
The Consensus Glossary of Temporal Database

Concepts|February 1998 Version

Christian S. Jensen Curtis Dyreson (editors) Michael B�ohlen

James Cli�ord Ramez Elmasri Shashi K. Gadia Fabio Grandi Pat Hayes

Sushil Jajodia Wolfgang K�afer Nick Kline Nikos Lorentzos Yannis

Mitsopoulos Angelo Montanari Daniel Nonen Elisa Peressi Barbara

Pernici John F. Roddick Nandlal L. Sarda Maria Rita Scalas Arie Segev

Richard T. Snodgrass Mike D. Soo Abdullah Tansel Paolo Tiberio

Gio Wiederhold

Abstract. This document1 contains de�nitions of a wide range of con-

cepts speci�c to and widely used within temporal databases. In addition

to providing de�nitions, the document also includes explanations of con-

cepts as well as discussions of the adopted names.

The consensus e�ort that lead to this glossary was initiated in Early 1992.

Earlier versions appeared in SIGMOD Record in September 1992 and

March 1994. The present glossary subsumes all the previous documents.

The glossary meets the need for creating a higher degree of consensus on

the de�nition and naming of temporal database concepts.

Two sets of criteria are included. First, all included concepts were re-

quired to satisfy four relevance criteria, and, second, the naming of the

concepts was resolved using a set of evaluation criteria. The concepts are

grouped into three categories: concepts of general database interest, of

temporal database interest, and of specialized interest.

1 Introduction

A technical language is an important infra-structural component of any scienti�c

community. To be e�ective, such a language should be well-de�ned, intuitive, and

agreed-upon.

This document contains recommended de�nitions and names for a wide range

of concepts speci�c to temporal databases that are well-de�ned, well understood,

and widely used. The proposal meets a need for creating a higher degree of

consensus on the de�nition and naming of central concepts from within the

�eld. The use of inconsistent terminology adversely a�ects the accessibility of

the literature|to members of the community as well as others|and has an

adverse e�ect on progress.

1 Correspondence may be directed to the electronic mail distribution, tdbglos-

sary@cs.arizona.edu, or to the �rst editor, at Aalborg University, Department

of Computer Science, Fredrik Bajers Vej 7E, DK{9220 Aalborg �, Denmark,

csj@cs.auc.dk. The a�liations and e-mail addresses of all contributors may be

found in a separate section at the end of the document.

The glossary generally includes discussions of the particular choices that were

made. Thus, when several di�erent names were previously used for a concept, the

document not only states the chosen name, but it also presents the alternatives

and discusses why the decision was made.

The history of this document may be described as follows. An initial glossary

of temporal database concepts arose from e-mail discussions when appropri-

ate terminology was considered for the book Temporal Databases: Theory, De-

sign, and Implementation, edited by A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia,

A. Segev, and R. Snodgrass, Benjamin/Cummings Publishers 1993. That glos-

sary also appeared in the September 1992 issue of the ACM SIGMOD Record.

After the book, the e�ort continued, and the community was invited to sub-

mit proposals to an open mailing list. As results, status documents appeared in

December 1992 and in March 1993. In June 1993, a complete document of 100

glossary entries proposed to date was discussed among 40 temporal database

researchers at the \ARPA/NSF International Workshop on an Infrastructure

for Temporal Databases," in Arlington, TX, with the goal of obtaining a widely

agreed upon glossary. An editorial board consisting of James Cli�ord, Ramez

Elmasri, Shashi K. Gadia, Pat Hayes, Sushil Jajodia and Christian S. Jensen

supervised a revision of the glossary based on the input from the workshop. The

result was made available as a technical report and also appeared in the March

1994 issue of the SIGMOD Record.

The current version contains a number of revisions that aim to re�ne and

slightly extend the glossary, taking into account recent developments in the com-

munity. The prose has been revised in places, to make it clearer and more infor-

mative; care was taken to not change the original meaning. To account for the

common usage that has followed recent developments in SQL standardization,

\period" has been introduced as a synonym for \interval," and \interval" has

been de�ned with its SQL meaning, in addition to its usual `scienti�c' meaning.

The term \time sequence" as well as several previously proposed terms related

to indeterminacy have been included. The two terms, \calendar" and \granu-

larity," that appear in this glossary, may be found in revised, more speci�c and

technical versions in the addendum of granularity-related terms that follows the

glossary.

Each individual who has contributed signi�cantly to the glossary e�ort is a

coauthor of this document.

The document is organized as follows. The next section �rst lists four rele-

vance for concepts, then lists nine evaluation criteria for the naming of concepts.

These criteria are referenced throughout the document. Finally, the structure of

a glossary entry for a concept is explained. The next three sections constitute

the main body of the glossary and contain glossary entries for concepts. The �rst

includes entries for concepts that are expected to be of interest to researchers

within the general database area. The second covers concepts that are expected

to be of general interest within temporal databases only. The third covers the re-

maining concepts of more specialized interest. Finally, the a�liations and e-mail

addresses of the authors are listed.

2 Relevance and Evaluation Criteria for the Glossary

2.1 Relevance Criteria for Concepts

It has been attempted to name only concepts that ful�ll the following four re-

quirements.

R1 The concept must be speci�c to temporal databases. Thus, concepts used

more generally are excluded.

R2 The concept must be well-de�ned. Before attempting to name a concept, it

is necessary to agree on the de�nition of the concept itself.

R3 The concept must be well understood. We have attempted to not name a

concept if a clear understanding of the appropriateness, consequences, and

implications of the concept is missing. Thus, we avoid concepts from research

areas that are currently being explored.

R4 The concept must be widely used. We have avoided concepts used only

sporadically within the �eld.

2.2 Evaluation Criteria for Naming Concepts

Below is a list of criteria for what is a good name. Contributors have been

encouraged to reference these criteria when proposing glossary entries. As an

example of this use, the occurrence of \+E1" in a glossary entry indicates that

the name in question satis�es criterion E1. Reversely, \�E1" indicates that E1

is not satis�ed. The criteria are sometimes con
icting, making the choice of

names a di�cult and challenging task. While this list is comprehensive, it is not

complete.

E1 The naming of concepts should be orthogonal. Parallel concepts should have

parallel names.

E2 Names should be easy to write, i.e., they should be short or possess a short

acronym, should be easily pronounced (the name or its acronym), and should

be appropriate for use in subscripts and superscripts.

E3 Already widely accepted names are preferred over new names.

E4 Names should be open-ended in the sense that the name of a concept should

not prohibit the invention of a parallel name if a parallel concept is de�ned.

E5 The creation of homographs and homonyms should be avoided. Names with

an already accepted meaning, e.g., an informal meaning, should not be given

an additional meaning.

E6 The naming of concepts should be conservative. No name is better than a

bad name.

E7 New names should be consistent with related and already existing and ac-

cepted names.

E8 Names should be intuitive.

E9 Names should be precise.

2.3 Structure of the Glossary

In the following, we will name concepts selected by applying the four above

principles. For most of the concepts being named, we will employ the same

template:

Name|the chosen name of the concept is used as the heading.

De�nition|the de�nition of the concept.

Explanation|further exploration of the de�nition and its consequences, includ-

ing exempli�cation; this section is optional.

Previously Used Names|list of previously used names.

Discussion of Naming|reasons for the particular choice of name (and concept)

and reasons for not selecting previously used names (and concepts).

Names of concepts that are de�ned in the glossary are typeset with a special

font. For example, valid time and transaction time have entries in the glossary.

The special font is only used for the �rst occurrence of a name in a subsection of

a glossary entry, and only if the entry of the name may be found in the current

section or in an earlier section.

3 Concepts of General Database Interest

3.1 Valid Time

De�nition The valid time of a fact is the time when the fact is true in the mod-

eled reality. A fact may have associated any number of instants and time intervals,

with single instants and intervals being important special cases. Valid times are

usually supplied by the user.

Previously Used Names Real-world time, intrinsic time, logical time, data

time.

Discussion of Naming Valid time is widely accepted already (+E3); it is

short and easily spelled and pronounced (+E2). Most importantly, it is intuitive

(+E8).

The name \real-world time" derives from the common identi�cation of the

modeled reality (opposed to the reality of the model) as the real world (+E8).

