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Introduction to Temporal Database

Research
Christian S. Jensen

A wide range of database applications manage time-varying data. In contrast,
existing database technology provides little support for managing such data.
The research area of temporal databases aims to change this state of affairs by
characterizing the semantics of temporal data and providing expressive and effi-
cient ways to model, store, and query temporal data. This chapter offers a brief
introduction to temporal database research. It concisely introduces fundamen-
tal temporal database concepts, surveys state-of-the-art solutions to challenging
aspects of temporal data management, and also offers a look into the future of
temporal database research.

1 Introduction

Most applications of database technology are temporal in nature. Examples in-
clude financial applications such as portfolio management, accounting, and bank-
ing; record-keeping applications such as personnel, medical-record, and inven-
tory management; scheduling applications such as airline, train, and hotel reser-
vations and project management; and scientific applications such as weather moni-
toring. Applications such as these rely ontemporal databases, which record time-
referenced data.

Temporal database management is a vibrant field of research, with an active
community of several hundred researchers who have produced some 2000 papers
over the last two decades. Most of these papers are listed in a series of seven
cumulative bibliographies (the newest one [63] provides pointers to its predeces-
sors). The field has produced a comprehensive glossary of terminology [29], an
edited volume which captures state of the art circa 1993 [56], and three workshop
proceedings [16, 21, 49]. The near complete SQL3 standard includes a Part 7,
SQL/Temporal [38]. The topic of temporal databases is now covered in textbooks
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(e.g., [1, 13, 20, 35, 64]) and an encyclopedia [60]. Most recently, the first book
dedicated entirely to temporal databases has appeared [54].

The present chapter’s objective is to give a brief introduction, readable by
the non-expert, to central concepts and issues in temporal database research. The
chapter does not simply survey the author’s contributions as documented in the sub-
sequent chapters; nor does it exclusively survey contributions by others, not covered
elsewhere in this publication. Rather, it offers an integrated coverage of research
contributions by the author, some of which are elaborated upon in subsequent chap-
ters, and contributions by other researchers. With its relatively broad coverage, the
chapter sets the stage for the remainder of this publication.

More specifically, the chapter examines in turn a variety of central areas of
temporal database research. Each area is first motivated, and then sample contribu-
tions are surveyed, to give the reader a feel for the challenges and issues that are
faced in each particular area. The chapter concludes with a look into the possible fu-
ture of temporal database research. The presentation is by no means complete in its
coverage of areas, let alone contributions, necessarily omitting some contributions
in the interest of brevity.

2 Temporal Data Semantics

Before we proceed to consider temporal data models and query languages, we ex-
amine, in data model-independent terms, the association of times and facts, which
is at the core of temporal data management.

Initially, a brief description of terminology is in order. A database models
and records information about a part of reality, termed either themodeled reality
or themini-world. Aspects of the mini-world are represented in the database by a
variety of structures that we will simply termdatabase entities. We will employ
the term “fact” for any (logical) statement that can meaningfully be assigned a truth
value, i.e., that is either true or false. In general, times are associated with database
entities.

The facts recorded by the database entities are of fundamental interest. Sev-
eral different temporal aspects may be associated with these. Most importantly, the
valid timeof a fact is the collected times—possibly spanning the past, present, and
future—when the fact is true in the mini-world [29]. Valid time thus captures the
time-varying states of the mini-world. All facts have a valid time by definition.
However, the valid time of a fact may not necessarily be recorded in the database,
for any of a number of reasons. For example, the valid time may not be known,
or recording it may not be relevant for the applications supported by the database.
If a database models different possible worlds, the database facts may have several
valid times, one for each such world.
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Next, thetransaction timeof a database fact is the time when the fact is cur-
rent in the database. Unlike valid time, transaction time may be associated with any
database entity, not only with facts. For example, transaction time may be associ-
ated with objects and values that are not facts because they cannot be true or false
in isolation. To be more concrete, the value “63” may be stored in a database, but
does not denote a logical statement. It is meaningful to associate transaction time
with “63,” but not valid time. Thus, all database entities have a transaction-time as-
pect. This aspect may or may not, at the database designer’s discretion, be captured
in the database. The transaction-time aspect of a database entity has a duration:
from insertion to deletion, with multiple insertions and deletions being possible for
the same entity. As a consequence of the semantics of transaction time, capturing
this aspect of database entities renders deletions purely logical. Deleting an entity
does not physically remove the entity from the database; rather, the entity remains
in the database, but ceases to be part of the database’s current state. Transaction
time captures the time-varying states of the database, and applications that demand
accountability or "traceability" rely on databases that record transaction time.

Observe that the transaction time of a database fact, say “F,” is the valid time
of the related fact, “F is current in the database.” This would indicate that sup-
porting transaction time as a separate aspect is redundant. However, both valid and
transaction time are aspects of the content of all databases, and recording both of
these is essential in a wide range of applications. In addition, transaction time, due
to its special semantics, is particularly well-behaved and may be supplied automati-
cally by the DBMS. Specifically, the transaction times of facts stored in the database
are bounded by the time the database was created at one end of the time line and
by the current time at the other end. This provides the rationale for the focus of
most temporal database research on providing improved support for valid time and
transaction time as separate aspects.

In addition, some other times have been considered, e.g., decision time [22,
33]. But the desirability of building decision time support into temporal database
technologies is unclear, because the number and meaning of “the decision time(s)”
of a fact varies from application to application and because decision times, unlike
transaction time, generally do not exhibit specialized properties.

