
A Data Model and Data Structures

for Moving Objects Databases�

Luca Forlizziy, Ralf Hartmut G�utingz,

Enrico Nardelliy, and Markus Schneiderz

Abstract

We consider spatio-temporal databases supporting spatial objects with continu-

ously changing position and extent, termed moving objects databases. We formally

de�ne a data model for such databases that includes complex evolving spatial

structures such as line networks or multi-component regions with holes. The data

model is given as a collection of data types and operations which can be plugged

as attribute types into any DBMS data model (e.g. relational, or object-oriented)

to obtain a complete model and query language. A particular novel concept is the

sliced representation which represents a temporal development as a set of units,

where unit types for spatial and other data types represent certain \simple" func-

tions of time. We also show how the model can be mapped into concrete physical

data structures in a DBMS environment.

1 Introduction

A wide and increasing range of database applications has to deal with spatial objects

whose position and/or extent changes over time. This applies on the one hand to

objects usually represented in maps such as countries, rivers, roads, pollution areas,

land parcels and so forth. On the other hand it includes physical objects moving

around such as taxis, air planes, oil tankers, criminals, polar bears, hurricanes, or
ood

areas, to name but a few examples. The management of the �rst class of objects is

the more traditional task of spatio-temporal databases. The goal of our research is

to support representation and querying not only of the �rst, but in particular of the

more dynamic second class of objects; to emphasize this we speak of moving objects

databases.

In previous work, we have proposed a data type oriented approach for modeling

and querying such data [EGSV99, EGSV98]. The idea is to represent the temporal

development of spatial entities in certain data types such as moving point or moving

region. Values of such types are functions that associate with each instant in time a

point or a region value. Suitable operations are provided on these types to support

querying. Such data types can be embedded as attribute types into object-relational or

other data models; they can be implemented and provided as extension packages (e.g.

data blades) for suitable extensible DBMS environments.

�This work was partially supported by the CHOROCHRONOS project, funded by the EU under

the Training and Mobility of Researchers Programme, Contract No. ERB FMRX-CT96-0056.
yDipartimento di Matematica Pura ed Applicata, Universita Degli Studi di L'Aquila, L'Aquila, Italy,

fforlizzi, nardellig@univaq.it
zPraktische Informatik IV, FernUniversit�at Hagen, D-58084 Hagen, Germany, fgueting, mar-

kus.schneiderg@fernuni-hagen.de

1

Following this approach, two questions arise. First, exactly which types and oper-

ations should be o�ered? Second, at what level of abstraction should these types and

operations be described?

By \level of abstraction" we mean the following. A moving point can be de�ned

either as a continuous function from time into the 2D plane, or as a polyline in the

three-dimensional (2D + time) space. A region can be de�ned as a connected subset of

the plane with non-empty interior, or as a polygon with polygonal holes. The essential

di�erence is that in the �rst case we de�ne the domains of data types just in terms of

in�nite sets, whereas in the second case we describe certain �nite representations for

the types.

In [EGSV98] we have discussed the issue at some depth and introduced the terms

abstract model for the �rst and discrete model for the second level of abstraction.

Both levels have their respective advantages. An abstract model is relatively clean and

simple; it allows one to focus on the essential concepts and not get bogged down by

representation details. However, it has no straightforward implementation. A discrete

model �xes representations and is generally far more complex. It makes particular

choices and thereby restricts the range of values of the abstract model that can be

represented. For example, a moving point could be represented not only by a 3D

polyline but also by higher order polynomial splines. Both cases (and many more) are

included within the abstract model. On the other hand, once such a �nite representation

has been selected, it can be translated directly to data structures.

In [EGSV98] we came to the conclusion that both levels of modeling are needed and

that one should �rst design an abstract model of spatio-temporal data types and then

continue by de�ning a corresponding discrete model. Such an abstract model has been

developed in [GBE+98]. The main concerns in that design have been orthogonality

in the type system, genericity and consistency of operations, and closure and consis-

tency between structure and operations of related non-temporal and temporal types.

Semantics of all types and operations have been de�ned formally.

The purpose of this paper is to continue this work by de�ning a discrete data model

implementing the abstract model of [GBE+98]. This means that for all data types

of the abstract model we introduce corresponding \discrete" types whose domains are

de�ned in terms of �nite representations. We de�ne precisely which constraints apply

so that a �nite representation does indeed describe a value of the abstract model. For

example, a region will be described by a set of line segments, but not every set of line

segments describes a valid region value.

The discrete model is a high-level speci�cation of data structures for a spatio-

temporal DBMS. In the last part of the paper we show how the discrete model can

be mapped to real data structures that can be used to implement attribute data types

in a DBMS. Hence the paper o�ers a good basis for the implementation of a \moving

objects data blade."

Earlier work on spatio-temporal databases has generally been restricted to accom-

modate discrete changes of spatial values. Worboys [Wor94] has proposed such a model

which represents spatio-temporal entities as the cross-product of a spatial and a tem-

poral description, using simplicial complexes for the spatial part and sets of rectangles

(for two time dimensions) for the temporal part. Other such models are [CG94] or

[PD95]. Some papers in the GIS literature, e.g. [K�am94], study implementation issues

such as e�cient storage schemes for sequences of region snapshots.

More recently, research has addressed the more dynamic applications that we (and

others) call \moving objects databases". Wolfson and colleagues [Wol98, WCD+98]

2

consider the management of collections of moving points in the plane. However, their

model describes only the current and the expected position of a point in the near future,

as represented by a motion vector. The main issue is to determine how often updates

of motion vectors are needed to balance the cost of updates against imprecision in the

knowledge of positions. Their model does not describe complete trajectories of moving

objects, and it also does not address more complex spatial structures such as regions.

Chomicki and Revesz [CR99] study a framework where spatio-temporal objects can be

described as collections of atomic geometric objects, and each such atomic object is

essentially given as a spatial object of some dimension d together with a continuous

function describing the development of the spatial object over time. For the continuous

functions, a�ne mappings (allowing translation, rotation, and scaling) and subclasses

thereof are considered. They establish some basic results, e.g., rectangles with linear

translation and scaling are closed under set operations whereas polygons with linear

translation and scaling are only closed under union.

The CHOROCHRONOS project, in which we participate, has addressed some issues

related to moving objects databases. Conceptual modeling is discussed in [TH97],

indexing in [TSPM98]. Reference [PJ99] addresses the uncertainty in capturing moving

point trajectories.

The constraint database approach can also be used to describe spatial as well as

spatio-temporal data. Papers that explicitly address spatio-temporal examples and

models are [GRS98, CR97].

However, except for [GBE+98] to our knowledge there does not exist in the lit-

erature a comprehensive design of spatio-temporal types and operations, let alone a

corresponding discrete data model as it is given in this paper. Our own earlier work

[EGSV99, EGSV98] discusses the idea and some basic issues related to spatio-temporal

data types, but does not yet de�ne a discrete data model.

The paper is structured as follows. In Section 2 the abstract model as the basis

for our design is brie
y reviewed. Section 3 de�nes the discrete data types, �rst for

non-temporal, and then for temporal types. Section 4 describes data structures for the

discrete types. Two example algorithms illustrating the use of the model and the data

structures are given in Section 5. Section 6 o�ers conclusions.

2 Review of the Abstract Model

The abstract model of [GBE+98] o�ers the data types, or actually the type system

shown in Table 1.