This name has no apparent advantages to valid time, and it is less frequently

used and longer (�E3, �E2).

\Intrinsic time" is the opposite of extrinsic time. Choosing intrinsic time

for valid time would require us to choose extrinsic time for transaction time.

The names are appropriate: The time when a fact is true is intrinsic to the fact;

when it happened to be stored in a database is clearly an extrinsic property. Still,

\intrinsic" is rarely used (�E3) and is longer and harder to spell than \valid"

(�E2). As we shall see, transaction time is preferred over \extrinsic time" as

well. Also, should a third concept of time be invented, there will be no obvious

name for that concept (�E4).

\Logical time" has been used for valid time in conjunction with \physical

time" for transaction time. As the discussion of intrinsic time had to include

extrinsic time, discussing logical time requires us to also consider physical time.

Both names are more rarely used than valid and transaction time (�E3), and

they do not posses clear advantages over these.

The name \data time" is probably the most rarely used alternative (�E3).

While it is clearly brief and easily spelled and pronounced, it is not intuitively

clear that the data time of a fact refers to the valid time as de�ned above

(+E2,�E8).

3.2 Transaction Time

De�nition A database fact is stored in a database at some point in time, and

after it is stored, it is current until logically deleted. The transaction time of a

database fact is the time when the fact is current in the database and may be

retrieved. As a consequence, transaction times are generally not time instants,

but have duration.

Transaction times are consistent with the serialization order of the transac-

tions. They cannot extend into the future. Also, as it is impossible to change

the past, (past) transaction times cannot be changed. Transaction times may

be implemented using transaction commit times, and are system-generated and

-supplied.

While valid times may only be associated with \facts," statements that can

be true or false, transaction times may be associated with any database object.

Previously Used Names Registration time, extrinsic time, physical time,

transaction commit time.

Discussion of Naming Transaction time has the advantage of being almost

universally accepted (+E3), and it has no con
icts with valid time (+E1, +E4,

+E7).

Registration time seems to be more straight forward. However, often a time

of a particular type is denoted by tx where x is the �rst letter of the type. As

r is commonly used for denoting a relation, adopting registration time creates a

con
ict (�E2).

Extrinsic time is rarely used (�E3) and has the same disadvantages as in-

trinsic time. Physical time is used infrequently (�E3) and seems vague (�E8).

Transaction commit time is lengthy (�E2), but more importantly, the name

appears to indicate that the transaction time associated with a fact must be

identical to the time when that fact is committed to the database, which is an

unnecessary restriction (�E8). It is also imprecise (�E9) because the transaction

time of a fact in general is a transaction-time element, not a single time instant

as implied.

3.3 User-de�ned Time

De�nition User-de�ned time is an uninterpreted attribute domain of date and

time. User-de�ned time is parallel to domains such as \money" and integer|

unlike transaction time and valid time, it has no special query language support.

It may be used for attributes such as \birth day" and \hiring date."

Discussion of Naming Conventional database management systems generally

support a time and/or date attribute domain. The SQL2 standard has explicit

support for user-de�ned time in its datetime and interval types.

3.4 Temporal Data Type

De�nition The user-de�ned temporal data type is a time representation spe-

cially designed to meet the speci�c needs of the user. For example, the de-

signers of a database used for class scheduling in a school might be based on

a \Year:Term:Day:Period" format. Terms belonging to a user-de�ned temporal

data type get the same query language support as do terms belonging to built-in

temporal data types such as the DATE data type.

Previously Used Names User-de�ned temporal data type, auxiliary temporal

data type.

Discussion of Naming The phrase \user-de�ned temporal data type" is un-

comfortably similar to the phrase \user-de�ned time", which is an orthogonal

concept. Nevertheless, it is an appropriate description for the intended usage.

The shorter term \temporal data type" is expected to be su�ciently descriptive.

3.5 Valid-time Relation

De�nition A valid-time relation is a relation with exactly one system supported

valid time. There are no restrictions on how valid times may be incorporated into

the tuples; e.g., the valid-times may be incorporated by including one or more

additional valid-time attributes in the relation schema, or by including the valid-

times as a component of the values of the application-speci�c attributes.

Previously Used Names Historical relation.

Discussion of Naming While historical relation is used currently by most

authors (+E3), two problems have been pointed out. First, the quali�er \histor-

ical" is too generic (�E5). Second, \historical" might be construed as referring

only to the past, which could be misleading because a valid-time relation may

also contain facts predicted to be valid in the future (�E8, �E9).

\Valid-time relation" is straightforward and avoids these problems. Also, it

is consistent with the name transaction-time relation (+E1).

3.6 Transaction-time Relation

De�nition A transaction-time relation is a relation with exactly one system

supported transaction time. As for valid-time relations, there are no restrictions

as to how transaction times may be incorporated into the tuples.

Previously Used Names Rollback relation.

Discussion of Naming \Transaction-time relation" is already used by sev-

eral authors, but other authors use the name \rollback relation." The motive

for adopting transaction-time relation is identical for the motive for adopting

valid-time relation. The motive for adopting rollback relation is that this type

of relation supports a special rollback operation (+E7). But then, by analogy,

should not a valid-time relation be named for the special operation on valid-time

relations corresponding to the rollback operation, namely transaction timeslice

(�E4)?

3.7 Snapshot Relation

De�nition Relations of a conventional relational database system incorporating

neither valid-time nor transaction-time timestamps are snapshot relations .

Previously Used Names Relation, conventional relation, static relation.

Discussion of Naming With several types of relations, simply using \relation"

to denote one type is often inconvenient. The modi�er \snapshot" is widely used

(+E3). In addition, it is easy to use and seems precise and intuitive (+E2,9,8).

The alternative \conventional" is longer and used more infrequently. Further,

\conventional" is a moving target|as technologies evolve, it changes meaning.

This makes it less precise. Finally, \static" is less frequently used than \snap-

shot," and it begs for the de�nition of the opposite concept of a dynamic relation,

which will not be de�ned (�E3, �E1).

3.8 Bitemporal Relation

De�nition A bitemporal relation is a relation with exactly one system sup-

ported valid time and exactly one system-supported transaction time. This rela-

tion inherits its properties from valid-time relations and transaction-time relations.

There are no restrictions as to how either of these temporal dimensions may be

incorporated into the tuples.

Explanation In the adopted de�nition, \bi" refers to the existence of ex-

actly two times. An alternative de�nition states that a bitemporal relation has

one or more system-supported valid times and one or more system-supported

transaction times. In this de�nition, \bi" refers to the existence of exactly two

types of times.

Most relations involving both valid and transaction time are bitemporal ac-

cording to both de�nitions. Being the most restrictive, the adopted de�nition is

the most desirable: It is the tightest �t, giving the most precise characterization

(+E9).

The de�nition of bitemporal is used as the basis for applying bitemporal as a

modi�er to other concepts such as \query language." This adds more important

reasons for preferring the adopted de�nition.

Independently of the precise de�nition of bitemporal, a query language is

bitemporal if and only if it supports any bitemporal relation (+E1), see Sec-

tion 3.9. With the adopted de�nition, most query languages involving both valid

and transaction time may be characterized as bitemporal. With the alternative

de�nition, query languages that are bitemporal under the adopted de�nition are

no longer bitemporal. This is a serious drawback of the alternative de�nition. It

excludes the possibility of naming languages that may be precisely named using

the adopted de�nition. With the alternative de�nition, those query languages

have no (precise) name. What we get is a concept and name (bitemporal query

language) for which there is currently little or no use.

Also, note that a query language that is bitemporal with the alternative def-

inition is also bitemporal with regard to the adopted de�nition (but the adopted

de�nition does not provide a precise characterization of this query language).

Thus, the restrictive de�nition of a bitemporal relation results in a non-restrictive

de�nition of bitemporal query language (and vice-versa).

We choose to name relations as opposed to databases because a database

may contain several types of relations. Thus, naming relations is a more general

approach.

Previously Used Names Temporal relation, fully temporal relation, valid-

time and transaction-time relation, valid-time transaction-time relation.