The valid and transaction time values of database entities are drawn from
some appropriate time domain. There is no single answer to how to perceive time
in reality and how to represent time in a database, and different time domains may
be distinguished with respect to several orthogonal characteristics. First, the time
domain may or may not stretch infinitely into the past and future. Second, time may
be perceived as discrete, dense, or continuous. Some feel that time is really con-
tinuous; others contend that time is discrete and that continuity is just a convenient
abstraction that makes it easier to reason mathematically about discrete phenom-
ena. In databases, a finite and discrete time domain is typically assumed, e.g., in the
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SQL standards. Third, a variety of different structures have been imposed on time.
Most often, time is assumed to be totally ordered, but various partial orders have
also been suggested, as has cyclic time.

An aspect of time that has been intriguing philosophers for centuries and that
is difficult to describe fully is the concept of the current time, which we term
now [15]. This concept is unique to time; indeed, there really does not exist any
other notion quite like it. Among its properties, the current time is ever-increasing,
all activity is trapped at the current time, and the current time separates the past from
the future. The spatial equivalent,here, simply fails to enjoy the properties ofnow.
As Merrick Furst puts it, “The biggest difference between time and space is that
you can’t reuse time.” The uniqueness ofnow is one of the reasons why techniques
from other research areas are not readily, or not at all, applicable to temporal data;
nowoffers new data management challenges, which are particular to temporal data-
bases. Specifically, the support fornowtranscends several parts of this publication
and is a prominent theme in half a dozen of the chapters.

Much research has been conducted on the semantics and representation of
time, from quite theoretical topics such as temporal logic and infinite periodic time
sequences [14] to more applied questions such as how to represent time values in
minimal space [17, 18]. Substantial research has been conducted that concerns
the use of different time granularities and calendars in general [5], as well as the
issues surrounding the support for indeterminate time values [19]. Also, there is a
significant body of research on time data types, e.g., time points, time intervals (or
“periods”) [3], and temporal elements (sets of intervals) [24].

3 Temporal Data Models and Query Languages

Temporal data management can be very difficult using conventional (non-temporal)
data models and query languages [54]. Accommodating the time-varying nature
of the enterprise is largely left to the developers of database applications, leading
to ineffective and inefficient ad-hoc solutions that must be reinvented each time a
new application is developed. The result is that data management is currently an
excessively involved and error-prone activity. Section 3.1 considers temporal data
models, and Section 3.2 then covers query languages that are based on these data
models. The subsequent step of providing support for temporal data modeling and
database design is covered in Section 4.

3.1 Temporal Data Models

The first step in providing support for temporal data management is to extend the
database structures of the data models supported by a conventional DBMS. Assum-
ing a relational data model, mechanisms must be provided for capturing the valid
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and transaction times of the facts recorded by the relations, leading to temporal
relations.

Adding time to the relational model has been a daunting task, and more than
two dozen extended relational data models have been proposed [30]. Most of these
models support valid time only; some also support transaction time. We will con-
sider three of these latter models and related design issues.

As a simple example, consider a video store where customers, identified by a
CustomerID attribute, rent video tapes, identified by aTapeNumattribute. We
consider a few rentals during May 1997. On the 2nd of May, customer C101 rents
tape T1234 for three days. The tape is subsequently returned on the 5th. Also on
the 5th, customer C102 rents tape T1245 with an open-ended return date. The tape
is eventually returned on the 8th. On the 9th, customer C102 rents tape T1234 to be
returned on the 12th. On the 10th, the rental period is extended to include the 13th,
but this tape is not returned until the 16th. The video store keeps a record of these
rentals in a relation termedCheckedOut .

Figure 1 gives the relation instance in the Bitemporal Conceptual Data Model
(BCDM) [30] that describes the sample rental scenario. This data model timestamps
tuples, corresponding to facts, with values that are sets of (transaction time, valid
time) pairs, captured using attributeT in the figure. Figure 2 provides a graphical
illustration of the three timestamp values, which are termed bitemporal elements.
In the general case of infinite and continuous time domains, these are finite unions
of rectangles in the two-dimensional space spanned by transaction and valid time.

CustomerID TapeNum T

C101 T1234 {(2,2), (2, 3), (2,4), (3,2), (3,3), (3,4),
. . . , (UC,2), (UC,3)(UC,4)}

C102 T1245 {(5,5), (6, 5), (6,6), (7,5), (7,6), (7,7),
(8,5), (8,6), (8,7), . . . , (UC,5), (UC,6), (UC,7)}

C102 T1234 {(9,9), (9, 10), (9,11), (10,9), (10, 10), (10,11), (10, 12),

(10,13), . . . , (13, 9), (13,10), (13,11), (13,12),

(13,13), (14,9), . . . , (14,14), (15,9), . . . , (15,15), (16,9),

. . . , (16,15), . . . , (UC,9), . . . , (UC,15)}

Figure 1: Bitemporal ConceptualCheckedOut Instance

The presence of a pair (tt, vt) in a timestamp of a tuple means that the current
state of the database at timett records that the fact represented by the tuple is valid
at timevt. The special value UC (“until changed”) serves as a marker indicating
that its associated facts remain part of the current database state, and the presence
of this value results in new time pairs being included into the sets of pairs at each
clock tick.

The timestamp of the second tuple is explained as follows. On the 5th, it is
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Figure 2: Graphical Illustration of the Timestamp Values in Figure 1

believed that customer C102 has checked out tape T1245 on the 5th. Then, on the
6th, the rental period is believed to include the 5th and the 6th. On the 7th, the rental
period extends to also include the 7th. From then on, the rental period remains fixed.
The current time is the 17th, and as time passes, the region grows to the right; the
arrows indicate this and correspond to the UC values in the textual representation.

