
Lon S35 WL s original regions that is a power of four. To

o | 1 % [ join subregions into one, we use the

A 4] & = z"\ 7 following  formula Li ,_Qid’0  for

LY ide =G50

ST T Tl | L 04 o

= | — ™ i=0,1,2,...N wherei stands for the-th

distinct location-id of spatial granularity
(a) Level O (b) Level 1 level 0 andN is the total number of

Fig. 11.Two different spatial granularities locations we have initially.Lidkj stands

for the k-th distinct location-id of spatial
granularity levelj. As a resultk=0,1,2,... N /4!. Also, j=0,1,2...gran_lev By using
the above formula, we can calculate Ibeation-idsof the new regions that we have
in levelj. For example, figure 11a shows the original space in the example database
with the 16 distinct locations. Figure 11b shows how these 16 distinct locations are
joined into groups of four to form the new four regions. Figure 11b also shows that
the‘reverse-z'enumeration is preserved.

5.3 Implementation

As we said, the environmental data does not change; it is just its locality that changes.
By joining four subregions of levéll into a new greater region in leyelthe events

that occur in each one of these subregions are now considered to occur in the same
location. As a result, all events of those four subregions need to be included in the
location sequence of the new greater region. The location sequence of the new region

s = 2 Lid Location Sequence

T T | H2 T | HeP1H3P1|| T2 H3P1 | p2 i pp | T3 P2 0 H2PIT3—>T2—HIP3T3

2 2 2 e 2 S = = —

2 3 2 £ s 3 " n - APRTR
prHzHeT3| T1  TI | |T2 | T2 | HW3PUHSP |paTaHTa|ip2 P2 1 HOTI>H3PIT2>P2P3T3

y —— : - L — — 2 H2PITIT3—H3PIT2—HIP2P3T3

P1HZ H2 || T1 | T1 T2 T2 |H3PIH3P1| |H1T3 HIT3| P2 | P2 3 H2TI—H3PIT2—HIP2T3

0 1 0 1 0 1
2 hprg| W2 Tt | | T2 T2 || T2 H3P1| [paTa T3 p3Ts P2 Fig. 13.Location sequences in level

H2T1-H3P1T2-HIP2T3
H2T1—>H3PIT2—HIP3T3
H2P1T3—-T2—HIP3T3

Fig. 12.Mining in level 1

Fig. 14.Maximal Frequent Sequences in level 1

Lidd will contain all events that are occurring in any of the regions for which the

40
formula El_i‘lﬁ yields the same value. Now that we are merging the events of the
4
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four subregions together, we may have in the same itemset more than one items with
the same attribute but with different values, which was against the valid definition of
itemset (section 2). We need to relax this requirement and allow a location sequence
to consist of itemsets containing items with the same attribute but with different
values for the same attribute. Figure 12 shows the original space when we mine in
spatial granularity level=1. Figure 13 shows all new four location-sequences.

As we mine in a higher level of granularity, the number of locations decreases by a
factor of 4.min_sup,of course, does not change as a percentage. But the actual number of
locations that an event must occur in to be considered frequent changes. For example, in
the example database of figure 12, in level 0 with_sup=50% eventP3 occurred in
only 3 out of the 16 locations and was not frequent. But in level Imiithsup=50%the
same evenP3 occurs in 3 out of the 4 locations, so it is frequent. This is an event that
must from now on be intersected with frequent sequences to produce longer candidate
sequences. For this reason, in level 0, when we scan the database for the first time, to
discover the frequent items, we keep all items irFlisgjitems even the ones that are not
frequent in level O, because they may become frequent in higher levels. In each level we
only use those items that have support greatentirarsup

As we have said, the main 1 idea is to discover even longer frequent sequences in
level j by using the frequent sequences of lgvklas starting points and by building
on them. As a result, when mining in leyelwe call function DFS_VISIT on all
maximal frequent sequences of lejl and intersect them with all frequent items to
produce all candidate sequences of greater length. This way, it is much faster to
discover even large frequent sequences in the current level. Moreover, at the end of
levelj-1, MinNonFreqgListcontains all the minimal non-frequent sequences of jevel
1. When we move to levé¢] some of these minimal non-frequent sequences may now
be frequent, for the same reasons that individual items may now be frequent. For this
reason, we scan all sequenced/linNonFreqListagainst the database and determine
the frequent ones. These along with the maximal frequent sequences of the previous
levelj will be the starting points for the mining process.