! BASE int; real; string; bool

! SPATIAL point; points; line; region

! TIME instant

BASE [TIME ! RANGE range

BASE [SPATIAL ! TEMPORAL intime;moving

Table 1: Signature describing the abstract type system

The type system is described by a signature. A signature in general has sorts and

operators and de�nes a set of terms. In this case the sorts are called kinds and the

operators are type constructors.1 The terms generated by the signature are the available

1We write signatures by giving �rst the argument and result sorts, and then the operators with this

3

data types. Some data types de�ned by this signature are int, region, range(instant),

or moving(point).

The meaning of the data types, informally, is the following. The constant types int,

real, string, bool are as usual, except that the domains are extended by a special value

\unde�ned". A value of type point is a point in the real (2D) plane, a points value a

�nite set of points. A line value is a �nite set of continuous curves in the plane. A

region value is a �nite set of disjoint faces where each face is a connected subset of

the plane with non-empty interior. Faces may have holes and lie within holes of other

faces. Types line and region are illustrated in Figures 2 and 3, respectively.

Type instant o�ers a time domain isomorphic to the real numbers. The range type

constructor produces types whose values are �nite sets of pairwise disjoint intervals

over the argument domain. The intime constructor yields types associating a time

instant with a value of the argument domain.

The most important type constructor is moving. Given an argument type � in

BASE or SPATIAL, it constructs a type whose values are functions from time (the

domain of instant) into the domain of �. Functions may be partial and must consist of

only a �nite number of continuous components (which is made precise in [GBE+98]).

For example, a moving(region) value is a function from time into region values.

Over the types so de�ned, the abstract model o�ers a large set of operations. It

de�nes �rst generic operations over the non-temporal types (all types except those

constructed bymoving or intime). These operations include predicates (e.g. inside or

�), set operations (e.g. union), aggregate operations, operations with numeric result

(e.g. size of a region), and distance and direction operations.

In a second step, by a mechanism called temporal lifting, all operations de�ned in

the �rst step over non-temporal types are uniformly and consistently made applicable

to the corresponding temporal (\moving") types. For example, the operation inside,

applicable e.g. to a point and a region argument and returning bool, is by lifting also

applicable to a moving(point) vs. a region, or a point vs. a moving(region), or a

moving(point) vs. a moving(region); in all these cases it returns a moving(bool).

Third, special operations are o�ered for temporal typesmoving(�) whose values are

functions. They can all be projected into domain (time) and range. Their intersection

with values or sets of values from domain or range can be formed (e.g. atinstant

restricts the function to a certain time instant). The rate of change (derivative,

speed) can also be observed.

An example now shall brie
y demonstrate how these data types can be embedded

into any DBMS data model as attribute types and how pertaining operations can be

used in queries. For example, we can integrate them into the relational model and have

a relation

planes (airline: string, id: string, flight: mpoint)

where mpoint is used as a synonym for moving(point) and included into the relation

schema as an abstract data type. The term flight denotes a spatio-temporal attribute

whose values record the locations of planes over time.

For posing queries we introduce the signatures of some operations. We only formu-

late special instances of them as far as they are needed for our examples. Corresponding

generic signature speci�cations can be found in [GBE+98].

functionality. As a convention, kinds are denoted by capitals and type constructors in italic underlined.
Operations on data types are written in bold face.

4

Operation Signature

trajectory moving(point) ! line

length line ! real

distance moving(point)�moving(point) ! moving(real)

atmin moving(real) ! moving(real)

initial moving(real) ! intime(real)

val intime(real) ! real

The projection of moving points into the plane may consist of points and lines.

The operation trajectory computes the line parts of such a projection. The operation

length determines the length of a line value. The distance between two moving points

is calculated by distance. Operation atmin here restricts a moving real to all times

with the same minimal real value. The �rst (instant, real) pair of a moving real is

returned by the operation initial. Operation val is here applied to a (instant, real)

pair and projects onto the second component.

We can now ask a query \Give me all
ights of Lufthansa longer than 5000 kms":

SELECT airline, id

FROM planes

WHERE airline = ``Lufthansa'' AND length(trajectory(flight)) > 5000

This query just employs projection into space. An example of a genuine spatio-temporal

query, which cannot be answered with the aid of projections, is: \Find all pairs of planes

that during their
ight came closer to each other than 500 meters!":

SELECT p.airline, p.id, q.airline, q.id

FROM planes p, planes q

WHERE val(initial(atmin(distance(p.flight, q.flight)))) < 0.5

This query represents an instance of a spatio-temporal join. Note that the distance

operation is here used in its temporally lifted version.

Many further illustrating query examples from di�erent application scenarios (e.g.,

multimedia presentations, forest �re control management) can be found in [GBE+98].

These applications demonstrate that a very
exible and powerful query language results

from this design.

In the following development of a discrete model, we focus on de�ning �nitely and

e�ciently representable domains for the data types. Of course, the discrete model also

includes operations. Almost all operations of the abstract model will also be available in

the discrete model.2 Of course, the next step is to develop algorithms for implementing

these operations on the discrete representations. This is, however, beyond the scope of

this paper, except for two relatively simple example algorithms in Section 5.

3 Data Types

3.1 Overview

In Section 3 we de�ne data types that can represent values of corresponding types of

the abstract model. Of course, the discrete types can in general only represent a subset

2A few operations, especially derivative, cannot be transferred, as they are not closed in the chosen

discrete representation.

5

of the values of the corresponding abstract type.

All type constructors of the abstract model will have direct counterparts in the

discrete model except for the moving constructor. This is, because it is impossible to

introduce at the discrete level a type constructor that automatically transforms types

into corresponding temporal types. The type system for the discrete model therefore

looks quite the same as the abstract type system up to the intime constructor, but then

introduces a number of new type constructors to implement the moving constructor,

as shown in Table 2.

! BASE int; real; string; bool

! SPATIAL point; points; line; region

! TIME instant

BASE [TIME ! RANGE range

BASE [SPATIAL ! TEMPORAL intime

BASE [SPATIAL ! UNIT const

! UNIT ureal; upoint;

upoints; uline; uregion
UNIT ! MAPPING mapping

Table 2: Signature describing the discrete type system

Let us give a brief overview of the meaning of the discrete type constructors. The

base types int; real; string; bool can be implemented directly in terms of corresponding

programming language types. The spatial types point and points also have direct

discrete representations whereas for the types line and region linear approximations

(i.e., polylines and polygons) are introduced. Type instant is also represented directly

in terms of programming language real numbers. The range and intime types represent

sets of intervals, or pairs of time instants and values, respectively. These representations

are also straightforward.

The interesting part of the model is how temporal (\moving") types are represented.

In this paper we describe the sliced representation. The basic idea is to decompose the

temporal development of a value into fragments called \slices" such that within the

slice this development can be described by some kind of \simple" function. This is

illustrated in Figure 1.

v

t x

y

t

Figure 1: Sliced representation of moving real and moving points value

The sliced representation is built by a type constructor mapping parameterized by

the type describing a single slice which we call a unit type. A value of a unit type is a

pair (i; v) where i is a time interval and v is some representation of a simple function

de�ned within that time interval. We de�ne unit types ureal, upoint, upoints, uline,

and uregion. For values that can only change discretely, there is a trivial \simple"

function, namely the constant function. It is provided by a const type constructor

6

which produces units whose second component is just a constant of the argument type.

This is in particular needed to represent moving int, string, and bool values. The

mapping data structure basically just assembles a set of units and makes sure that

their time intervals are disjoint.

In summary, we obtain the correspondence between abstract and discrete temporal

types shown in Table 3.