The idea behind the BCDM is to retain the simplicity of the relational model
while also capturing the temporal aspects of the facts stored in a database. Be-
cause no two tuples with mutually identical explicit attribute values (termedvalue-
equivalent) are allowed in a BCDM relation instance, the full history of a fact is
contained in exactly one tuple. In addition, BCDM relation instances that are syn-
tactically different have different information content, and vice versa. This concep-
tual cleanliness is generally not obtained by other bitemporal models where syntac-
tically different instances may record the same information.

However, when it comes to the internal representation and the display to users
of temporal information, the BCDM falls short. Although it is arguably a first-
normal-form relation, the varying length and voluminous timestamps of tuples are
impractical to manage directly, and the timestamp values are also hard to compre-
hend in the BCDM format. Better suited representations of temporal information
exist for these purposes.

Figure 3 illustrates the same temporal information as in Figure 1, in two dif-
ferent data models. The model exemplified in part (a) uses a practical and popu-
lar (particularly when implementation is considered) fixed-length format for tuples
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CustomerID TapeNum Ts Te Vs Ve

C101 T1234 2 UC 2 4
C102 T1245 5 7 5 now
C102 T1245 8 UC 5 7
C102 T1234 9 9 9 11
C102 T1234 10 13 9 13
C102 T1234 14 15 9 now
C102 T1234 16 UC 9 15

(a)

CustomerID TapeNum

[2,Now] × [2,4] C101 [2,Now] × [2,4] T1234
[5,7]× [5,∞] C102 [5,7]× [5,∞] T1245
[8,Now] × [5,7] [8,Now] × [5,7]
[9,9]× [9,11] [9,9]× [9,11] T1234
[10,13]× [9,13] [10,13]× [9,13]
[14,15]× [9,∞] [14,15]× [9,∞]
[16,Now] × [9,15] [16,Now] × [9,15]

(b)

Figure 3: Alternative Representations of theCheckedOut Instance

[48]. AttributesTs andTe record starting and ending transaction times, andVs and
Ve record starting and ending valid times. In this format, each tuple’s timestamp
then encodes a rectangular or stair-shaped bitemporal region, and it may take sev-
eral such tuples to represent a single fact.

The relation format in Figure 3(b) is a typical non-first-normal-form represen-
tation, in which a relation is thought of as recording information about some types
of objects. The present relation records information about customers and thus holds
one tuple for each customer in the example, with a tuple containing all information
about a customer. In this way, a single tuple records multiple facts. In the example,
the second tuple records two facts: rental information for customer C102 for the
two tapes, T1245 and T1234.

Unlike in the BCDM, where relations must be updated at every clock tick,
relations in these two other formats stay up-to-date; this is achieved by introducing
variables (e.g.,now) as database values that assume the (changing) current time
value. The sample relations illustrate the two predominant choices for where to
enter time values into relations, namely at the level of tuples (tuple timestamping)
and at the level of attribute values (“attribute” timestamping).

It should be noted that all of the three types of bitemporal relations are equally
expressive in that they may record the same facts. Put more formally (and briefly),
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the relation instances that these models may record are snapshot equivalent.
The notion ofsnapshot equivalencecorresponds to a point-based view of data.

This view is pervasive in temporal database research, but it is not the only notion
of equivalence. Consider the relations in Figure 4, which for simplicity record only
valid time and for brevity have only a single non-timestamp attribute. These rela-

A Vs Ve

a 2 8
b 2 8

(a)

A Vs Ve

a 2 4
a 5 8
b 2 8

(b)

A Vs Ve

a 2 8
b 2 4
b 5 8

(c)

Figure 4: Different But Snapshot-Equivalent Relations

tions are clearly different. Specifically, the first relation is a coalesced version of
the latter two relations. (Thecoalescingoperation merges value equivalent tuples
with the same non-timestamp attributes and adjacent or overlapping time intervals
[8].) Because the three relations are different, they can well be taken to mean dif-
ferent things. In temporal data models, however, the relations are typically taken
to contain the same information because they all contain the same snapshots: the
snapshots computed at times 2 through 8 contain two tuples with values “a” and
“b,” (denoting some facts) and the snapshots at all other times are empty. This no-
tion of equivalence corresponds to a point-based view of data: the time intervals
or temporal elements associated with the database facts are merely convenient rep-
resentations of sets of time points; and as long as the intervals associated with a
fact represent the same set, it does not matter that they are different. In the figure,
the different relations are associating interval[2, 8] versus intervals[2, 4] and[5, 8]
with each of the two facts encoded by “a” and “b.”

Stepping a little bit ahead, a query language that conforms to a point-based
view of data should treat the three relations in Figure 4 identically. Any query
language put on top of the BCDM is guaranteed to do so. Because the BCDM
employs temporal elements and only permits coalesced relation instances, relations
are only different if they are not snapshot equivalent, as mentioned earlier. In the
figure, the last two relations are not legal in the BCDM.

As a contrast to the point-based view, it is also possible to adopt an interval-
based view where additional semantics are given to the intervals associated with the
facts in the relations. In the example, values “a” and “b” could be taken to mean
that a specific customer has checked out two different tapes; the first relation would
then indicate that two tapes were checked out once and for seven days each; and
the second relation would indicate that the customer initially checked out the first
tape for three days, and then for four more days. Some work exists that attempts to
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accommodate an interval-based view of data within the confines of a point-based
view [9].

3.2 Adding Time to Query Languages

Given the prevalence of applications that currently manage time-varying data, one
might ask, why is a temporal query language even needed? Is the existence of all
this SQL code of ostensibly temporal applications not proof that SQL is sufficient
for writing such applications? The reality is that in conventional query languages
like SQL, temporal queriescanbe expressed, but with great difficulty.