Finally, we must clear theseless sebf each sequenc®of the sequences of level
j-1 that will be used as starting points in leyelhis is because the whole process
starts all over again and, as a result, even the items that w8regelessnay now
yield longer frequent sequences in lgvel

5.4 Putting It All Together in DFS_MINE

We have shown what modifications are necessary to mine in multiple levels. Everything
else remains the same. In the main function, we include a for-loop to implement the
repeated procedure of mining in each level from level O to ¢eael lev MaxFregListis

the list of maximal sequences of the current le@gatialList contains the maximal
frequent sequences of each level. When mining in jelyalve store the maximal frequent
sequences iMaxFreqList After finishing levelj-1, we insertMaxFregListin SpatialList
clearMaxFregListand move to levél In levelj, we scan in the database the sequences of
MinNonFregList of the previous levej-1 to determine which ones of those are now
frequent. We will use as starting points of leyethe maximal frequent sequences
(MaxFreqList) of the previous level and the sequenceMofNonFreqListthat were
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now found to be frequent. Finall, we need to slighyl modify function DFS_VISIT
too, aswe need to pass the currentdeof spatial granularjtas an input pareeter.

6 Related Work

In this sectionwe briefly discuss sme relatedwork that ha been dore in the field
(111, [2], (3], [5]. [6], [7]. [8]. [9], [10], [11], [12], [13], [14]). One approach isvgn
by Agrawal-Srikant in [1] and ¥ Mannila et al. in[8]. Otha mining techniqus for
spatid da@ are given in [12] and [13] but the/ do not considerwlution in time.
Similarly, the spatial association rules introduced in [9] atainly conside data that
does nat chang in time. Techniqus for mining spatial and taporal datawere also
given by [5], [6], [11].

Out of thevelry few approaches proposed so far ABEE[14] seens to be thanost
efficient one. Its ke features are: (1) it useaverticd id-list databas format, where
each sequence is associavégth a list of locations irwhich it occurs alongvith the
time stanps The id-lists for eachsequence are kept main memory. (2) It uses a
lattice-theorett approacho decanpose the original search space (lattice) imalker
lattices (equialence classe[X] ) which can be processed independeil main-
memory. (3) To generate a (k+1)-sequence ARBFE intersectswio k-sequencewith
the sane (k-1)-length prefix (4) all frequent sequences can beneratedvia simple
id-list intersections. (5) S®DE minimizes 1/O costs preducing database scans.

7 Experimental Results

In this section,we canpare the perfanance of ou DFS_MINE with SPADE.
SPADE was mplemented exacyl as described in [11]. Experentswere pefformed
on a Quad Xeon 550Mhz processoth 2GB RAM.

7.1 Synthetic Datasets

The synthetc datasets mimic real world

MName] size |C s | D  Lengh Lenzth  SCeNArios in which locations hee various
75% 50% H
SRR TR 0 values for attributes such as rgperature,
B 399M| 5 2 2 50000 6 6 atmosphert pressure, hmidity etc. The
B oM |5 2 2 1000D0Y S 2 dataset are generated using the follong
D (306M 5 2 2 500000 6 6 . . .

BE | 9K |5 2 3 1000 7 10 process. FirsNI maximal itemsets of &erage
g :011:2 22 :383 190 ‘9 size | are generatedybchoosingfrom N items.
34 532 3 . .