Discussion of Naming The name temporal relation is commonly used. How-

ever, it is also used in a generic and less strict sense, simply meaning any relation

with some time aspect. It will not be possible to change the generic use of the

term (�E7), and since using it with two meanings causes ambiguity (�E9), it is

rejected as a name for bitemporal relations. In this respect \temporal relation"

is similar to \historical relation."

Next, the term \fully temporal relation" was proposed because a bitemporal

relation is capable of modeling both the intrinsic and the extrinsic time aspects

of facts, thus providing the \full story." However, caution dictates that we avoid

names that are absolute (�E6). What are we going to name a relation more

general than a temporal relation?

The name \valid-time and transaction-time relation" is precise and consistent

with the other names, but it is too cumbersome to be practical (�E2). Also, it

may cause ambiguity. For example, the sentence \the topic of this paper is valid-

time and transaction-time relations" is ambiguous.

3.9 Snapshot, Valid- and Transaction-time, and Bitemporal as

Modi�ers

The de�nitions of how \snapshot," \valid-time," \transaction-time," and \bitem-

poral" apply to relations provide the basis for applying these modi�ers to a range

of other concepts. Let x be one of snapshot, valid-time, transaction-time, and

bitemporal. Twenty derived concepts are de�ned as follows (+E1).

relational database An x relational database contains one or more x relations.

relational algebra An x relational algebra has relations of type x as basic

objects.

relational query language An x relational query language manipulates any

possible x relation. Had we used \some" instead of \any" in this de�nition,

the de�ned concept would be very imprecise (�E9).

data model An x data model has an x query language and supports the spec-

i�cation of constraints on any x relation.

DBMS An x DBMS supports an x data model.

The two model-independent terms, data model and DBMS, may be replaced

by more speci�c terms. For example, \data model" may be replaced by \rela-

tional data model" in \bitemporal data model."

The nouns that have been modi�ed above are not speci�c to temporal data-

bases. Nouns speci�c to temporal databases, such as instant, chronon, period,

element, and interval, may be modi�ed by \valid-time," \transaction-time," and

\bitemporal."

3.10 Temporal as Modi�er

De�nition The modi�er temporal is used to indicate that the modi�ed concept

concerns some aspect of time.

Previously Used Names Time-oriented.

Discussion of Naming \Temporal" is already being used in the sense de�ned

here. In addition, some researchers have used it in a more speci�c sense (i.e.,

supports both transaction time and valid time). This practice was awkward: Using

\temporal" with the general de�nition in the beginning of a paper and then

adopting the more speci�c meaning later in the paper created confusion. It also

lead to the use of \time-oriented" instead of temporal in the generic sense.

Realizing that the use of the generic meaning of \temporal" cannot be

changed prompted the adoption of \bitemporal' for the speci�c meaning.

Being only the name of a generic concept, \temporal" may now be used

instead of the more cumbersome \time-oriented." It may be applied generically

as a modi�er for \database," \algebra," \query language," \data model," and

\DBMS."

3.11 Temporal Database

De�nition A temporal database is a database that supports some aspect of

time, not counting user-de�ned time.

Previously Used Names Time-oriented database, historical database.

Discussion of Naming The concept of a temporal database is de�ned sepa-

rately due to its importance. The discussion in Section 3.10 applies here.

3.12 Instant

De�nition An instant is a time point on an underlying time axis.

Explanation Various models of time have been proposed in the philosophical

and logical literature of time. These view time, among other things, as discrete,

dense, or continuous. Intuitively, the instants in a discrete model of time are

isomorphic to the natural numbers, i.e., there is the notion that every instant

has a unique successor. Instants in the dense model of time are isomorphic to

(either) the real or rational numbers: between any two instants there is always

another. Continuous models of time are isomorphic to the real numbers, i.e.,

both dense and also, unlike the rational numbers, with no \gaps."

For a time domain that is modeled by granules (this term i de�ned in the

addendum) an instant is an element of a granule. The same granule may therefore

represent di�erent instants.

Previously Used Names Event, moment.

Discussion of Naming Event is already used widely within temporal databases,

but is often given a di�erent meaning (+E3, �E5), while \moment" may be con-

fused with the distinct terms \chronon" or \granule" (�E7).

3.13 Chronon

De�nition In a data model, a one-dimensional chronon is a non-decomposable

time interval of some �xed, minimal duration. An n-dimensional chronon is a non-

decomposable region in n-dimensional time. Important special types of chronons

include valid-time, transaction-time, and bitemporal chronons.

Explanation Data models may represent a time line by a sequence of non-

decomposable, consecutive time intervals of identical duration. These intervals

are termed chronons. A data model will typically leave the particular chronon

duration unspeci�ed, to be �xed later by the individual applications, within

the restrictions posed by the implementation of the data model. Consecutive

chronons may be grouped into larger segments, termed granules. The addendum

gives a precise de�nition of this term.

Previously Used Names Instant, moment, time quantum, time unit.

Discussion of Naming \Instant" and \moment" invite confusion between a

point in the continuous model and a non-decomposable unit in the discrete model

(�E8). Clocking instruments invariably report the occurrence of events in terms

of time intervals, not time \points." Hence, events, even so-called \instantaneous"

events, can best be measured as having occurred during an interval (�E9). \Time

quantum" is precise, but is longer and more technical than \chronon" (�E2).

\Time unit" is perhaps less precise (�E9).

3.14 Time Period

De�nition A time period is the time between two instants. In a system that

models a time domain using granules a time period may be represented by a set

of contiguous granules.

Previously Used Names Time interval

Discussion of Naming The name \time interval" (\interval" when \time" is

clear from the context) is widely accepted and used in the scienti�c literature

(+E3). In the context of SQL, it is used with another meaning (see Entry 3.15)

(�E3, �E7). The name \period" often implies a cyclic or recurrent phenomenon

(�E8, �E9), but is used in the SQL language (+E3).

The term \period" is recommended for use, primarily in the context of SQL,

when \interval" must be used in its SQL meaning.

3.15 Time Interval

De�nition 1 A time interval is the time between two instants. In a system that

models a time domain using granules (de�ned in the addendum), an interval

may be represented by a set of contiguous granules.

De�nition 2 An interval is a directed duration of time. A duration is an amount

of time with known length, but no speci�c starting or ending instants. For ex-

ample, the duration \one week" is known to have a length of seven days, but

can refer to any block of seven consecutive days. An interval is either positive,

denoting forward motion of time, or negative, denoting backwards motion in

time.

Previously Used Names Duration, span, time distance, time period

Discussion of Naming Unfortunately, the term (time) \interval" is being used

with two meanings: as the time between two instants, in the general database

research literature, and as a directed duration of time, in the SQL database

language. Further, the alternative term time period is associated with the �rst

de�nition above (Entry 3.14).

The unambiguous term \span" (Entry 3.16) has been used previously in the

research literature, but its use seems to be less widespread than \interval" (�E3,

+E5). While precise, the term \time distance" is also used less commonly (�E3).

A \duration" is generally considered to be non-directional, i.e., always positive

(�E7).

De�nition 1 is recommended for non-SQL-related scienti�c work. De�nition 2

is recommended for SQL-related work.

3.16 Span

De�nition A span is a directed duration of time. A duration is an amount of

time with known length, but no speci�c starting or ending instants. For example,

the duration \one week" is known to have a length of seven days, but can refer to

any block of seven consecutive days. A span is either positive, denoting forward

motion of time, or negative, denoting backwards motion in time.

Previously Used Names Duration, time interval, time distance.

Discussion of Naming It is already accepted in the scienti�c community that

\time interval" denotes an anchored span (�E7). Also, \span" has only one

de�nition (+E5). A \duration" is generally considered to be non-directional,

i.e., always positive (�E7). The term \time distance" is precise, but is longer

(�E2).

The term \span" is recommended over \time interval" for non-SQL-related

work because it is unambiguous.

3.17 Temporal Element

De�nition A temporal element is a �nite union of n-dimensional time intervals.

Special cases of temporal elements include valid-time elements, transaction-time

elements, and bitemporal elements. They are �nite unions of valid-time intervals,

transaction-time intervals, and bitemporal intervals, respectively.

Explanation Observe that temporal elements are closed under the set theoretic

operations of union, intersection and complementation. Temporal elements are

often used as timestamps. A temporal element may be represented by a set of

granules.