To illustrate the issue, consider the two relationsS-CheckedOut andV-
CheckedOut in Figure 5. The first is a snapshot relation that records which cus-
tomers have currently checked out which video tapes; the second, a valid-time re-
lation, records the check-out periods for rentals. The current time is 17, making the
former relation a snapshot at the current time of the latter relation. Using SQL, it is

CustomerID TapeNum

C101 T1234
C102 T1425
C102 T1324
C103 T1243

(a)

CustomerID TapeNum Vs Ve

C101 T1234 2 now
C101 T1245 5 10
C102 T1245 22 25
C102 T1425 9 19
C102 T1434 4 14
C102 T1324 9 now
C103 T1243 7 21

(b)

Figure 5: Relations (a)S-CheckedOut and (b)V-CheckedOut

straightforward to express the number of current checkouts fromS-CheckedOut .
For example, this can be expressed as follows.

SELECT COUNT(TapeNum) AS Cnt FROM S-CheckedOut

We proceed to consider the temporal generalization of this query, asking
now for the time-varying count of tapes checked out as recorded in relationV-
CheckedOut . The reader may verify that the result given in Figure 6 correctly
gives the count of tapes checked out at each point in time were a tape is checked
out (assuming value 17 has been used fornow). Expressing this query in SQL is
exceedingly difficult, but possible ifnow is replaced with a fixed time value. The
author is aware of one solution that consists of six steps and takes up 35 lines of
complex SQL code.

As another example, specifying a key constraint on the non-temporal relation
S-CheckedOut is trivial in SQL.
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Cnt Vs Ve

1 2 3
1 20 25
2 4 4
2 18 19
3 5 6
4 7 8
4 15 17
5 11 14
6 9 10

Figure 6: A Time-Varying Count on theTapeNumAttribute ofV- CheckedOut

ALTER TABLE S-CheckedOut ADD PRIMARY KEY (TapeNum)

This key constraint may be generalized to apply to a valid-time relation, now
meaning thatTapeNum is a key at each point in time or, equivalently, in each
snapshot that may be produced from the valid-time table. Specifying this constraint
on relationV-CheckedOut in SQL is again difficult. In one formulation, it takes
a twelve line long and rather complicated SQL assertion to express this constraint
[54, Ch. 5.3].

The lesson learned is that ordinary queries on non-temporal relations become
extremely challenging when timestamp attributes are added. Even SQL experts
would be hard pressed to express the examples above in SQL.

Some 40 temporal query languages have been defined [39, 53], most with their
own data model. One of the more recent is TSQL2 [51], developed as a second-
generation language by many of the designers of first-generation temporal query
languages. The goal of TSQL2 was to consolidate approaches to temporal calculus-
based query languages, to achieve a consensus extension to SQL-92 [37].

With a temporal query language, simple queries should remain simple when
time is added. The temporal count query and the temporal key constraint can be
expressed in the variant of TSQL2 being proposed for inclusion into SQL3 [52] as
follows.

VALIDTIME
SELECT COUNT(TapeNum) AS Cnt FROM S-CheckedOut

CONSTRAINT temporalKey VALIDTIME UNIQUE TapeNum

Early query languages were based on the relational algebra [36]. Calculus-
based, Datalog-based, and object-oriented temporal query languages [50] appeared
later. Much of the recent work involves extensions to SQL.

As query languages are strongly influenced by the underlying data model,
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many of the issues raised in Section 3.1 have analogues in temporal query lan-
guages. For example, whether the data model timestamps tuples or attribute values
influences the language.

Language design must consider the impact of the time-varying nature of data
on all aspects of the language, including predicates on temporal values, tempo-
ral constructors, supporting states or events (or both) in the language, supporting
multiple calendars, modification of temporal relations, cursors, views, integrity
constraints, temporal indeterminacy, handlingnow, aggregates, schema version-
ing, vacuuming, and periodic data. Most of these topics have been the sole focus
of several papers. However, these aspects interact in subtle ways, requiring con-
sideration of all (or a substantial subset) to ensure that the design makes sense.
Adequately documenting the design, rationale, and semantics of a comprehensive
attack on the problem is daunting: the complete description of TSQL2 required an
entire book [51].

Recently a set of desired properties of temporal query languages has emerged.
These includetemporal upward compatibility[4] (that is, conventional queries and
modifications on temporal relations should act on the current state) and perva-
sive support forsequenced queries(that request the history of something, such as
the temporal aggregation above) [10]; support forpoint-basedand interval-based
views of data [9]; adequate expressive power; and the ability to be efficiently im-
plemented.

4 Designing Temporal Databases

The design of appropriate database schemas is critical to the effective use of data-
base technology and the construction of effective information systems that exploit
this technology. Database schemas capturing time-referenced data are often partic-
ularly complex and thus difficult to design.

The first of the two traditional contexts of database design is the data model
of the DBMS to be used for managing the data. This data model, generally a variant
of the relational model, is assumed to conform to the ANSI/X3/SPARC three-level
architecture (e.g., [12]). In this context, database design must thus be considered at
each of the view, logical, and physical (or, “internal”) levels. In the second context,
a database is modeled using a high-level, conceptual design model, typically the
Entity-Relationship model. This model is independent of the particular implemen-
tation data model that is eventually to be used for managing the database, and it is
designed specifically with data modeling as its purpose, rather than implementation
or data manipulation, making it more attractive for data modeling than the variants
of the relational model. Mappings are assumed available that bring a conceptual
design into a schema that conforms to the specific implementation data model of
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the DBMS to be used.
We proceed to consider in turn logical and conceptual design of temporal

databases.