W 1376 s 33 1000 14 16 Then NSmaximal sequences alverag size S
I | 174K 5 3 4 1000 15 17 are created b assigning itesets fran NI to
ook T e 2 20 eachsequenceNext, a location, inwhich an

K| 165K |5 4 3 1000 12 23 aq , » InVhich
L | 150K 10 4 4 1000 18 18 average nmber d C events C points in time)
M 83K 10 2 2 1000 3 8 H F H
B ok (033 000 | 16 ol occur, is created. SequencedNifare assigned

to different locations. Wenake sure at least
Fig. 15. Synthetic Databases
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one sequence has support 75% and one sequence has support 50%. The generation
stops wherD locations have been created. We N8:5000, NI=25000,N=10000.

Figure 15 shows the datasets with their parameter settings. The columns for ‘Length
75%’ and ‘Length 50%’ specify the length of the longest sequence that had support at
least 75% and 50% respectively.

7.2 Comparison of DFS_MINE with SPADE

Figure 16 shows the results for DFS_MINE and SPAIOM’ stands for‘out of

memory! Figures 17a and 17b compare DFS_MINE with SPADE on the synthetic

datasets for two values of minimum support: 75% and 50%. Both of these graphs are in
logarithmic ~ scale.

DFS_MINE \ SPADE Figures 17a and 17b

Name 75%  Space  50% Space || Name 75%  Space  50%  Space Clearly indicate that
A 0.6 300K 177 550K [ A 0.54 800K 134 900K

B 11799 00k 23684 ssok | B 8603 lom 15751 v the performance gap
€ 18133 S00K 35733 600K | @ 13242 14M 27221  70M increases as the
D | 89285 SS0K 106152 675K || D 693.18 180M  911.28 245\

E 459  IM 1589 1M E 306 4M 1304 8M length of the _Se'
F 816 IM 1371 15M | F 675 8M 1098  9M guence to be mined
G | 1272 IM 14768 15M || G 1165  SM 17745 50M .

H 10336 1.4M 193235 1.8M | H 18589 60M  7173.6  300M mcreqse_s. The reason
I | 1942 2M  5331.89  3M I 47621 93M 21016.88 ssoM  for this is the DFS-
J | 3282 1.6M 2382391 12M | 3711 13M OOM  1.5G ;

K | 3539 12M 58739.65 25M | K 3905 14M OOM  1.5G like ~ strategy that
L 222458 3M 786646 3M L 17979.62 645M 77166.65 995M DFS_MINE uses. As
M 0.74 IM 6.56 M M 0.62 3M 5.81 AM soon as a k_sequence
N | 4795 1.4M 3125367 18M | N 158272 172M  OOM  1.5G

is found, DFS_

MINE intersects it

with all frequent

items and generates

all candidate (k+1)-sequences, in an attempt to discover a frequent (k+1)-sequence.
DFS_MINE, exactly because it works in DFS-like manner, does not enumerate all k-
sequences before moving on to the (k+1)-sequences. This way, it skips examining all
subsequences of some maximal frequent sequence, because they are certain to be frequen
too, and achieves faster discovery of longer maximal sequences. DFS_MINE does not
store the occurrences of sequences in id-list. Instead, it performs database scans each time
a new sequence is discovered. That obviously costs time because of I/O, but its DFS-like
approach that discovers long maximal frequent sequences much faster compensates for the
time spent on database scans.

On the other hand, SPADE uses a DFS-like approach only to a very short extent,
since it only decomposes the original lattice to [tk equivalence classes. Apart
from that, it uses a BFS approach and examines all sequences of Keimefibre
moving on to the sequences of lengti. This is clearly inefficient, because SPADE
takes too long before discovering long frequent sequences.