Previously Used Names Time period set.

Discussion of Naming The concept of a valid-time element was previously

named a temporal element. However, for the naming to be consistent with the

remainder of the glossary, \temporal" is reserved as a generic modi�er, and more

speci�c modi�ers are adopted (+E1, +E9). The name \time period set" is an

early term for a temporal element, but the adopted name has been used much

more frequently (+E3).

3.18 Timestamp

De�nition A timestamp is a time value associated with some object, e.g., an

attribute value or a tuple. The concept may be specialized to valid timestamp,

transaction timestamp, interval timestamp, period timestamp, instant times-

tamp, bitemporal-element timestamp, etc.

3.19 Lifespan

De�nition The lifespan of a database object is the time over which it is de�ned.

The valid-time lifespan of a database object refers to the time when the corre-

sponding object exists in the modeled reality. Analogously, the transaction-time

lifespan refers to the time when the database object is current in the database.

If the object (attribute, tuple, relation) has an associated timestamp then the

lifespan of that object is the value of the timestamp. If components of an object

are timestamped, then the lifespan of the object is determined by the particular

data model being employed.

Previously Used Names Timestamp, temporal element, temporal domain.

Discussion of Naming Lifespan is widely accepted already (+E3); it is short

and easily spelled and pronounced (+E2). Most importantly, it is intuitive (+E8).

3.20 Calendar

De�nition A calendar provides a human interpretation of time. As such, calen-

dars ascribe meaning to temporal values where the particular meaning or inter-

pretation is relevant to the user. In particular, calendars determine the mapping

between human-meaningful time values and an underlying time-line.

Explanation Calendars are most often cyclic, allowing human-meaningful time

values to be expressed succinctly. For example, dates in the common Gregorian

calendar may be expressed in the form <month day, year> where each of the

�elds month, day, and year cycle as time passes.

Discussion of Naming The concept of calendar de�ned here subsumes com-

monly used calendars such as the Gregorian calendar, the Hebrew calendar, and

the Lunar calendar, though the given de�nition is much more general. This us-

age is consistent with the conventional English meaning of the word (+E3). It

is also intuitive for the same reason (+E8).

3.21 Transaction-timeslice Operator

De�nition The transaction timeslice operator may be applied to any relation

with transaction time timestamps. It takes as one argument the relation and

as a second argument a transaction-time element whose greatest value must not

exceed the current transaction time. It returns the argument relation reduced in

the transaction-time dimension to just those times speci�ed by the transaction-

time argument.

Explanation Several types of transaction-timeslice operators are possible. Some

may restrict the type of the time argument to intervals or instants. Some oper-

ators may, given an instant as time argument, return a snapshot relation or a

valid-time relation when applied to a transaction-time or a bitemporal relation,

respectively; other operators may always return a result relation of the same

type as the argument relation.

Previously Used Names Rollback operator, timeslice operator, state query.

Discussion of Naming The name \rollback operator" has procedural con-

notations, which in itself is inappropriate (�E8). The name indicates that the

operator is computed by moving backwards in time, presumably from the cur-

rent transaction time. However, the operator could equally well be computed

by a forward motion in time, from the time when the argument relation was

created. This makes \rollforward operator" an equally acceptable term. Fur-

ther, the transaction-timeslice operator may be computed using both rollback

(decremental computation) and rollforward (incremental computation).

\State query" seems less precise than transaction-timeslice operator (�E9).

It is equally applicable as a name for the valid-timeslice operator (�E8). Further,

\state operator" is better than \state query."

The name \transaction timeslice" may be abbreviated to timeslice when the

meaning is clear from the context.

3.22 Valid-timeslice Operator

De�nition The valid-timeslice operator may be applied to any relation with

valid time timestamps. It takes as one argument the relation and as a second

argument a valid-time element. It returns the argument relation reduced in the

valid-time dimension to just those times speci�ed by the valid-time argument.

Explanation Several types of valid-timeslice operators are possible. Some may

restrict the type of the time argument to intervals or instants. Some opera-

tors may, given an instant as time argument, return a snapshot relation or a

transaction-time relation when applied to a valid-time or a bitemporal relation, re-

spectively; other operators may always return a result relation of the same type

as the argument relation.

Previously Used Names Timeslice operator.

Discussion of Naming The term valid-timeslice operator is consistent with

transaction-timeslice operator (+E1). \Timeslice" is appropriate only in a disam-

biguating context (+E2).

3.23 Schema Evolution

De�nition A database system supports schema evolution if it permits modi�-

cation of the database schema without the loss of extant data. No support for

previous schemas is required.

Previously Used Names Schema versioning, data evolution.

Discussion of Naming While support for \schema evolution" indicates that an

evolving schema may be supported, the term \schema versioning" indicates that

previous versions of an evolving schema are also supported. Therefore, \schema

versioning" is appropriate for a more restrictive concept.

The name \data evolution" is inappropriate because \data" refers to the

schema contents, i.e., the extension rather than the intension. Data evolution is

supported by conventional update operators.

While some confusion exists as to its exact de�nition, \schema evolution" is

an accepted name and is widely used already.

3.24 Schema Versioning

De�nition A database system accommodates schema versioning if it allows

the querying of all data, both retrospectively and prospectively, through user-

de�nable version interfaces.

Explanation While support for schema versioning implies the support for

schema evolution, the reverse is not true. Support for schema versioning requires

that a history of changes be maintained to enable the retention of past schema

de�nitions.

Previously Used Names Schema evolution, data evolution.

Discussion of Naming The name \schema evolution" does not indicate that

previously current versions of the evolving schema are also supported. It is thus

less precise that \schema versioning." As schema evolution, schema versioning

is an intensional concept; \data evolution" has extensional connotations and is

inappropriate.

3.25 Event

De�nition An event is an instantaneous fact, i.e., something occurring at an

instant. An event is said to occur at some granule t if it occurs at any instant

during t.

Previously Used Names Event relation, instant relation.

Discussion of Naming \Event relation" is not consistent with the distinction

between \instant and \event" (�E7). \Instant relation" is longer than event

(�E2).

3.26 Event Occurrence Time

De�nition The event occurrence time of an event is the instant at which the

event occurs in the real-world.

Previously Used Names Event time.

Discussion of Naming Event occurrence time is more precise than event time

(+E9). Nevertheless, when the context is clear, the event occurrence time may

be shortened to the event time.

3.27 Spatiotemporal as Modi�er

De�nition The modi�er spatiotemporal is used to indicate that the modi�ed

concept concerns simultaneous support of some aspect of time and some aspect

of space, in one or more dimensions.

Previously Used Names Spatio-temporal, temporal-spatial, space-time-ori-

ented.

Discussion of Naming This term is already in use, interchangeably with

\spatio-temporal," in the geographic information systems community (+E3)

(hence, the preference over \temporal-spatial"), and is consistent with the \tem-

poral" modi�er (+E7). Avoiding the hyphen makes it easier to type (+E2), an-

other reason to prefer it over \temporal-spatial." It may be applied generically

as a modi�er for \database," \algebra," \query language," \data model," and

\DBMS."

3.28 Spatial Quantum

De�nition A spatial quantum (or simply quantum, when the sense is clear)

is the shortest distance (or area or volume) of space supported by a spatial

DBMS|it is a non-decomposable region of space. It can be associated with one

or more dimensions. A particular unidimensional quantum is an interval of �xed

length along a single spatial dimension. A particular three-dimensional quantum

is a �xed-sized, located cubic volume of space.

Alternative Name Spatial unit.

Discussion of Naming \Spatial quantum" is preferred over \spatial unit"

because spatial distances and volumes are usually given as measurements of

some unit (such as meters), but the \unit of measurement" is not the same as

the \spatial quantum." The former term (\spatial quantum") is more precise

(+E9), in part, because it avoids this possible confusion.

3.29 Spatiotemporal Quantum

De�nition A spatiotemporal quantum (or simply quantum, when the sense is

clear) is a non-decomposable region in two, three, or four-space, where one or

more of the dimensions are spatial and the rest, at least one, are temporal.

Alternative Name Spatiotemporal unit, spatiotemporal chronon.

Discussion of Naming This term generalizes chronon and spatial quantum.