Abstract Type Discrete Type

moving(int) mapping(const(int))

moving(string) mapping(const(string))

moving(bool) mapping(const(bool))

moving(real) mapping(ureal)

moving(point) mapping(upoint)

moving(points) mapping(upoints)

moving(line) mapping(uline)

moving(region) mapping(uregion)

Table 3: Correspondence between abstract and discrete temporal types

In Table 3 we have omitted the representations mapping(const(real)), etc. which

can be used to represent discretely changing real values and so forth, but are not so

interesting for us.

In the remainder of Section 3 we formally de�ne the data types of the discrete

model. That means, for each type we de�ne its domain of values in terms of some

�nite representation. From an algebraic point of view, we de�ne for each sort (type) a

carrier set. For a type � we denote its carrier set as D�.

Of course, each value in D� is supposed to represent some value of the corresponding

abstract domain, that is, the carrier set of the corresponding abstract type. For a type

� of the abstract model, let A� denote its carrier set. We can view the value a 2 A�

that is represented by d 2 D� as the semantics of d. We will always make clear which

value from A� is meant by a value from D�. Often this is obvious, or an informal

description is su�cient. Otherwise we provide a de�nition of the form �(d) = a where

� denotes the \semantics" function.

The following Section 3.2 contains de�nitions for all non-temporal types and for

the temporal types in the sliced representation. For the spatial temporal data types

moving(points), moving(line), and moving(region) one can also de�ne direct three-

dimensional representations in terms of polyhedra etc.; these representations will be

treated elsewhere.

3.2 De�nition of Discrete Data Types

3.2.1 Base Types and Time Type

The carrier sets of the discrete base types and the type for time rest on available

programming language types. Let Instant = real.

Dint = int [f?g Dreal = real [f?g Dstring = string [f?g
Dbool = bool [f?g Dinstant = Instant [f?g

The only special thing about these types is that they always include the unde�ned value

? as required by the abstract model. Since we are interested in continuous evolutions

of values, type instant is de�ned in terms of the programming language type real.

7

We sometimes need to speak about only the de�ned values of some carrier set and

therefore introduce a notation for it: Let D0
� = D� n f?g. We will later introduce

carrier sets whose elements are sets themselves; for them we extend this notation to

mean D0
� = D� n f;g.

3.2.2 Spatial Data Types

Next, we de�ne �nite representations for single points, point collections, lines, and

regions in two-dimensional (2D) Euclidean space. A point is, as usual, given by a pair

(x; y) of coordinates. Let Point = real� real and

Dpoint = Point [f?g

The semantics of an element of Dpoint is obviously an element of Apoint. We assume

lexicographical order on points, that is, given any two points p; q 2 Point , we de�ne:

p < q , (p:x < q:x)_ (p:x = q:x ^ p:y < q:y).

A value of type points is simply a set of points.

Dpoints = 2Point

Again it is clear that a value ofDpoints represents a value of the abstract domain Apoints.

The de�nition of discrete representations for the types line and region is based

on linear approximations. A value of type line is essentially just a �nite set of line

segments in the plane. Figure 2 shows the correspondence between the abstract type

(a) (b)

y

x

y

x

y

x
(c)

Figure 2: (a) line value of the abstract model (b) line value of the discrete model (c)

any set of line segments is also a line value

for line and the discrete type. The abstract type is a set of curves in the plane which

was viewed in [GBE+98] as a planar graph whose nodes are intersections of curves and

whose edges are intersection-free pieces of curves. The discrete line type represents

curves by polylines. However, one can assume a less structured view and consider the

same shape to be just a collection of line segments. At the same time, any collection

of line segments in the plane de�nes a valid collection of curves (or planar graph) of

the abstract model (see Figure 2 (c)). Hence, modeling line as a set of line segments

is no less expressive than the polyline view. It has the advantage that computing the

projection of a (discrete representation) moving point into the plane can be done very

e�ciently as it is not necessary to compute the polyline or graph structure. Hence we

prefer to use this unstructured view. Let

Seg = f(u; v) j u; v 2 Point ; u < vg

be the set of all line segments.

Dline = fS � Seg j 8s; t 2 Seg : s 6= t ^ collinear(s; t)) disjoint(s; t)g

8

The predicate collinear means that two line segments lie on the same in�nite line in 2D

space. Hence for a set of line segments to be a line value we only require that there are

no collinear, overlapping segments. This condition ensures unique representation, as

collinear overlapping segments could be merged into a single segment. The semantics

of a line value is, of course, the union of the points on all of its segments.

A region value at the discrete level is essentially a collection of polygons with

polygonal holes (Figure 3). Formal de�nitions are based on the notions of cycles and

(a) (b)

y

x

y

x

Figure 3: (a) region value of the abstract model (b) region value of the discrete model

faces. These de�nitions are similar to those of the ROSE algebra [GS95]. We need to

reconsider such de�nitions here for two reasons: (i) They have to be modi�ed a bit

because here we have no \realm-based" [GS95] environment any more, and (ii) we are

going to extend them to the \moving" case in the following sections.

A cycle is a simple polygon, de�ned as follows:

Cycle = fS � Seg j jSj= n; n � 3; such that

(i) 8s; t 2 S : s 6= t) :p-intersect(s; t)^ :touch(s; t)
(ii) 8p 2 points(S) : card(p; S) = 2

(iii) 9hs0; : : : ; sn�1i : fs0; : : : ; sn�1g = S

^(8i 2 f0; : : : ; n� 1g : meet(si; s(i+1) mod n))g

Two segments p-intersect (\properly intersect") if they intersect in their interior (a

point other than an end point); they touch if one end point lies in the interior of

the other segment. Two segments meet if they have a common end point. The set

points(S) contains all end points of segments, hence is points(S) = fp 2 Point j 9s 2
S : s = (p; q)_ s = (q; p)g. The function card(p; S) tells how often point p occurs in S

and is de�ned as card(p; S) = jfs 2 S j s = (p; q) _ s = (q; p)gj. Hence a collection of

segments is a cycle, if (i) no segments intersect properly, (ii) each end point occurs in

exactly two segments, and (iii) segments can be arranged into a single cycle rather than

several disjoint ones (the notation hs0; : : : ; sn�1i refers to an ordered list of segments).

A face is a pair consisting of an outer cycle and a possibly empty set of hole cycles.

Face = f(c;H) j c2 Cycle; H � Cycle; such that

(i) 8h 2 H : edge-inside(h; c)

(ii) 8h1; h2 2 H : h1 6= h2) edge-disjoint(h1; h2)

(iii) any cycle that can be formed from the segments of c or H

is either c or one of the cycles of H

A cycle c is edge-inside another cycle d if its interior is a subset of the interior of d

and no edges of c and d overlap. They are edge-disjoint if their interiors are disjoint

9

and none of their edges overlap. Note that it is allowed that a segment of one cycle

touches a segment of another cycle. Overlapping segments are not allowed, since then

one could remove the overlapping parts entirely (e.g. two hole cycles could be merged

into one hole). The last condition (iii) ensures unique representation, that is, there are

no two di�erent interpretations of a set of segments as sets of faces. This implies that

a face cannot be decomposed into two or more edge-disjoint faces.

A region is then basically a set of disjoint faces.

Dregion = fF � Face j f1; f2 2 F ^ f1 6= f2) edge-disjoint(f1; f2)g

More precisely, faces have to be edge-disjoint . Two faces (c1; H1) and (c2; H2) are

edge-disjoint if either their outer cycles c1 and c2 are edge-disjoint, or one of the outer

cycles, e.g. c1, is edge-inside one of the holes of the other face (some h 2 H2). Hence

faces may also touch each other in an isolated point, but must not have overlapping

boundary segments.