4.1 Logical Design

A central goal of conventional relational database design is to produce a database
schema consisting of a set ofrelation schemas. In normalization theory, normal
forms constitute attempts at characterizing “good” relation schemas, and a wide
variety of normal forms has been proposed, the most prominent being third normal
form and Boyce-Codd normal form. An extensive theory has been developed to
provide a solid formal footing for relational database design, and most database
textbooks expose their readers to the core of this theory.

In temporal databases, there is an even greater need for database design guide-
lines. However, the conventional normalization concepts are not applicable to tem-
poral relational data models because these models employ relational structures dif-
ferent from conventional relations. New temporal normal forms and underlying
concepts that may serve as guidelines during temporal database design are needed.

In response to this need, a range of temporal normalization concepts have
been proposed [32], including temporal dependencies, keys, and normal forms.
Consider theCheckedOut relation schema from Section 3.1, as exemplified in
Figures 1 and 3. DoesCustomerID (temporally) determineTapeNum or vice
versa? Looking at the first representation in Figure 3 and applying conventional
dependencies directly, the answer to both questions is no. (The possible answers
are ‘no’ and ‘perhaps,’ as we are considering relation instances.) The second repre-
sentation is so different from a regular relation that it makes little sense to directly
apply conventional dependencies. The relation in Figure 1 also rules out any of the
dependencies when we apply regular dependencies directly.

Considering that the different representations of theCheckedOut relation
model the same miniworld and are capable of recording the same information, it
may reasonably be assumed that these different representations would satisfy the
same dependencies. Atany point in time, a customer may have checked out several
tapes. In contrast, a tape can only be checked out by a single customer at a single
point in time. With this view,TapeNumtemporally determinesCustomerID , but
the reverse does not hold.

If we consider the information contents of a temporal relation, independent of
its actual format, to be the set of conventional snapshot relations it logically com-
prises, we achieve a means of applying the conventional relational normalization
theory that leads to a temporal theory, which naturally generalizes conventional de-
pendencies and may be applied to dependencies other than functional. Specifically,
a temporal relation satisfies a temporal dependency if all its snapshots satisfy the
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corresponding conventional dependency.

Temporal data models generally define timeslice operators, which may be
used to determine the snapshots contained in a temporal relation. Accepting a tem-
poral relation as their argument and a time point as their parameter, these operators
return the snapshot of the relation corresponding to the specified time point. For
example, a timeslice operator for temporal relations like the one in Figure 1 may
take a point(tt, vt) in bitemporal space as its parameter. It returns the tuples of the
argument relation that contain this time point, but omitting the timestamp attribute.

With this notion of temporal dependency based on snapshots, a temporal nor-
malization theory may be built that parallels conventional normalization theory and
that is independent of any particular representation of a temporal relation. How-
ever, the resulting theory, while temporal in that it applies to temporal databases,
is actually atemporal, in that it applies to each snapshot of a temporal relation in
isolation. This theory therefore fails to account for “temporal” aspects of data.

It is also relevant to consider dependencies and associated normal forms that
effectively holdbetweentime points [61, 62]. One approach to achieve this is to
build the notion of time granularity into the normalization concepts. As a result,
it not only is possible to consider snapshots computed at non-decomposable time
points, but it is also possible to consider snapshots computed at coarser granulari-
ties. In our example relations, we have used day as the finest granularity; with the
generalized theory, weeks and months may also be considered.

Another approach to taking the temporal aspects of data into account during
database design is to introduce new concepts that capture the temporal aspects of
data and may form the basis for new database design guidelines [30, 31].

Perhaps most prominently,time patternsmay be used for capturing when the
values of an attribute for an entity change in the modeled reality and in the data-
base. For example, the set of tapes checked out by a customer may be expected to
change substantially more frequently than the customer’s address, meaning that the
addresses of customers and their checked out video tapes should be stored in sep-
arate relations. (In this example, the temporal counterpart of Boyce-Codd normal
form may reasonably be assumed to also imply such a decomposition, but this does
not apply generally.)

Next, the concept oflifespan, that captures when an attribute of an entity has
values, also has implications for database design. Specifically, if the lifespan of
two attributes differ, null values of the unattractive “do not exist” variety result un-
less the attributes are stored in separate relations. Assuming that the temporal data
model used timestamps tuples, attributes should also be stored separately when dif-
ferent temporal aspects need to be captured for them or when the temporal aspects
are captured with differing precisions (resulting in different timestamp granulari-
ties).
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4.2 Conceptual Design

By far, most research on the conceptual design of temporal databases has been in the
context of the Entity-Relationship (ER) model. This model, in its varying forms,
is enjoying a remarkable, and increasing, popularity in industry. Building on the
example introduced in Section 3.1, Figure 7 illustrates a conventional ER diagram
for video rentals.

RentalPrice
TapeNum CustomerID

(0,n)

Title

VideoTape CustomerCheckedOut
(0,1)

Figure 7: Non-temporal Conventional ER Diagram for Video Rentals

The research on temporal ER modeling is well motivated. It is widely known
that the temporal aspects of the mini-world are very important in a broad range of
applications, but are also difficult to capture using the ER model. Put simply, dia-
grams that would be intuitive and easy to comprehend without the temporal aspects
become obscure and cluttered when an attempt is made to capture the temporal
aspects.

The diagram in Figure 7 is non-temporal, modeling the mini-world at a single
point in time. Attempting to capture the temporal aspects that are essential for this
application complicates matters. It is necessary to capture the time when a customer
has checked out a video tape. And since it is possible for the same customer to have
checked out the same tape at different times, theCustomerID and TapeNum
attributes do not identify a single instance ofCheckedOut . Instead, it is necessary
to makeCheckedOut a ternary relationship type, introducing a new, somewhat
artificial, entity type that captures the times of rentals. Including start and end
time attributes on this entity type, theCustomerID , TapeNum, andStartTime
attributes identify instances ofCheckedOut . But simply requiring that these three
attributes be a key of a relation representing rentals does not ensure the integrity of
this relation—it remains possible for the same tape to be checked out more than
once at the same point in time. As another issue, rental prices may vary over time,
e.g., due to promotions and films getting old. Finally, including transaction time
leads to further complications.