\Unit" is perhaps less precise (�E9). \Chronon" speci�cally relates to time, and

thus is inconsistent with the adjective \spatiotemporal."

4 Concepts of General Temporal Database Interest

4.1 Absolute Time

De�nition When applied to valid time, the modi�er absolute indicates that a

speci�c valid time at a given timestamp granularity is associated with a fact. Such

a time is independent of, e.g., the valid time of another fact and of the current

time, now.

Explanation Examples are: \Mary's salary was raised on March 30, 1993" and

\Jack was killed on xx/xx/1990."

4.2 Relative Time

De�nition The modi�er relative indicates that the valid time of a fact is related

to some other time, e.g., the valid time of another fact or the current time, now.

As absolute time, relative time may be applied to other temporal aspects than

valid time.

Explanation The relationship between times can be qualitative (before, after,

etc.) as well as quantitative (3 days before, 397 years after, etc.).

Examples are: \Mary's salary was raised yesterday," \it happened sometime

last week," \it happened within 3 days of Easter," \the Jurassic is sometime after

the Triassic," and \the French revolution occurred 397 years after the discovery

of America."

4.3 Temporal Expression

De�nition A temporal expression is a syntactic construct used, e.g., in a query

that evaluates to a temporal value, i.e., an instant, a time period, a time interval,

or a temporal element.

Explanation All approaches to temporal database querying allow relational

expressions. Some only allow relational expressions, and thus they are unisorted.

Some allow relational expressions, temporal expressions, and also possibly bool-

ean expressions. Such expressions may be de�ned through mutual recursion.

Discussion of Naming In snapshot databases, expressions evaluate to rela-

tions and therefore they may be called relational expressions to di�erentiate

them from temporal expressions.

4.4 Fixed Span

De�nition A span is �xed if it possesses the special property that its duration

is independent of the context.

Explanation As an example of a �xed span, \one hour" always, independently

of the context, has a duration of 60 minutes (discounting leap seconds). To see

that not all spans are �xed, consider \one month," an example of a variable span

in the Gregorian calendar. The duration of this span may be any of 28, 29, 30,

and 31 days, depending on the context.

Previously Used Names Constant span.

Discussion of Naming Fixed span is short (+E2), precise (+E9), and has no

con
icting meanings (+E5).

\Constant" appears more precise (+E8) and intuitive (+E9), but it is also

used as a keyword in several programming languages (�E5).

4.5 Variable Span

De�nition A span is variable if its duration is dependent on the context.

Explanation Any span is either a �xed span or a variable span. An obvious

example of a variable span is \one month," the duration of which may be any of

28, 29, 30, and 31 days, depending on the context. Disregarding the intricacies

of leap seconds, the span \one hour" is �xed because it always, independently

of the context, has a duration of 60 minutes.

Previously Used Names Moving span.

Discussion of Naming Variable span is intuitive (+E9), and precise (+E9).

\Moving span" is unintuitive (�E9) and has informal spatial connotations (�E5).

4.6 Bitemporal Interval

De�nition A bitemporal interval is a region, with sides parallel to the axes, in

two-space of valid time and transaction time. When associated in the database

with some fact, it identi�es when that fact, recording that something was true

in reality during the speci�ed interval of valid time, was logically in the database

during the speci�ed interval of transaction time.

A bitemporal interval can be represented with a non-empty set of bitemporal

chronons (or granules).

4.7 Spatiotemporal Interval

A spatiotemporal interval is a region in n-space, where at least one of the axes is

a spatial dimension and the remaining axes are temporal dimensions, with the

region having sides that are parallel to all axes. When associated in the database

with some fact, it identi�es when and where that fact was true.

A spatiotemporal interval can be represented by a non-empty set of spa-

tiotemporal quanta.

4.8 Spatiotemporal Element

De�nition A spatiotemporal element is a �nite union of spatiotemporal intervals.

Spatiotemporal elements are closed under the set theoretic operations of union,

intersection and complementation.

Discussion of Naming This is the natural generalization of \temporal element."

It can be represented with a set of spatiotemporal quanta.

4.9 Snapshot Equivalent/Weakly Equivalent

De�nition Informally, two tuples are snapshot equivalent or weakly equivalent

if the snapshots of the tuples at all times are identical.

Let temporal relation schema R have n time dimensions, Di, i = 1; : : : ; n, and

let � i, i = 1; : : : ; n be corresponding timeslice operators, e.g., the valid timeslice

and transaction timeslice operators. Then, formally, tuples x and y are snapshot

equivalent if

8t1 2 D1 : : :8tn 2 Dn(�
n

tn
(: : : (�1

t1
(x)) : : :) = �n

tn
(: : : (�1

t1
(y)) : : :)) :

Similarly, two relations are snapshot equivalent or weakly equivalent if at every

instant their snapshots are equal. Snapshot equivalence, or weak equivalence, is

a binary relation that can be applied to tuples and to relations.

Previously Used Names Temporally weak.

Discussion of Naming Both \snapshot equivalent" and \weakly equivalent"

have strong support by members of the temporal database community, and it

has not been possible to reach a consensus on which of these two names is

preferable; we have therefore adopted both names, listed in alphabetical order,

for this concept.

\Weak equivalence" was originally used by Ullman to relate two algebraic

expressions (Ullman, Principles of Database Systems, Second Edition, page 309).

We rely on the context to disambiguate this usage from the usage speci�c to

temporal databases (�E5).

\Temporally weak" is not intuitive|in what way is it weak? \Snapshot equiv-

alent" explicitly identi�es the source of the equivalence (+E8).

4.10 Snapshot-Equivalence Preserving Operator/ Weakly Invariant

Operator

De�nition A unary operator F is snapshot-equivalence preserving or weakly

invariant if relation r is snapshot equivalent, or weakly equivalent, to r0 implies

F (r) is snapshot equivalent, or weakly equivalent, to F (r0). This de�nition may

be extended to operators that accept two or more argument relation instances.

Previously Used Names Invariant under weak binding of belongs to.

Discussion of Naming As for snapshot equivalent and weakly equivalent, both

names have strong support by members of the temporal database community.

Because it has not been possible to reach a consensus on which of these two

names is preferable, both names have been adopted, listed alphabetically, for

this concept.

This de�nition does not rely on the term \weak binding" (+E7).

4.11 Snapshot Equivalence Class/Weak Relation

De�nition A snapshot equivalence class or weak relation is a set of relation

instances that are all snapshot equivalent, or weakly equivalent, to each other.

Discussion of Naming As for snapshot equivalent and weakly equivalent, both

names have strong support by members of the temporal database community.

Because it has not been possible to reach a consensus on which of these two

names is preferable, both have been adopted in alphabetical order.

\Weak relation" denotes a set of relation instances, not a single relation

instance. It has therefore been argued that the name snapshot equivalence class

is more intuitive. On the other hand, \weak relation" is shorter than \snapshot

equivalence class."

4.12 Value Equivalence

De�nition Informally, two tuples on the same (temporal) relation schema are

value equivalent if they have identical non-timestamp attribute values.

To formally de�ne the concept, let temporal relation schema R have n time

dimensions, Di, i = 1; : : : ; n, and let � i, i = 1; : : : ; n be corresponding timeslice

operators, e.g., the valid-timeslice and transaction-timeslice operators. Then tuples

x and y are value equivalent if

9t1 2 D1 : : :9tn 2 Dn(�
n

tn
(: : : (�1

t1
(x)) : : :) 6= ;) ^

9s1 2 D1 : : :9sn 2 Dn(�
n

sn
(: : : (�1

s1
(y)) : : :) 6= ;)

)S
8t12D1:::8tn2Dn

�n
tn
(: : : (�1

t1
(x)) : : :) =

S
8s12D1:::8sn2Dn

�n
sn
(: : : (�1

s1
(y)) : : :):

Thus the set of tuples in snapshots of x and the set of tuples in snapshots of

y are required to be identical. This is required only when each tuple has some

non-empty snapshot.

Explanation The concept of value equivalent tuples has been shaped to be

convenient when addressing concepts such as coalescing, normal forms, etc. The

concept is distinct from related notions of the normal form SG1NF andmergeable

tuples.