The semantics of a region value should be clear: A cycle c represents all points of

the plane enclosed by it as well as the points on the boundary. Given �(c), we have for

a face �((c;H)) = closure(�(c) n
S

h2H �(h)), that is, hole areas are subtracted from

the outer cycle area, but then the resulting point set is closed again in the abstract

domain. The area of a region is then obviously the union of the area of its faces.

3.2.3 Sets of Intervals

In this subsection, we introduce the non-constant range type constructor which con-

verts a given type � 2 BASE [TIME into a type whose values are �nite sets of intervals

over �. Note that on all such types � a total order exists. Range types are needed,

for example, to represent collections of time intervals, or the values taken by a moving

real.

Let (S;<) be a set with a total order. The representation of an interval over S is

given by the following de�nition.

Interval(S) = f(s; e; lc; rc)js; e 2 S; lc; rc 2 bool;

s � e; (s = e)) (lc = rc = true)g:

Hence an interval is represented by its end points s and e and two
ags lc and rc

indicating whether it is left-closed and/or right-closed. The meaning of an interval

representation (s; e; lc; rc) is

�((s; e; lc; rc)) = fu 2 Sjs < u < eg [LC [RC

where the two sets LC and RC are de�ned as

LC =

(
fsg if lc

; otherwise
and RC =

(
feg if rc

; otherwise

Given an interval i, we denote with �0(i) the semantics expressed by �(i) restricted to

the open part of the interval.

Whether two intervals u = (su; eu; lcu; rcu) and v = (sv; ev; lcv; rcv) 2 Interval(S)

10

are disjoint or adjacent is de�ned as follows:

r-disjoint(u; v) , eu < sv _ (eu = sv ^ :(rcu ^ lcv))

disjoint(u; v) , r-disjoint(u; v)_ r-disjoint(v; u)

r-adjacent(u; v) , disjoint(u; v)^ (eu = sv ^ (rcu _ lcv)) _
((eu < sv ^ rcu ^ lcv)^ :(9w 2 S j eu < w < sv))

adjacent(u; v) , r-adjacent(u; v)_ r-adjacent(v, u)

The last condition for r-adjacent is important for discrete domains such as int. Repre-

sentations of �nite sets of intervals over S can now be de�ned as

IntervalSet(S) = fV � Interval(S) j
(u; v 2 S ^ u 6= v)) disjoint(u; v)^ :adjacent(u; v)g

The conditions ensure that a set of intervals has a unique and minimal representation.

The range type constructor can then be de�ned as:

Drange(�) = IntervalSet(D0
�) 8� 2 BASE [TIME

We also de�ne the intime type constructor in this subsection which yields types

whose values consist of a time instant and a value, as in the abstract model.

Dintime(�) = Dinstant �D� 8� 2 BASE [SPATIAL

3.2.4 Sliced Representation for Moving Objects

In this subsection we introduce and formalize the sliced representation for moving

objects. The sliced representation is provided by the mapping type constructor which

represents a moving object as a set of so-called temporal units (slices). Informally

speaking, a temporal unit for a moving data type � is a maximal interval of time where

values taken by an instance of � can be described by a \simple" function. A temporal

unit therefore records the evolution of a value v of some type � in a given time interval

i, while ensuring the maintenance of type-speci�c constraints during such an evolution.

For a set of temporal units representing a moving object their time intervals are

mutually disjoint, and if they are adjacent, their values are distinct. These requirements

ensure unique and minimal representations.

Temporal units are described as a generic concept in this subsection. Their special-

ization to various data types is given in the next two subsections. Let S be a set. The

concept of temporal unit is de�ned by:

Unit(S) = Interval(Instant)� S

A pair (i; v) of Unit(S) is called a temporal unit or simply a unit. Its �rst component

is called the unit interval, its second component the unit function.

The mapping type constructor allows one to build sets of units with the required

constraints. Let

Mapping(S) = fU � Unit(S) j 8(i1; v1) 2 U; 8(i2; v2) 2 U :

(i) i1 = i2) v1 = v2

(ii) i1 6= i2) (disjoint(i1; i2) ^ (adjacent(i1; i2)) v1 6= v2))g

11

The mapping type constructor is de�ned for any type � 2 UNIT as:

Dmapping(�) = Mapping(D�) 8� 2 UNIT :

In the next subsections we will de�ne the types ureal, upoint, upoints, uline, and

uregion. Since all of them will have the structure of a unit, the just introduced type

constructor mapping(�) can be applied to all of them.

Units describe certain simple functions of time. We will de�ne a generic function �

on units which evaluates the unit function at a given time instant. More precisely, let

� be a non-temporal type (e.g. real) and u� the corresponding unit type (e.g. ureal)

with Du� = Interval(Instant) � S�, where S� is a suitably de�ned set. Then �� is a

function

�� : S� � Instant ! D�

Usually we will omit the index � and just denote the function by �. Hence, � maps

a discrete representation of a unit function for a given instant of time into a discrete

representation of the function value at that time. The � function serves three purposes:

(i) It allows us to express constraints on the structure of a unit in terms of constraints

on the structure of the corresponding non-temporal value. (ii) It allows us to express

the semantics of a unit by reusing the semantics de�nition of the corresponding non-

temporal value. (iii) It can serve as a basis for the implementation of the atinstant

operation on the unit.

The use of � will become clear in the next subsections when we instantiate it for the

di�erent unit types.

3.2.5 Temporal Units for Base Types

For a type � 2 BASE [SPATIAL, we introduce the type constructor const that pro-

duces a temporal unit for �. Its carrier set is de�ned as:

Dconst(�) = Interval(Instant)�D0
�

Recall that the notation D0
� refers to the carrier set of � without unde�ned elements

or empty sets. A unit containing an unde�ned or empty value makes no sense as for

such time intervals we can simply let no unit exist (within a mapping).

Note that, even if we introduce the type constructor const with the explicit purpose

of de�ning temporal units for int, string, and bool, it can nevertheless be applied also

to other types. This may be useful for applications where values of such types change

only in discrete steps.

The trivial temporal function described by such a unit can be de�ned as

�(v; t) = v

Note that in de�ning � for a speci�c unit type we automatically de�ne the semantics

of the unit which should be a temporal function in the abstract model. For example,

for a value u of a unit type const(int) the semantics �(u) should be a partial function

f : A0
instant ! A0

int. This is covered by a generic de�nition of the semantics of unit

types: Let u = (i; v) be a value of a unit type u�. Then

�(u) = fu : A
0
instant \ �(i)! A0

� where

fu(t) = �(�(v; t)) 8t 2 �(i)

12

Hence we reuse the semantics de�ned for the discrete value �(v; t) 2 D0
�.

This semantics de�nition will in most cases be su�cient. However, for some unit

types (namely, uline and uregion) the discrete value obtained in the end points of the

time interval by � may be an incorrect one due to degeneracies: in such a case it has

to be \cleaned up." We will below slightly extend the generic semantics de�nition to

accommodate this. For all other units, this semantics de�nition su�ces so that we will

only de�ne the � function in each case.