As a result, some industrial users simply choose to ignore all temporal aspects
in their ER diagrams and supplement the diagrams with textual phrases to indicate
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that a temporal dimension to data exists, e.g., “full temporal support.” The result
is that the mapping of ER diagrams to relations must be performed by hand; and
the ER diagrams do not document fully the temporally extended relational database
schemas used by the application programmers.

The research community’s response to this predicament has been to develop
temporally enhanced ER models. Indeed, about a dozen such models have been
reported in the research literature [26]. These models represent attempts at model-
ing the temporal aspects of information more naturally and elegantly. The proposed
extensions are based on quite different approaches.

One approach is to give all existing ER model constructs temporal seman-
tics, basically following the “applies to all snapshots” approach used for making
conventional normalization concepts “(a)temporal” in the previous section. In its
extreme form, this approach does not result in any new syntactical constructs—
all the original constructs have simply become temporal. The simplicity of this
wholesale approach is attractive. However, this approach rules out databases with
non-temporal parts; and legacy diagrams are no longer valid, i.e., while their syntax
remains valid, their semantics have changed, and they therefore no longer describe
the existing relational databases.

Another approach is to devise new notational shorthands that replace some of
the patterns that occur frequently in ER diagrams when temporal aspects are being
modeled. One example is the pattern that occurs when modeling a time-varying
attribute in the ER model (e.g., theRentalPrice in our example). With this
approach, it is possible to retain the existing ER-model constructs with their old
semantics. This type of model may be more difficult to understand, but it does not
invalidate legacy diagrams, and it is also possible to design non-temporal databases
as well as databases where some parts are non-temporal while others are temporal.

In brief, the ideal temporal ER model is easy to understand in terms of the ER
model; does not invalidate legacy diagrams and database applications; and does not
restrict the database to be temporal, but rather permits the designer to mix temporal
and non-temporal parts.

The existing models typically assume that their schemas are mapped to sche-
mas in the relational model that serves as the implementation data model. The
mapping algorithms are constructed to add appropriate time-valued attributes to the
relation schemas. None of the models have one of the many time-extended rela-
tional models [39] as their implementation model. These models have data defini-
tion and query language capabilities that better support the management of temporal
data and would thus constitute natural candidate implementation platforms. Also,
mappings to emerging models (e.g., SQL3) are missing. It remains a challenge to
design mappings that maximally exploit these and other candidate implementation
platforms.
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5 Temporal DBMS Implementation

There has been a vast amount of work in storage structures and access methods for
temporal data, and a dozen-odd temporal DBMS prototypes have been reported [7].
Two basic approaches may be discerned. Traditionally, anintegratedapproach has
been assumed, in which the internal modules of a DBMS are modified or extended
to support time-varying data. More recently, alayeredapproach has also received
attention [59]. Here, a software layer interposed between the user-applications and
a conventional DBMS effectively serves as an advanced application that converts
temporal query language statements into conventional statements that are subse-
quently executed by the underlying DBMS, which is itself not altered. While the
former approach ensures maximum efficiency, the latter approach is more realistic
in the short and medium term. Consistent with the vast majority of papers on tem-
poral DBMS implementation, this section assumes an integrated approach utilizing
timestamping of tuples with time intervals, unless explicitly stated otherwise.

5.1 Query Processing

A query formulated in some high-level, user-oriented query language is typically
translated into an equivalent query, formulated in a DBMS-internal, algebraic query
language. The DBMS then optimizes this algebraic expression by transforming it
into an equivalent expression that is expected to be more efficient to process, the
result being better query processing performance.

Optimization of temporal queries offers new challenges over optimization of
conventional queries. At the core of the matter, temporal database queries are often
large and complex. A recent book offers a wide range of examples of typical tem-
poral database queries that are generally very complex [54]. Because of this added
complexity, it is not only more important, but also more challenging, to optimize
temporal database queries.

Specifically, the predicates used in temporal queries make these queries diffi-
cult to optimize. In non-temporal database applications, predicates are often equal-
ity predicates. As a reflection of this, much research in query processing has con-
centrated on equality predicates, and existing DBMSs are optimized for equality
predicates (which occur in, e.g., equi-joins and natural joins). In contrast, temporal
queries typically involve numerous inequality predicates. The perhaps most promi-
nent source of such predicates is the test of overlap among two intervals. Inherent
in temporal joins, this test occurs frequently in temporal queries and results in two
equality predicates. Specifically, two intervalsi andj overlap if the begin value of
i is less than or equal to the end value ofj and the begin value ofj is less than or
equal to the end value ofi. Conventional DBMSs typically resort to nested-loop
implementations of joins involving such inequality predicates, with their associated
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inefficiency.
Other challenges posed by the complexity of temporal queries concern the

coalescing of data [8] and the interactions among coalescing, duplicate removal,
and ordering [47].

There are new and unexploited opportunities for query optimization when
time is present. The current time advances continuously; and for transaction time,
the time value used most recently in updates is the largest value used so far. This
implies that a natural clustering or sort order will manifest itself. If relations are
partitioned so that current and logically deleted tuples are stored separately, the
relation with current tuples will be clustered on their transaction-time start values,
while the tuples in the relation with logically deleted tuples will be clustered on their
end times. Characteristics such as these can be exploited during query optimization
and evaluation.