Phrases such as \having the same visible attribute values" and \having du-

plicate values" have been used previously.

Discussion of Naming The orthogonality criterion (+E1) is satis�ed. Fur-

ther, the concept is a straightforward generalization of identity of tuples in

the snapshot-relational model. There are no competing names (+E3), the name

seems open-ended (+E4) and does not appear to have other meanings (+E5).

Further, the name is consistent with existing terminology (+E7) and does not

violate other criteria.

4.13 Coalesce

De�nition The coalesce operation is unary and takes as input a temporal relation

and returns a temporal relation with the same schema. Its purpose is to e�ect a

kind of normalization of a temporal relation with respect to one or multiple time

dimensions. This is achieved by packing as many value-equivalent tuples as possi-

ble into a single value-equivalent one, thereby possibly enlarging the timestamps

of the respective time dimension(s).

Explanation The concept of coalescing has found widespread use in connection

with data models that employ interval-valued timestamps. In one-dimensional

models where such timestamps are associated with tuples, two or more value-

equivalent tuples with consecutive or overlapping intervals are replaced by a

single, value-equivalent tuple with the union of the timestamps of the original

tuples as its interval-valued timestamp.

The coalesce operation eliminates duplicates from individual snapshots of a

temporal relation. If the temporal data model permits duplicates in snapshots,

the operation does not preserve snapshot-equivalence; otherwise, it does.

Tuples may be timestamped with higher-dimensional values, e.g., two-dimen-

sional bitemporal intervals. In such multi-dimensional frameworks, the coalesce

operation may, depending on the time data type employed, have to be annotated

with the time dimension to be coalesced.

Previously Used Names Merging, normalize.

Discussion of Naming There appears to be general consensus with respect to

the name of this concept (+E3). The name \merging" is occasionally used when

describing coalescing, but it has a less speci�c meaning and has not been pro-

posed as a substitute for \coalescing" (�E3, �E9). Because coalescing con
icts

with the COALESCE operation of SQL-92, the term NORMALIZE has been adopted

by the SQL3 standardization committee.

4.14 Time Sequence

De�nition A time sequence (TS) is a sequence (ordered by time) of pairs

< v; t > where v is an arbitrary data object and t are granules of a given

granularity designating past and/or future instants. A TS is identi�ed by a sur-

rogate (possibly a time-invariant key). If each v is a single value, the TS is said

to be simple, and if v is a complex value (e.g., a set, a sequence, etc.), the TS is

complex. A TS may have properties and/or constraints attached to it.

Explanation The above de�nition is model-independent and can have di�erent

representations in di�erent models. For example in the relational model where

a relation is attribute-value timestamped (granules), each point in the sequence

will be a tuple. For tuple timestamping, v will be a set of attribute values. Note

that temporal elements are derivable from a time sequence.

Previously Used Names History, time-series.

Discussion of Naming The concept is speci�c to temporal databases (+R1)

and is well de�ned and understood in the real world (+R2, +R3). It has been

used and referred to in many works (+R4). The name is intuitive (+E8), it is not

as widely used as \history" (�E3), but it describes the concept more accurately

(+E9) than \history," i.e., the common use of history is in reference to the past,

but a temporal database can have a time sequence that involves future times.

4.15 History

De�nition A history is the temporal representation of an \object" of the real

world or of a database. Depending on the object, we can have attribute histories,

entity histories, relationship histories, schema histories, transaction histories,

etc.

Explanation \History" is a general concept, intended in the sense of \train of

events connected with a person or thing."

In the realm of temporal databases, the concept of history is intended to

include multiple time dimensions as well as the data models (+R1). Thus we

can have, e.g., valid-time histories, transaction-time histories, bitemporal histo-

ries, and user-de�ned time histories. However, multi-dimensional histories can be

de�ned from mono-dimensional ones (e.g., a bitemporal history can be seen as

the transaction-time history of a valid-time history).

Formally or informally, the term \history" has been often used in many

temporal database papers (+R4), also to explain other terms. For instance,

salary history, object history, transaction history are all expressions used in this

respect.

Previously Used Names Time sequence, time-series, temporal value, tempo-

ral evolution.

Discussion of Naming Although \history" usually has to do with past events

(�E5), its use for the future|as introduced by prophecies, science �ction, scien-

ti�c forecasts|does not seem to present comprehension di�culties. (The adjec-

tive \historical" seems more problematic for some.) Talking about future history,

requires the same extension of meaning as required by talking about future data.

The alternative term \temporal value" is less general, since it applies when

\history" specializes into attribute history (value history). Moreover, \history" is

a slightly more general concept than \time sequence": di�erent time sequences

(with di�erent time granularities) could be extracted from the same history.

Therefore the de�nition of \history" does not prevent de�ning \time sequence."

\History" is also preferred over alternative names because it allows a better

de�nition of related terms. Since it implies the idea of time, \history" does not

require further quali�cations as \sequence" or \series" do (+E2). In particular,

\history" well lends itself to be used as modi�er (+E1), even though \time

sequence" is an alternative consolidated term (�E3,�E6).

\History" is natural (+E8) and precise (+E9), whereas \temporal value"

may recall a temporal element (e.g., timestamp value) and \time sequence" may

recall a sequence of temporal elements.

4.16 History-oriented

De�nition A temporal data model or DBMS is said to be history-oriented if:

1. It supports history unique identi�cation (e.g., via time-invariant keys, sur-

rogates or OIDs);

2. The integrity of histories as �rst-class objects is inherent in the model, in

the sense that history-related integrity constraints might be expressed and

enforced, and the data manipulation language provides a mechanism (e.g.,

history variables and quanti�cation) for direct reference to object-histories ;

Previously Used Names Temporal value integrity, grouped, object-oriented.

Discussion of Naming \History-oriented" is preferred over \having tempo-

ral value integrity" since its meaning seems to be more direct. Further, in a

more general perspective, integrity constraints can be introduced as well in a

history-oriented model (e.g. history uniqueness, entity history integrity, referen-

tial history integrity).

\History-oriented" is also preferred over \grouped" (+E7) in order to avoid

confusion with other kinds of grouping (e.g., de�ned terms \[dynamic/static]

valid-time grouping").

\History-oriented" is not a synonym for \object-oriented," even though a

good temporal object-oriented model should also be history-oriented. In gen-

eral, object-orientation requires more features that are inherited from snapshot

O-O models (+E7). For instance, (attribute/tuple|point/interval-stamped) re-

lational models can also be history-oriented, provided that suitable integrity

constraints and algebraic operators are de�ned.

Once history has been de�ned, \history-oriented" is quite intuitive (+E8).

4.17 History Equivalent

De�nition History equivalence is a binary relation that can be applied to ob-

jects of any kind (of the real world or of a database). Speci�cally, two objects

are history equivalent if their histories are snapshot equivalent.

Explanation Unlike value equivalence which concerns only explicit-attribute

values and completely disregards time, history equivalence implies a common

evolution along with time (implicitly assumes equality of timestamps as well as

explicit-attributes values).

Previously Used Names Snapshot equivalent.

Discussion of Naming As indicated by the de�nition, \history equivalent"

is closely related to snapshot equivalent (�E3). History equivalence is a natural

extension to histories of the basic notion of snapshot equivalence (+E8).

4.18 Temporal Interpolation

De�nition The derivation of the value of a history at a granule, for which a

value is not explicitly stored in the database, is referred to as temporal interpo-

lation. This derivation is typically expressed as a function of preceding and/or

succeeding (in time) values of the history.

Explanation This concept is important for large histories (in particular, for

continuous scienti�c data) where data is collected only for a subset of the granules

in the history, or where all granules contain data, but interpolation is used as a

form of compression. The alternative name of temporal derivation will apply if

the de�nition is extended to encompass cases where the derivation is not based

on interpolation, but on other computations or rules.

Previously Used Names Temporal derivation.

Discussion of Naming The concept is speci�c to temporal databases (+R1)

and its essence|interpolation|is well-de�ned and understood in the real world

(+R2, +R3). The name is intuitive (+E8).