For the representation of moving reals we introduce a unit type ureal. The \simple"

function we use for the sliced representation of moving reals is either a polynomial of

degree not higher than two or a square root of such a polynomial. The motivation

for this choice is a trade-o� between richness of the representation (e.g. square roots

of degree two polynomials are needed to express time-dependent distance functions in

the Euclidean metric) and simplicity of the representation of the discrete type and of

its operations. With this particular choice one can implement (i.e., the discrete model

is closed under) the lifted versions of size, perimeter, and distance operations; one

cannot implement the derivative operation of the abstract model. The carrier set for

type ureal is

Dureal = Interval(Instant)� f(a; b; c; r) j a; b; c2 real; r 2 boolg

and evaluation at time t is de�ned by:

�((a; b; c; r); t) =

(
at2 + bt+ c if :rp
at2 + bt+ c if r

3.2.6 Temporal Units for Spatial Data Types

In this subsection we specialize the concept of unit to moving instances of spatial data

types.

Similar to moving reals, the temporal evolution of moving spatial objects is charac-

terized by continuity and smoothness and can be approximated in various ways. Again

we have to �nd the balance between richness and simplicity of representation. As indi-

cated before, in this paper we make the design decision to base our approximations of

the temporal behavior of moving spatial objects on linear functions. Linear approxima-

tions ensure simple and e�cient representations for the data types and a manageable

complexity of the algorithms. Nevertheless, more complex functions like polynomials

of a degree higher than one are conceivable as the basis of representation but are not

considered in this paper.

Due to the concept of sliced representation, also for moving spatial objects we

have to specify constraints in order to describe the permitted behavior of a value of

such a type within a temporal unit. Since the end points of a time interval mark a

change in the description of the data type, we require that constraints are satis�ed only

for the respective open interval. In the end points of the time interval a collapse of

components of the moving object can happen. This is completely acceptable, since one

of the reasons to introduce the sliced representation is exactly to have \simple" and

\continuous" description of the moving value within each time interval and to limit

\discontinuities" in the description to a �nite set of instants.

Moving Points and Point Sets. The structurally simplest spatial object that can

move is a single point. Hence, we start with the de�nition of the spatial unit type

13

upoint. First we introduce a set MPoint which de�nes 3D lines that describe unlimited

temporal evolution of 2D points.

MPoint = f(x0; x1; y0; y1) j x0; x1; y0; y1 2 realg

This describes a linearly moving point for which evaluation at time t is given by:

�((x0; x1; y0; y1); t) = (x0 + x1 � t; y0 + y1 � t) 8t 2 Instant

The carrier set of upoint can then be very simply de�ned as:

Dupoint = Interval(Instant)�MPoint

We pass now to describe a set of moving points. The carrier set of upoints can be

de�ned as:

Dupoints = f(i;M) j i 2 Interval(Instant);M � MPoint; jM j � 1; and

(i) 8t 2 �0(i); 8l; k 2M : l 6= k) �(l; t) 6= �(k; t)

(ii) i = (s; e; lc; rc)^ s = e) (8l; k 2M : l 6= k) �(l; s) 6= �(k; s))g

Here we encounter for the �rst time a constraint valid during the open time interval

of the unit (condition (i)). Namely, a upoints unit is a collection of linearly moving

points that do not intersect within the open unit interval. Condition (ii) concerns units

de�ned only in a single time instant; for them all points have to be distinct at that

instant.

For (i;M) 2 Dupoints, evaluation at time t is given by

�(M; t) =
[

m2M

f�(m)g 8t 2 �(i)

which is clearly a set of points in D0
points. We will generally assume that � distributes

through sets and tuples so that �(M; t) is de�ned for any set M as above, and for a

tuple r = (r1; : : : ; rn), we have �(r; t) = (�(r1); : : : ; �(rn)).

Moving Lines. We now introduce the unit type for line called uline. Here we restrict

movements of segments so that in the time interval associated to a value of uline each

segment maintains its direction in the 2-dimensional space. That is, segments which

rotate during their movement are not admitted. See in Figure 4 an example of a valid

uline value. This constraint derives from the need of keeping a balance between ease of

Figure 4: An instance of uline

representation and manipulation of the data type and its expressive power. Rotating

14

segments de�ne curved surfaces in the 3D space that, even if they constitute a more

accurate description, can always be approximated by a sequence of plane surfaces.

The carrier set of uline is therefore based on a set of moving segments with the

above restriction and which never overlaps at any instant internal to the associated

open time interval. Overlapping has a meaning equivalent to the one used for line

values: to be collinear and to have a non-empty intersection.

To prepare the de�nition of uline we introduce the set of all pairs of lines in a 3D

space that are coplanar, which will be used to represent moving segments:

MSeg = f(s; e) j s; e 2 MPoint; s 6= e; s is coplanar with eg:

The carrier set for uline can now be de�ned as:

Duline = f(i;M) j i2 Interval(Instant);M � MSeg; jM j � 1; such that

(i) 8t 2 �0(i) : �(M; t) 2 D0
line

(ii) i = (s; e; lc; rc)^ s = e) �(M; s) 2 D0
lineg

Here again the �rst condition de�nes constraints for the open time interval and the

second treats the case of units de�ned only at a single instant. Note that �(M; t)

is de�ned due to the fact that � distributes through sets and tuples. A uline value

therefore inherits the structural conditions on line values and segments. For example,

condition (i) requires that

(s; e) 2M) (�(s; t); �(e; t)) 2 Seg 8t 2 �0(i)

and therefore �(s; t) < �(e; t) 8t 2 �0(i).

The semantics de�ned for uline via � according to the generic de�nition given earlier

needs to be slightly changed to cope with degeneracies in the end points of a unit time

interval, as we anticipated. In these points, in fact, moving segments can degenerate into

points and di�erent moving segments can overlap. We accommodate this by de�ning

separate � functions for the start time and the end time of the time interval, called �s
and �e, respectively. Let ((s; e; lc; rc);M) 2 Duline. Then

�s(M; t) = �e(M; t) = merge-segs(f(p; q) 2 �(M; t) j p < qg

This de�nition removes pairs of points returned by �(M; t) that are not segments (i.e.,

segments degenerated into a single point); it also merges overlapping segments into

maximal ones (this is the meaning of the merge-segs function). The generic semantics

de�nition is then extended as follows:

�(u) = fu : A0
instant \ �(i)! A0

�

where for u = (i; v) and i = (s; e; lc; rc)

fu(t) =

8><
>:
�(�(v; t)) if t 2 �0(i)

�(�s(v; t)) if t = s ^ lc

�(�e(v; t)) if t = e ^ rc

A �nal remark on the design decisions for the discrete type for moving lines is the

following. Assume we choose instance u1 (resp., u2) of uline as the discrete represen-

tation at the initial (resp., �nal) time t1 (t2) of a unit for the (continuously) moving

15

line l. Then the constraint that segments making up the discrete representation of l

cannot rotate during the unit does not restrict too much the �delity of the discrete

representation. Indeed, since members of MSeg in a unit can be triangles, this leaves

the possibility of choosing among many possible mappings between endpoints of their

segments in t1 and those in t2, as long as the non-rotation constraint is satis�ed. In

Figure 5 an example of a discrete representation of a continuously moving line by means

of an instance of uline is shown. If this approach causes a too rough approximation

Figure 5: A discrete representation of a moving line

internally to the time unit, then possibly an additional instant, internal to the unit,

has to be chosen and an additional discrete representation of l at that instant has to

be introduced so that a better approximation is obtained. It can be easily seen that in

the limit this sequence of discrete representations can reach an arbitrary precision in

representing l.

Moving Regions. We now introduce the moving counterpart for region, namely the

uregion data type. We adopt the same restriction used for moving lines, i.e., that

rotation of segments in the 3-dimensional space is not admitted. We therefore base the

de�nition of uregion on the same set of all pairs of lines in a 3D space that are coplanar,

namely MSeg, with additional constraints ensuring that throughout the whole unit we

always obtain a valid instance of the region data type. Figure 6 shows an example of

a valid uregion value. (It also shows the degeneracies that can occur in the end points

of a unit interval.)