As another example of an optimization opportunity, the integrity constraint
that the begin value of an interval is less than or equal to its end value holds for
all intervals in the database. Next, for many relations, the intervals associated with
a key value are contiguous in time, with one interval starting exactly when the
previous interval ended. Semantic query optimization can exploit these integrity
constraints, as well as additional ones that can be inferred.

5.2 Implementing Algebraic Operators

As explained earlier, a user-specified query is translated into an internal, algebraic
form, which is then optimized using equivalence-preserving transformations. The
DBMS has available a library of algorithms that implement the operations that oc-
cur in the resulting algebraic formulation of the query. As the next step, algorithms
are chosen from the library for each operation, upon which the query is ready for
execution. Good performance is dependent on the availability of good implementa-
tions of the operations.

Focus has been on a number of temporal algebraic operators, including se-
lection, joins, aggregates, and duplicate elimination. Conventional approaches to
computing these operators typically have poor performance, and new opportunities
exist for efficiently implementing these operators. The selection operator is exam-
ined in the next section, as its implementation often involves a temporal index.

A wide variety of binary joins have been considered, includingtime-join
and time-equijoin(TE-join), event-joinand TE-outerjoin, contain-join, contain-
semijoinandintersect-join, andtemporal natural join(e.g., [27, 55]). The various
algorithms proposed for these joins have generally been extensions to nested loop or
merge joins that exploit sort orders or local workspace, as well as partitioning-based
joins, but incremental techniques have also been proposed.
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More generally, these latter techniques are particularly attractive for imple-
menting operators on relations capturing transaction time, because these relations
retain complete records of their past states. Incremental techniques cache results of
previous computations and at later times reuse these results, together with records
of the updates to the underlying relations that have occurred since the results were
cached, to efficiently compute the up-to-date results. With support for transaction
time, the records of updates are already contained in the relations [42].

Next, time-varying aggregates are especially challenging. While there has
been much work on the topic in the data warehousing context, only a few papers
have considered the more general problem. Finally,coalescingis an important op-
eration in temporal databases. Coalescing merges value-equivalent tuples with adja-
cent intervals (and possibly also value-equivalent tuples with intervals that overlap).
This operation may be implemented by first sorting the argument relation on the ex-
plicit attribute values as well as the valid time. In a subsequent scan, the merging is
then accomplished.

5.3 Indexing Temporal Data

A variety of conventional indexes have long been used to reduce the need to scan an
entire relation to access a subset of its tuples, to support the conventional selection
algebraic operator and temporal joins. Similarly, a number of temporal indexing
strategies are available [46, 58]. Many of the indexes are based on B+-trees, which
index on values of a single key; most of the remainder are based on R-trees, which
index on ranges (intervals) of multiple keys. The worst-case performance for most
proposals has been evaluated in terms of total space required, updates per change,
and several important types of queries. Most of this work is in the context of the
selection operator. As also mentioned, indexes may be used to efficiently imple-
ment temporal joins and also coalescing and aggregates—this is an area of active
investigation.

6 Summary

This chapter has briefly introduced the reader to temporal data management, empha-
sizing central concepts, surveying important results, and describing the challenges
faced. This section briefly summarizes the current state-of-the-art, and Section 7
discusses challenges that remain.

A great amount of research has been conducted on temporal data models and
query languages, which has shown itself to be an extraordinarily complex chal-
lenge with subtle issues. The (snapshot-based) semantics of standard temporal re-
lational schemas are well understood, as are the implications for database design.
The Bitemporal Conceptual Data Model is gaining acceptance as a desirable model
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in which to consider data semantics and as a good foundation for a temporal query
language.

Many languages have been proposed for querying temporal databases, half of
which have a formal basis. The numerous types of temporal queries are fairly well
understood. The TSQL2 query language has consolidated many years of research
results into a single, comprehensive language. New languages employ so-called
statement modifiers, which offer a wholesale approach to giving temporal semantics
to query language statements. Constructs from TSQL2, enhanced with statement
modifiers, are being incorporated into the part of SQL3 called SQL/Temporal [38].

The semantics of the time domain, including its structure, dimensionality, and
indeterminacy, are quite well understood, and representational issues of timestamps
have recently been resolved. Operations on timestamps are now well understood,
and efficient implementations exist.

Temporal joins, aggregates, and coalescing are well understood, and efficient
implementations exist. More than a dozen temporal index structures have been
proposed, supporting valid time, transaction time, or both. A handful of prototype
temporal DBMS implementations have been developed.

7 Outlook

Although many important insights and results have been reported, many research
challenges still remain in temporal database management, some of which are con-
sidered here.

The lack of consideration of some of these challenges has reduced the po-
tential of earlier results. In many cases, core concepts have been established, but
it remains to be shown how they may be combined and applied, to simplify and
automate the management of time-referenced data in practice.

There is a need for increasedlegacy-awarenessin a number of areas within
temporal databases. Research is needed that takes into account the reality that most
databases are in fact legacy temporal databases and that the applications running
on them are in fact legacy temporal database applications. In contrast, most re-
search so far has assumed that applications will be designed using a new temporal
data model, implemented using novel temporal query languages, and run on as yet
nonexistent temporal DBMSs. In the short to medium term, this is an unrealistic
assumption. Indeed, perhaps in part because of this and despite the obvious need in
the marketplace, as yet no prominent commercial temporal relational DBMS exists.

The recent growth in database architectures, including the various types of
middleware, prompts a need for increasedarchitecture-awareness. Studies are
needed that provide the concepts, approaches, and techniques necessary for third-
party developers to efficiently and effectively implement temporal database technol-
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ogy while maximally exploiting available architectural infrastructure, as well as the
functionality already offered by existing DBMSs. The resulting temporal DBMS
architectures will provide a highly relevant alternative to the standard integrated
architecture that is generally assumed. As a next step, research is needed on how
to exploit existing and novel performance-improving advances, such as temporal
algebraic operator implementations and indices, in these architectures. Finally, ap-
proaches for transitioning legacy applications will become increasingly sought after
as temporal technology moves from research to practice.