4.19 Gregorian Calendar

De�nition The Gregorian calendar is composed of 12 months, named in order,

January, February, March, April, May, June, July, August, September, October,

November, and December. The 12 months form a year. A year is either 365 or

366 days in length, where the extra day is used on \leap years." Leap years

are de�ned as years evenly divisible by 4, with years evenly divisible by 100

being excluded, unless that year is evenly divisible by 400. Each month has a

�xed number of days, except for February, the length of which varies by a day

depending on whether or not the particular year is a leap year.

Discussion of Naming \Gregorian calendar" is widely used and accepted

(+E3,+E7). This term is de�ned and used elsewhere (�R1), but is in such

common use in temporal databases that it should be de�ned.

4.20 Calendric System

De�nition A calendric system is a collection of calendars. Each calendar in a

calendric system is de�ned over contiguous and non-overlapping intervals of an

underlying time-line. Calendric systems de�ne the human interpretation of time

for a particular locale as di�erent calendars may be employed during di�erent

intervals.

Discussion of Naming A calendric system is the abstraction of time available

at the conceptual (query language) level. The term \calendric system" has been

used to describe the calculation of events within a single calendar|it therefore

has a con
icting meaning (�E7). The present de�nition generalizes that usage

to multiple calendars in a very natural way, however. Furthermore, the meaning

is intuitive in that the calendric system interprets time values at the conceptual

level (+E8).

4.21 Physical Clock

De�nition A physical clock is a physical process coupled with a method of

measuring that process. Although the underlying physical process is continuous,

the physical clock measurements are discrete, hence a physical clock is discrete.

Explanation A physical clock by itself does not measure time; it only measures

the process. For instance, the rotation of the Earth measured in solar days is a

physical clock. Most physical clocks are based on cyclic physical processes (such

as the rotation of the Earth).

Previously Used Names Clock.

Discussion of Naming The modi�er \physical" is used to distinguish this

kind of clock from other kinds of clocks, e.g., the time-line clock (+E9). It is

also descriptive in so far as physical clocks are based on recurring natural or

man-made phenomena (+E8).

4.22 Time-line Clock

De�nition In the discrete model of time, a time-line clock is de�ned as a set

of physical clocks coupled with some speci�cation of when each physical clock

is authoritative. Each chronon in a time-line clock is a chronon (or a regular

division of a chronon) in an identi�ed, underlying physical clock. The time-line

clock switches from one physical clock to the next at a synchronization point. A

synchronization point correlates two, distinct physical clock measurements. The

time-line clock must be anchored at some chronon to a unique physical state of

the universe.

Explanation A time-line clock glues together a sequence of physical clocks to

provide a consistent, clear semantics for a discrete time-line. A time-line clock

provides a clear, consistent semantics for a discrete time-line by gluing together

a sequence of physical clocks. Since the range of most physical clocks is limited,

a time-line clock is usually composed of many physical clocks. For instance, a

tree-ring clock can only be used to date past events, and the atomic clock can

only be used to date events since the 1950s.

Previously Used Names Base-line clock, time-segment clock.

Discussion of Naming The term \time-line" has a well-understood informal

meaning, as does \clock," which we coopt for this de�nition (+E5). This con-

cept currently has no name (+E7)(�E3), but it is used for every timestamp

(e.g., SQL2 uses the mean solar day clock|the basis of the Gregorian calendar|

as its time-line clock). The modi�er \time-line" distinguishes this clock from

other kinds of clocks (+E1). Time-line is more intuitive than \base-line" (+E8),

but less precise (mathematically) than \time-segment," since the time-line clock

usually describes a segment rather than a line (�E9). We prefer time-line clock

to time-segment clock because the former term is more general (+E4) and is

intuitively appealing.

4.23 Time-line Clock Granularity

De�nition The time-line clock granularity is the uniform duration of each

chronon in the time-line clock.

Discussion of Naming The modi�er \time-line" distinguishes this kind of

granularity from other kinds of granularity (+E1) and describes precisely where

this granularity applies (+E9). The term granularity is de�ned in the addendum

of granularity-related concepts.

4.24 Beginning

De�nition The distinguished value beginning is a special valid-time instant pre-

ceding the earliest granule on the valid-time line. Beginning has no transaction-

time semantics.

Previously Used Names Start, begin, commencement, origin, negative in�n-

ity.

Discussion of Naming Beginning has the advantage of being intuitive (+E8),

and does not have con
icting meanings (+E5).

`Begin" appears to be more straightforward (+E8), but su�ers from con
ict-

ing meanings because it is a common programming language keyword (�E5).

\Start," \commencement," and \origin" are awkward to use, e.g., \Start

precedes the event," \Commencement precedes the event," and \Origin precedes

the event." (�E8). Furthermore, choosing start would require us to choose \end"

for the opposite concept, and end is a common programming language keyword

(�E5). Origin also has a con
icting meaning relative to calendars (�E5).

Lastly, \negative in�nity" is longer (�E2) and slightly misleading since it

implies that time is in�nite (�E9). This may or may not be true depending on

theories about the creation of the universe. Also, negative in�nity has a well-

established mathematical meaning (�E5).

4.25 Forever

De�nition The distinguished value forever is a special valid-time instant fol-

lowing the largest granule on the valid-time line. Forever has no transaction-time

semantics.

Previously Used Names In�nity, positive in�nity.

Discussion of Naming Forever has the advantage of being intuitive (+E8)

and does not have con
icting meanings (+E5).

\In�nity" and \positive in�nity" both appear to be more straightforward, but

have con
icting mathematical meanings (�E5). Furthermore, positive in�nity is

longer and would require us to choose \negative in�nity" for its opposite (�E2).

4.26 Initiation

De�nition The distinguished value initiation, associated with a relation, de-

notes the time instant when a relation was created. \Initiation" is a value in the

domain of transaction times and has no valid-time semantics.

Previously Used Names Start, begin, commencement, origin, negative in�n-

ity, beginning, birth.

Discussion of Naming The arguments against \start," \begin," \commence-

ment," \origin," and \negative in�nity" are as in the discussion of beginning.

\Birth" is an alternative that has been used by some authors.

Initiation is preferred over beginning since transaction time is distinct from

valid time. Using di�erent terms for the two concepts avoids con
icting meanings

(+E5).

4.27 Timestamp Interpretation

De�nition In the discrete model of time, the timestamp interpretation gives the

meaning of each timestamp bit pattern in terms of some time-line clock chronon

(or group of chronons), that is, the time to which each bit pattern corresponds.

The timestamp interpretation is a many-to-one function from time-line clock

chronons to timestamp bit patterns.

Discussion of Naming Timestamp interpretation is a concise (+E2), intuitive

(+E8), precise (+E9) term for a widely-used but currently unde�ned concept

(+E7).

4.28 Timestamp Granularity

De�nition In the discrete model of time, the timestamp granularity is the size

of each chronon in a timestamp interpretation. For example, if the timestamp

granularity is one second, then the duration of each chronon in the timestamp

interpretation is one second (and vice-versa).

Explanation Each time dimension has a separate timestamp granularity. A

time, stored in a database, must be stored in the timestamp granularity regard-

less of the granularity of that time (e.g., the valid-time date January 1st, 1990

stored in a database with a valid-time timestamp granularity of a second must

be stored as a particular second during that day, perhaps midnight January 1st,

1990). If the context is clear, the modi�er \timestamp" may be omitted, for

example, \valid-time timestamp granularity" is equivalent to \valid-time gran-

ularity."

Previously Used Names Time granularity.

Discussion of Naming Timestamp granularity is not an issue in the contin-

uous model of time. The adjective \timestamp" is used to distinguish this kind

of granularity from other kinds of granularity, such as the granularity of non-

timestamp attributes (+E9,+E1). \Time granularity" is much too vague a term

since there is a di�erent granularity associated with temporal constants, times-

tamps, physical clocks, and the time-line clock although all these concepts are

time-related.

4.29 Temporal Selection

De�nition Facts are extracted from a temporal database by means of temporal

selection when the selection predicate involves the times associated with the

facts.

The generic concept of temporal selection may be specialized to include valid-

time selection, transaction-time selection, and bitemporal selection. For example,

in valid-time selection, facts are selected based on the values of their associated

valid times.

Discussion of Naming Query languages supporting, e.g., valid-time data, gen-

erally provide special facilities for valid-time selection which are built into the

languages.