Figure 6: An instance of uregion.

As for a region value, we can have moving regions with (moving) holes, hence the

basic building blocks are given by the concepts of cycle and face already introduced in

the de�nition of region.

The carrier set of uregion is therefore based, informally speaking, on a set of (pos-

sibly nested) faces which never intersect at any instant internal to the associated time

16

interval. For the formal de�nition of uregion, we �rst introduce a set intended to

describe the moving version of a cycle, without restriction on time:

MCycle = ffs0; : : : ; sn�1g jn � 3; 8i 2 f0; : : : ; n� 1g : si 2 MSegg

We then introduce a set for the description of the moving version of a face, without

restriction on time:

MFace = f(c;H) j c2 MCycle; H � MCycleg:

Note that in the de�nitions of MCycle and MFace we have not given the constraints to

impose on the sets the semantics of cycles and faces because this will be done directly

in the moving region de�nition. The carrier set for uregion is now de�ned as

Duregion = f(i; F) j i2 Interval(Instant); F � MFace; such that

(i) 8t 2 �0(i) : �(F; t) 2 D0
region

(ii) i = (s; e; lc; rc)^ s = e) �(F; s) 2 D0
regiong

For the end points of the time interval again we have to provide separate functions �s
and �e. Essentially these work as follows. From the pairs of points (p; q) (segments)

obtained by evaluating �(F; s) or �(F; e), remove all pairs that are no proper segments

(as for uline). Next, for all collections of overlapping segments on a single line, partition

the line into fragments belonging to the same set of segments (e.g. if segment (p; q)

overlaps (r; s) such that points are ordered on the line as hp; r; q; si then there are

fragments (p; r); (r; q), and (q; s)). For each fragment, count the number of segments

containing it. If this number is even, remove the fragment; if it is odd, put the fragment

as a new segment into the result. A complete formalization of this is lengthy and

omitted.

4 Data Structures

The discrete model developed in Section 3 o�ers a precise basis for the implementation

of data structures for a spatio-temporal database system; it is in fact a high-level

speci�cation of such data structures. In this section we can therefore, relatively brie
y,

explain how these de�nitions translate into data structures. Two general issues need

to be considered in that step.

First, some requirements arise from the fact that the data structures implementing

the data types are to be used within a database system, and in particular to represent

attribute data types within some given data model implementation. This means that

values are placed under control of the DBMS into memory which in turn implies that (i)

one should not use pointers, and (ii) representations should consist of a small number

of memory blocks that can be moved e�ciently between secondary and main memory.

One way to ful�ll these requirements is to implement each data type by a �xed

number of records and arrays; arrays are used to represent the varying size components

of a data type value and are allocated to the required size. All pointers are expressed

as array indices.

The Secondo extensible DBMS [DG99, GDF+99], under which we are implementing

this model, o�ers a speci�c concept for the implementation of attribute data types. Such

a type has to be represented by a record (called the \root record") which may have

one or more components that are (references to) so-called \database arrays". Database

17

arrays are basically arrays with any desired �eld size and number of �elds; additionally

they are automatically either represented \inline" in a tuple representation, or outside

in a separate list of pages, depending on their size [DG98]. The root record is always

represented within the tuple. In our subsequent design of data structures we will apply

this concept. Hence each data type will be represented by a record and possibly some

(database) arrays. In other DBMS environments one can store the arrays using the

facilities o�ered there for large object management.

Second, many of the data types of Section 3 are set-valued. Sets will be represented

in arrays. We always de�ne a unique order on the set domains and store elements in

the array in that order. In this way we can enforce that two set values are equal i�

their array representations are equal, which makes e�cient comparisons possible.

4.1 Non-Temporal Data Types

For the simple types of Section 3.2.1, the implementation is straightforward: they

are represented as a record consisting of the given programming language value3 plus a

boolean
ag indicating whether the value is de�ned. Type point is represented similarly

by a record with two reals and a
ag.

A points value is represented as an array containing records with two real �elds,

representing points. Points are in lexicographic order. The root record contains the

number of points and the (database) array.

The data structures for line and region values are designed somewhat similar to

[GdRS95]. A line value is a set of line segments. This is represented as a list of

halfsegments. The idea of halfsegments is to store each segment twice: once for the left

(i.e., smaller) end point and once for the right end point. These are called the left and

right halfsegment, respectively, and the relevant point in the halfsegment is called the

dominating point. The purpose is to support plane-sweep algorithms which traverse a

set of segments from left to right and have to perform an action (e.g. insertion into a

sweep status structure) on encountering the left and another action on meeting the right

end point of a segment. A total order is de�ned on halfsegments which is lexicographic

order extended to treat halfsegments with the same dominating point (see [GdRS95]

for a de�nition).

Hence the line value is represented as an array containing a sequence of records each

of which represents a halfsegment (four reals plus a
ag to indicate the dominating

point); these are ordered according to the order just mentioned. The root record

manages the array plus some auxiliary information such as the number of segments,

total length of segments, bounding box, etc.

A region value can be viewed as a set of line segments with some additional struc-

ture. This set of line segments is represented by an array halfsegments containing

the ordered sequence of halfsegment records, as for line. In addition, all halfsegments

belonging to a cycle, and to a face, are linked together (via extra �elds such as next-

in-cycle within halfsegment records). Two more arrays cycles and faces represent the

structure. The array cycles contains records representing cycles by a pointer4 to the

�rst halfsegment of the cycle and a pointer to the next cycle of the face. The latter

is used to link together all cycles belonging to one face. Array faces contains for each

face a pointer into the cycles array to the �rst cycle of the face. Some unique order is

3For string we assume an implementation as a �xed length array of characters.
4From now on, when we say \pointer" we always mean integer indices referring to a �eld of some

array.

18

de�ned on cycles and faces which need not be detailed here.

The root record for regionmanages the three arrays and has additional information

such as bounding box, number of faces, number of cycles, total area, perimeter, etc.

Algorithms constructing region values generally compute the list of halfsegments and

then call a close operation o�ered by the region data type, which determines the

structure of faces and cycles and represents it by setting pointers.

More details on the representation strategy can be found in [GdRS95] although

some details are di�erent here.

Intervals (s; e; lc; rc) are represented by corresponding records. A value of type

range(�) is represented as an array of interval records ordered by value (all intervals

are disjoint, hence there exists a total order). A value of type intime(�) is represented

by a corresponding record.

4.2 Unit Types

We have to distinguish units that can be represented in a �xed amount of space, called

�xed size units, and variable size units. Fixed size units are const(int), const(string),

const(bool)5, ureal, and upoint. Variable size units are upoints, uline, and uregion.

Fixed size units can be represented simply in a record that has two component

records to represent the time interval and the unit function, respectively. For example,

for ureal the second record represents the quadruple (a; b; c; r).

For the representation of variable size units, we introduce subarrays. Conceptually,

a subarray is just an array. Technically it consists of a reference to a (database) array

together with two indices identifying a subrange within that array. The idea is that all

units within a mapping (i.e., a sliced representation) share the same database arrays.

Variable sized units are also all represented by a record whose �rst component is a

time interval record. In the sequel we only describe the second component.

A upoints unit function is stored in a subarray containing a sequence of records

representingMPoint quadruples, in lexicographic order on the quadruples. The upoints

unit is represented in a record whose second component record contains a subarray

reference and a bounding cube6 (the number of points can be inferred from the subarray

indices).