In general, the sequence problem is CPU bound, rather than 1/0 bound. This is due
to the fact that the number of id-list intersections we need to perform (assuming we
use SPADE) is exponential to the number of frequent items we have in the dataset.
On the other hand, the cost of performing a database scan each time to determine the
support of a sequence (assuming we use DFS_MINE) is only linear to the number of

Fig. 16.Experimental results for DFS_MINE and SPADE
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frequent items in the database. As a result, as the frequent sequences grow longer, scanning
the dataset, however large that may be, becomes less expensive than performing all possible
id-list intersections between k-sequences.

As the figures

Support 78% | SPADE . [——spanE show, for large data-
" uppo °  —o—DFS_MINE 100000 Support 50% | . pes wne sets (m ore than 10
g 10000 | B s MB) and rather short
§ 1000 g 1006 . maximal frequent
g 100 | $ 100 sequences (of length
E ‘? g approximately  3-6),
01 13791091112 14-45-16. 18 4 8 9 101316 17 18 20 21 23 SPADE performs bet-
(a) Sequence Length (b) Sequence Length ter than DFS_ MINE.
I Scaleup —s—oFs vne7s  THiS IS due to the fact
Space Requirements _o_prs e, behaviour —%— DFS_MINE 50% that the sequences are
19000 § 1000 | rather short. As a
g ‘ﬁ § 800 </ result, the cost of the
f & = - iddist  intersections
§ ql o obe0o00 E 4y - that SPADE performs
0.1 3 AR R e g 6000 100000 500000 is less than the cost of
(c) b e (d) Number of Locations Scanning a Ia_rge data-
) _ set, which is what
Fig. 17.Comparison between DFS_MINE and SPADE DFS_MINE does.

We experimented
with equally large datasets (more than 10MB) that contained much longer maximal frequent
sequences (of length approximately 25-30) and SPADE ran out of memory.

This is another very important observation. As far as space is concerned,
DFS_MINE is much more efficient than SPADE, as figure 17c shows. This is because
DFS_MINE, inlike SPADE, does not need to store any significant amounts of
information for each sequence. Our experiments showed that SPADE may require up
to 1.5GB of memory. DFS_MINE, on the other hand, rarely did it use more than 5MB
of memory. Figure 17c is also in logarithmic scale.

Finally, as far as scaling is concerned, we performed a set of experiments where we
increased the number of locations from 50000 to 500000. Figure 17d presents the
results. As it can be seen, DFS_MINE performs really well even in this aspect. When
the number of locations increases from 50000 to 100000 (a factor of 2), the required
time increases by a factor much less than 2. Moreover, when the number of locations
increases from 100000 to 500000 (a factor of 5), the required time increases by much
less than a factor of 5.

8 Conclusions

In this paper, we presented DFS_MINE, a new algorithm for fast mining of frequent
spatiotemporal patterns in environmental data. First, we defined the problem of min-
ing frequent spatiotemporal sequences. We then discussed in detail our solution:
DFS_MINE, It uses a DFS-like approach to the problem, which allows very fast
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discoveries of long sequential patterns. DFS_MINE does not enumerate all frequent
sequences. Instead, it aims at discovering only the maximal frequent ones. When a max-
imal frequent sequence is discovered, we do not need to examine all of its sub-
sequences, since they are certain to be frequent. DFS_MINE performs database scans
discover frequent sequences rather than relying on information stored in main memory.
This has the advantage that the amount of space required is minimal. We also defined
the problem of mining spatiotemporal sequences in various spatial granularities. We
defined the concept of spatial granularity and showed that DFS_MINE'’s strategy of
using the results of the previous level to discover faster the frequent sequences of the
next level is ideal for addressing this problem as well. The experiments that we
performed showed that the 1/O cost of the database scan that DFS_MINE performs is
offset by the efficiency of the DFS-like approach that ensures fast discovery of long
frequent patterns. DFS_MINE discovered long maximal frequent sequences faster than
SPADE. The experiments also showed that DFS_MINE outperformed SPADE even as
far as space requirements are concerned. DFS_MINE also had excellent scale-up
properties with respect to the size of the database.
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