Also, there has been little work on adding time to so-called fourth-generation
languages that are revolutionizing the user interfaces of commercially available
DBMSs. Figures 1 and 3 emphasize the need for ways tovisualize temporal data.
Scrolling down a table with additional timestamp attributes is not an effective means
of visualizing the temporal variation in the data.

The results on theconceptual designof temporal databases as reported in the
literature have potential for finding application in practice, but additional research
is needed. When database designers actually understand the core temporal database
concepts, perhaps most prominently valid and transaction time, they are able to
design better databases using existing models and tools. A central challenge is
to provide complete conceptual models, with associated design tools, that cover all
aspects of designing a temporal database; empirical evaluation of these by real users
is needed to provide essential insights. Reengineering of legacy databases is also a
very relevant challenge in this context.

Concerningperformance, more empirical studies are needed to compare tem-
poral algebraic operator implementations, and to possibly suggest even more ef-
ficient implementations. Indexing techniques is an important aspect. While pre-
liminary performance studies have been carried out for all or most of the proposed
temporal indexes in isolation, there has been little effort to empirically compare
them. More work is also needed on exploiting temporal indexes in algebraic opera-
tions other than selection. Finally, there has been little work in refining and validat-
ing cost models of temporal operators, or of developing and maintaining database
statistics. For example, the cardinality (number of specific values) of an attribute is
less useful than the average cardinality at a point in time. Another useful statistic
is the number oflong-lived tuples, the presence of which is the bane of some index
structures and temporal algebraic operators.

A number of research areas that are either separate within temporal databases,
overlap with this area, or take temporal databases as their point of departure also
pose important challenges. Although not mentioned exhaustively in the coverage
below, these areas are slated to offer ample challenges to those researchers con-
cerned with effective and efficient implementation of advanced database function-
ality.

The area ofactive databases, rules responding to database changes and exter-
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nal events are a focus. These may be extended to take into account prior history and
temporal trends. For example, an absolute temperature reading in a nuclear power
plant may be acceptable if it is part of a decreasing trend, but may signal a problem
if it represents an increase. Some initial work has been reported in this area [22],
but as yet there has been little integration of rule constructs and temporal constructs.

The area ofspatiotemporal databaseswill become increasingly important [2,
23, 11]. Providing built-in support for both space and time makes it convenient
to manage objects with extents in physical space and time, enabling new database
applications.

For example, many “moving objects” such as people, animals, cars, aircraft,
and ships will be equipped with wireless devices (e.g., GPS) that track their posi-
tions and make these available for storage in databases. The continued advances
in wireless communications hardware and software constitute powerful drivers for
these types of applications. While we are already witnessing the appearance of
traffic-related systems (e.g., for tracking taxi’s or fleet management), a very sub-
stantial growth can be expected in the number, sizes, diffusion, and diversity of
these applications.

Next,multimediapresentations andvirtual reality scenarios are in fact special
breeds of spatiotemporal databases. And, again, there are powerful enablers of
these kind of spatiotemporal database applications. We are witnessing continued
advances in data storage, processor, network, and user interaction technologies.
In short, the integration of temporal databases with spatial databases offers exciting
new challenges and promises to become an important research area in the future. To
mention just one example challenge, no index seems to accommodate well the past,
current, and anticipated future positions of moving objects such as those mentioned
above.

The area oftemporal data mining[43, 44] is a relatively new one, where
exploration has only recently started in earnest. While extracting static associations
from a mass of data is an important goal, more effort needs to be focussed on
associations that capture time-varying behavior, such as “when stock A goes up,
stock B goes up within two weeks.”

The fairly recent focus among vendors, users, and researchers alike ondata
warehousinghas brought new prominence to temporal databases. W. H. Inmon
who is known as the founder of data warehousing cites time variance as one of four
salient characteristics of a data warehouse [28], and there is general consensus that
a data warehouse is likely to contain several years of time-referenced data.

Being temporal, data warehouses are thus prime candidates to benefit from
the advances in temporal databases. But cross-fertilization between temporal data-
bases and data warehousing is largely absent. In fact, some of the original impetus
for a separate data model and query language for data warehouses arose from a
perceived lack of temporal support in the relational model and SQL. Few attempts
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have been made to exploit the advances in temporal databases in the context of data
warehousing, although exceptions do exist [6, 41]. The special architecture of a
data warehouse and the emphasis on supporting advanced query functionality, e.g.,
application-specific time-series analysis, bring novel challenges to temporal data-
base researchers. Reconciling the differences between general relational database
schemas and specialized star schemas would help enable users and developers to
achieve an integrated view of an enterprise.

Another active area of commercial products is that oftime-seriesabstract
data types (i.e., Informix’s datablades, Oracle’s cartridges). These data type ex-
tensions are highly useful for specialized applications, particularly in the financial
sphere, but do not address the general problem of easy expression of the temporal
constraints, queries, and modifications discussed in Section 3.2. Rather, a more
comprehensive approach along the lines of the extensions being considered for
SQL/Temporal appears to be attractive.

Adopting a longer term and more abstract perspective, it is likely that new
database management technologies and application areas will continue to emerge
that provide ‘temporal’ challenges. Due to the ubiquity of time and its importance
to most database management applications, and because built-in temporal support
generally offers many benefits and is challenging to provide, research in the tempo-
ral aspects of new database management technologies will continue to flourish for
existing as well as new application areas.
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