A uline unit function is stored similarly in a subarray containing a sequence of

records representingMSeg pairs which in turn areMPoint quadruples. Pairs are ordered

lexicographically by their two component quadruples on which again lexicographic order

applies. Again the uline unit is represented in a record whose second component

consists of a subarray reference and a bounding cube.

A uregion unit function is basically a set of MSeg values (moving segments, trapez-

iums in 3D) with some additional constraints. We store these MSeg records in the

same way and order in a subarray msegments as for uline. In addition, each record has

two extra �elds that allow for linking together all moving segments within a cycle and

within a face. Furthermore, uregion has two additional subarrays mcycles and mfaces

identifying cycles and faces, as in the region representation. The second component

record of a uregion unit contains the three subarrays and a bounding cube for the unit.

For both uline and uregion one might add further summary information in the

second component record, such as the (a; b; c; r) quadruples for the time-dependent

length (for uline) or for perimeter and size (for uregion).

5We do not consider the other const(�) types here, as they are not so relevant in this paper.
6This is a bounding box in 3D.

19

4.3 Sliced Representation

The data structure associated with themapping type constructor organizes a collections

of units (slices) as a whole. Obviously this data structure is parameterized by the

unit data structures. We observe that all unit data structures are records whose �rst

component represents a time interval, and whose second component may contain one

or more subarrays.

The mapping data structure is illustrated in Figure 7. It is basically a (database)

time interval function

root record

units

Figure 7: A mapping data structure containing three units, for a unit type with one

subarray, such as upoints.

array units containing the unit records ordered by their time intervals. If the unit type

uses k subarrays, then the mapping data structure has k additional database arrays.

Obviously, the database arrays mentioned in the unit subarray references will be the

database arrays provided in the mapping data structure. The main array units as well

as the k additional arrays are referenced from a single root record for the mapping

data structure. Note that the structure has the general form required for attribute

data types.

5 Two Example Algorithms

In this section we brie
y show two algorithms in order to illustrate the use of the data

model and data structures de�ned in the previous sections. The �rst one implements

the atinstant operation on a moving region, i.e., it determines the region value at a

given instant of time. The second one implements the inside operation on a moving

point and a moving region, hence it returns a moving boolean describing when the

point was inside the region.

5.1 Algorithm atinstant

The moving region is represented as a value of type mapping(uregion). The idea of

the algorithm is to perform binary search on the array containing the region units to

determine the unit u containing the argument time instant t. Then a subalgorithm is

called which evaluates each moving segment within the region unit at time t resulting

in a line segment in two dimensions. These are composed to obtain the region value

returned as a result.

algorithm atinstant (mr; t)

input: a moving region mr as a value of type mapping(uregion), and an

instant t

output: a region r representing mr at instant t

method:

20

determine u 2 mr such that its time interval contains t;

if u exists then return uregion atinstant(u; t) else return ; endif
end atinstant.

algorithm uregion atinstant(u; t)

input: a moving region unit ur (of type uregion) and an instant t

output: a region r, the function value of ur at instant t

method:

let ur = (i; F); r := ;;
for each mface (c;H) 2 F do

c0 := f�(s; t)js 2 cg;
H 0 := ;;
for each h 2 H do h0 := f�(s; t)js 2 hg; H 0 := H 0 [fh0g endfor;
r := r [f(c0; H 0)g

endfor;

return r

end uregion atinstant.

In the second algorithm the � function de�ned in Section 3 is used to evaluate a moving

segment at an instant of time to get a line segment.

The time complexity of this algorithm is basically O(logn+r) where n is the number

of units in mr, and r is the size of the region returned (the number of segments). This

is because in the �rst step of atinstant the unit can be found by binary search in

O(logn) time, and the traversal of the unit data structure takes linear time. However,

to construct a proper region data structure as described in Section 4.1, one has to

produce the list of halfsegments in lexicographic order, and hence needs to sort the r

result segments, which results in a time complexity of O(logn + r log r). Note that if

the region value is just needed for output (e.g. for display on a graphics screen) then

O(logn+ r) is indeed su�cient.

The above algorithm works correctly if instant t is internal to the unit time interval.

For simplicity, we have ignored in this description the problem of possibly degenerated

region values in the end points of the unit time interval, which requires a more complex

cleanup after �nding the line segments, as sketched at the end of Section 3. This

problem can be avoided altogether, by the way, if we spend a little more storage space,

and represent a unit with a degenerated region at one end instead by two units, one

with an open time interval, and the other with a correct region representation for the

single instant at the end.

Analogous implementations of the atinstant operation can be obtained for all other

moving data types. The �rst algorithm atinstant is in fact generic; one only needs to

plug in subalgorithms for other data types.

5.2 Algorithm inside

Here the arguments are two lists (arrays) of units, one representing a moving point, the

other a moving region. The idea is to traverse the two lists in parallel, computing the

re�nement partition of the time axis on the way (see Figure 1).

For each time interval i in the re�nement partition, an inside algorithm is performed

on the point and region units valid at that time interval. It produces a set of boolean

units representing when the point was inside the region. Note that even a linearly

21

Figure 8: Two sets of time intervals on the left, their re�nement partion on the right

moving point within a single upoint unit can enter and leave the region of the region

unit several times.

algorithm inside (mp;mr)

input: a moving point mp (of typemapping(upoint)), and a moving region

mr (of type mapping(uregion))

output: a moving boolean mb, as a value of type mapping(const(bool)),

representing when mp was inside mr

method:

let mp = fup1; : : : ; upng such that the list hup1; : : : ; upni is ordered by

time intervals;

let mr = fur1; : : : ; urmg such that the list hur1; : : : ; urmi is ordered by

time intervals;

mb := ;;
scan the two lists hup1; : : : ; upni and hur1; : : : ; urmi in parallel, determin-

ing in each step a new re�nement time interval i and from each of the

two lists either a unit up or ur, respectively, whose time interval contains

i, or unde�ned, if there is no unit in the respective list overlapping i:

for each re�nement interval i do

if both up and ur exist then

ub := upoint uregion inside(up; ur);

mb := concat(mb; ub)

endif

endfor;

return mb

end inside.

The operation concat on two sets of units is essentially the union, but merges adjacent

intervals with the same unit value into a single unit. On the array or list representations,

as given in the mapping data structure, this can be done in constant time (comparing

the last unit of mb with the �rst unit of ub).

algorithm upoint uregion inside(up; ur)

input: a upoint unit up, and a uregion unit ur

output: a set of moving boolean units, as a value of typemapping(const(bool)),

representing when the point of up was inside the region of ur during their

intersection time interval

method:

let up = (i0; mpo) and ur = (i00; F) and let i = (s; e; lc; rc) be the inter-

section time interval of i0 and i00;7

7For simplicity, the remainder of the algorithm assumes the intersection interval is closed. It is

straightforward, but a bit lengthy, to treat the other cases.

22

if the 3d bounding boxes of mpo and F do not intersect then return ;
else

determine all intersections between mpo and msegments occurring in

(the cycles of faces of) F . Each intersection is represented as a

pair (t; action) where t is the time instant of the intersection, and

action 2 fenter; leaveg;8

sort intersections by time, resulting in a list h(t1; a1); : : : ; (tk; ak)i
if there are k intersections. Note that actions in the list must be

alternating, i.e., ai 6= ai+1;

let t0 = s and tk+1 = e;

if k = 0 then

if mpo at instant s is inside F at instant s then

return f((s; e; true; true); true)g
else return f((s; e; true; true); false)g
endif

else

if a1 = leave then

return f((ti; ti+1; true; true); true)ji 2 f0; : : : ; kg; i is eveng
[f((ti; ti+1; false; false); false)ji2 f0; : : : ; kg; i is oddg

else

return f((ti; ti+1; true; true); true)ji 2 f0; : : : ; kg; i is oddg
[f((ti; ti+1; false; false); false)ji2 f0; : : : ; kg; i is eveng

endif

endif

endif

end upoint uregion inside.

Here the moving point mpo is a line segment in 3D that may stab some of the moving

segments of F , which are trapeziums in 3D. In the order of time, with each intersection

the moving point alternates between entering and leaving the moving region represented

in the region unit. Hence a list of boolean units is produced that alternates between true

and false. In case no intersections are found (k = 0), one needs to check whether at the

start time of the time interval considered the point was inside the region. This can be

implemented by a well-known technique in computational geometry, the \plumbline"

algorithm which counts how many segments in 2D are above the point in 2D.

The �rst algorithm inside requires time O(n+m), where n and m are the numbers

of units in the two arguments, except for the calls to algorithm upoint uregion inside.

This second algorithm requires O(s) time for �nding all intersections, with s the number

of msegments in F . Furthermore, O(k log k) time is needed to sort the k intersections,

and to return the k+ 1 boolean units. If no intersections are found, the check whether

mpo is inside F at the start time s requires O(s) time. The total time for all calls to

upoint uregion inside is O(S +K log k0) where S is the total number of msegments in

all units, K is the total number of intersections between the moving point and faces of

the moving region, and k0 is the largest number of intersections occurring in a single

pair of units. In practical cases, k0 is likely to be a small constant, and K log k0 will

be dominated by S, hence the total running time will be O(n+m+ S). If the moving

point and the moving region are su�ciently far apart, so that not even the bounding

8The action can be determined if we store with each msegment (trapezium or triangle in 3D) a face
normal vector indicating on which side is the interior of the region.

23

boxes intersect, then the running time is O(n+m).

This algorithm illustrates nicely how algorithms for binary operations on moving

objects can generally be reduced to simpler algorithms on pairs of units. Again, the

�rst algorithm is generic; one only needs to plug in algorithms for speci�c operations

on pairs of units.

6 Conclusions

We have presented and formally de�ned a discrete data model that implements the data

types de�ned in the abstract model of [GBE+98]. We have also demonstrated how the

discrete representations can be mapped into data structures that can be realistically

used in a DBMS environment, and how algorithms can use these data structures. Hence

the paper o�ers a precise basis for the implementation of a \spatio-temporal extension

package" to be added to a suitable extensible architecture (e.g. as a data blade to

Informix Universal Server).

The next step is to design (more) algorithms for the operations of [GBE+98] and to

implement them on these data structures. We are currently building such an extension

package and plan to integrate it into the Secondo system as well as make it a data

blade for Informix.

References

[CG94] T.S. Cheng and S.K. Gadia. A Pattern Matching Language for Spatio-Temporal

Databases. In Proceedings of the ACM Conference on Information and Knowledge

Management, pages 288{295, November 1994.

[CR97] J. Chomicki and P. Revesz. Constraint-Based Interoperability of Spatio-Temporal

Databases. In Proceedings of the 5th International Symposium on Large Spatial

Databases, pages 142{161, Berlin, Germany, 1997.

[CR99] J. Chomicki and P. Revesz. A Geometric Framework for Specifying Spatiotemporal

Objects. In Proceedings of the 6th International Workshop on Temporal Represen-

tation and Reasoning (TIME), pages 41{46, 1999.

[DG98] S. Dieker and R.H. G�uting. E�cient Handling of Tuples with Embedded Large

Objects. Technical Report Informatik 236, FernUniversit�at Hagen, 1998. To appear

in Data and Knowledge Engineering.

[DG99] S. Dieker and R.H. G�uting. Plug and Play with Query Algebras: Secondo. A Generic

DBMS Development Environment. Technical Report Informatik 249, FernUniver-

sit�at Hagen, 1999.

[EGSV98] M. Erwig, R.H. G�uting, M. Schneider, and M. Vazirgiannis. Abstract and Dis-

crete Modeling of Spatio-Temporal Data Types. In Proceedings of the 6th ACM

Symposium on Geographic Information Systems, pages 131{136, Washington, D.C.,

November 1998.

[EGSV99] M. Erwig, R.H. G�uting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data

Types: An Approach to Modeling and Querying Moving Objects in Databases.

GeoInformatica, 3(3):265{291, 1999. In press.

[GBE+98] R.H. G�uting, M.H. B�ohlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider,

and M.Vazirgiannis. A Foundation for Representing and Querying Moving Ob-

jects. Technical Report Informatik 238, FernUniversit�at Hagen, 1998. Available at

http://www.fernuni-hagen.de/inf/pi4/papers/Foundation.ps.gz.

24

[GDF+99] R.H. G�uting, S. Dieker, C. Freundorfer, L. Becker, and H. Schenk. SECONDO/QP:

Implementation of a Generic Query Processor. In Proceedings of the 10th Intl.

Conf. on Database and Expert Systems Applications, pages 66{87, Florence, Italy,

September 1999.

[GdRS95] R.H. G�uting, T. de Ridder, and M. Schneider. Implementation of the ROSE Al-

gebra: E�cient Algorithms for Realm-Based Spatial Data Types. In Proc. of the

4th Intl. Symposium on Large Spatial Databases, pages 216{239, Portland, Maine,

August 1995.

[GRS98] S. Grumbach, P. Rigaux, and L. Segou�n. The Dedale System for Complex Spa-

tial Queries. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 213{224, 1998.

[GS95] R.H. G�uting and M. Schneider. Realm-Based Spatial Data Types: The ROSE

Algebra. VLDB Journal, 4(2):100{143, 1995.

[K�am94] T. K�ampke. Storing and Retrieving Changes in a Sequence of Polygons. Interna-

tional Journal of Geographical Information Systems, 8(6):493{513, 1994.

[PD95] D.J. Peuquet and N. Duan. An Event-Based Spatiotemporal Data Model (ESTDM)

for Temporal Analysis of Geographical Data. International Journal of Geographical

Information Systems, 9(1):7{24, 1995.

[PJ99] D. Pfoser and C.S. Jensen. Capturing the Uncertainty of Moving-Object Represen-

tations. In Proc. of the 6th Intl. Symposium on Spatial Databases, pages 111{131,

Hong Kong, China, 1999.

[TH97] N. Tryfona and T. Hadzilacos. Logical Data Modeling of Spatio-Temporal Appli-

cations: De�nitions and a Model. In Proc. of the Intl. Database Engineering and

Applications Symposium, 1997.

[TSPM98] Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos. Speci�cations

for E�cient Indexing in Spatiotemporal Databases. In Proc. of the 10th Intl. Con-

ference on Scienti�c and Statistical Database Management, Capri, Italy, 1998.

[WCD+98] O.Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost and Imprecision

in Modeling the Position of Moving Objects. In Proc. of the 14th Intl. Conference

on Data Engineering, pages 588{596, Orlando, Florida, 1998.

[Wol98] O. Wolfson. Moving Objects Databases: Issues and Solutions. In Proc. of the 10th

Intl. Conference on Scienti�c and Statistical Database Management, Capri, Italy,

1998.

[Wor94] M.F. Worboys. A Uni�ed Model for Spatial and Temporal Information. The Com-

puter Journal, 37(1):25{34, 1994.

25