The name has already been used extensively in the literature by a wide

range of authors (+E3), it is consistent with the unmodi�ed notion of selection

in (non-temporal) databases (+E1, +E7), and it appears intuitive and precise

(+E8, +E9).

4.30 Temporal Projection

De�nition In a query or update statement, temporal projection pairs the com-

puted facts with their associated times, usually derived from the associated times

of the underlying facts.

The generic notion of temporal projection may be applied to various spe-

ci�c time dimensions. For example, valid-time projection associates with derived

facts the times at which they are valid, usually based on the valid times of the

underlying facts.

Explanation While almost all temporal query languages support temporal pro-

jection, the
exibility of that support varies greatly.

In some languages, temporal projection is implicit and is based the intersec-

tion of the times of the underlying facts. Other languages have special constructs

to specify temporal projection.

The name has already been used extensively in the literature (+E3). It derives

from the retrieve clause in Quel as well as the SELECT clause in SQL, which

both serve the purpose of the relational algebra operator projection, in addition

to allowing the speci�cation of derived attribute values.

Previously Used Names Temporal assignment.

Discussion of Naming A related concept, denoted a temporal assignment, is

roughly speaking a function that maps a set of time values to a set of values of

an attribute. One purpose of a temporal assignment would be to indicate when

di�erent values of the attribute are valid.

4.31 Temporal Natural Join

De�nition A temporal natural join is a binary operator that generalizes the

snapshot natural join to incorporate one or more time dimensions. Tuples in a

temporal natural join are merged if their explicit join attribute values match, and

they are temporally coincident in the given time dimensions. As in the snapshot

natural join, the relation schema resulting from a temporal natural join is the

union of the explicit attribute values present in both operand schemas, along

with one or more timestamps. The value of a result timestamp is the temporal

intersection of the input timestamps, that is, the instants contained in both.

Previously Used Names Natural time-join, time-equijoin.

Discussion of Naming The snapshot natural join can be generalized to incor-

porate valid time (the valid-time natural join), transaction time (the transaction-

time natural join), or both (the bitemporal natural join). In each case, the schema

resulting from the join is identical to that of the snapshot natural join appended

with the timestamp(s) of the input relations.

\Temporal natural join" directly generalizes the snapshot term \natural join"

in that \temporal" is used as a modi�er consistent with its previously proposed

glossary de�nition (+E7). \Natural time-join" is less precise since it is unclear

what is natural, i.e., is the join over \natural time" or is the time-join \natural"

(�E7, �E9). \Time-equijoin" is also less precise since, in the snapshot model,

the natural join includes a projection while the equijoin does not (�E7, �E9).

4.32 Temporal Dependency

De�nition Let X and Y be sets of explicit attributes of a temporal relation

schema, R. A temporal functional dependency , denoted X
T

! Y , exists on R

if, for all instances r of R, all snapshots of r satisfy the functional dependency

X ! Y .

Note that more speci�c notions of temporal functional dependency exist for

valid-time, transaction-time, bitemporal, and spatiotemporal relations. Also ob-

serve that using the template for temporal functional dependencies, temporal

multivalued dependencies may be de�ned in a straight-forward manner.

Finally, the notions of temporal keys (super, candidate, primary) follow from

the notion of temporal functional dependency.

Explanation Temporal functional dependencies are generalizations of conven-

tional functional dependencies. In the de�nition of a temporal functional de-

pendency, a temporal relation is perceived as a collection of snapshot relations.

Each such snapshot of any extension must satisfy the corresponding functional

dependency.

Previously Used Names Independence, dependence.

Discussion of Naming Other (con
icting) notions of of temporal dependen-

cies and keys have been de�ned, but none are as closely paralleled by snapshot

dependencies and keys as the above. The naming of the concepts is orthogonal

with respect to existing snapshot concepts, and the new names are mutually

consistent (+E1, +E7).

Related notions of independent and dependent attributes exist. Using tem-

poral as a pre�x distinguishes the concept from conventional dependencies and

points to the speci�c nature of the dependency. Thus ambiguity is avoided (+E5),

and precision is enhanced (+E9)|at the expense of brevity (�E2).

\Temporal dependency" has also been used in a non-generic sense, to denote

a di�erent concept. The term \temporal" is often used in a generic sense, so

ambiguity results when it is also used in a speci�c sense. Thus \temporal" is

used here only in a generic sense.

4.33 Temporal Normal Form

De�nition A pair (R;F) of a temporal relation schemaR and a set of associated

temporal functional dependencies F is in temporal Boyce-Codd normal form

(TBCNF) if

8 X
T

! Y 2 F+ (Y � X _X
T

! R)

where F+ denotes the closure of F and X and Y are sets of attributes of R.

Similarly, (R;F) is in temporal third normal form (T3NF) if for all non-trivial

temporal functional dependencies X
T

! Y in F+, X is a temporal superkey for

R or each attribute of Y is part of a minimal temporal key of R.

The de�nition of temporal fourth normal form (T4NF) is similar to that of

TBCNF, but also uses temporal multivalued dependencies.

Previously Used Names Time normal form, P normal form, Q normal form,

�rst temporal normal form.

Discussion of Naming The three temporal normal forms mentioned in the

de�nition are not a complete account of temporal normal forms. Indeed, the al-

ternative names refer to di�erent and complementing notions of temporal normal

forms.

The naming of the concepts is orthogonal with respect to existing snapshot

concepts, and the new names are mutually consistent (+E1, +E7).

4.34 Time-invariant Attribute

De�nition A time-invariant attribute is an attribute whose value is constrained

to not change over time. In functional terms, it is a constant-valued function over

time.

4.35 Time-varying Attribute

De�nition A time-varying attribute is an attribute whose value is not con-

strained to be constant over time. In other words, it may or may not change

over time.

4.36 Temporally Homogeneous

De�nition A temporal tuple is temporally homogeneous if the lifespan of all at-

tribute values within it are identical. A temporal relation is said to be temporally

homogeneous if its tuples are temporally homogeneous. A temporal database

is said to be temporally homogeneous if all its relations are temporally ho-

mogeneous. In addition to being speci�c to a type of object (tuple, relation,

database), homogeneity is also speci�c to some time dimension, as in \tempo-

rally homogeneous in the valid-time dimension" or \temporally homogeneous in

the transaction-time dimension."

Explanation The motivation for homogeneity arises from the fact that no

timeslices of a homogeneous relation produce null values. Therefore a homo-

geneous relational model is the temporal counterpart of the snapshot relational

model without nulls. Certain data models assume temporal homogeneity. Models

that employ tuple timestamping rather than attribute-value timestamping are

necessarily temporally homogeneous|only temporally homogeneous relations

are possible.

Previously Used Names Homogeneous.

Discussion of Naming In general, using simply \homogeneous" without \tem-

poral" as quali�er may cause ambiguity because the unrelated notion of homo-

geneity exists also in distributed databases (�E5).

4.37 Temporal Specialization

De�nition Temporal specialization denotes the restriction of the interrelation-

ship between otherwise independent (implicit or explicit) timestamps in relations.

An example is a relation where facts are always inserted after they were valid

in reality. In such a relation, the transaction time would always be after the

valid time. Temporal specialization may be applied to relation schemas, relation

instances, and individual tuples.

Explanation Data models exist where relations are required to be specialized,

and temporal specializations often constitute important semantics about tem-

poral relations that may be utilized for, e.g., query optimization and processing

purposes.

Previously Used Names Temporal restriction.

Discussion of Naming The chosen name is more widely used than the alter-

native name (+E3). The chosen name is new (+E5) and indicates that special-

ization is done with respect to the temporal aspects of facts (+E8). Temporal

specialization seems to be open-ended (+E4). Thus, an opposite concept, tem-

poral generalization, has been de�ned. \Temporal restriction" has no obvious

opposite name (�E4).

4.38 Specialized Bitemporal Relationship

De�nition A temporal relation schema exhibits a specialized bitemporal rela-

tionship if all instances obey some given specialized relationship between the

(implicit or explicit) valid and transaction times of the stored facts. Individual

instances and tuples may also exhibit specialized bitemporal relationships. As

the transaction times of tuples depend on when relations are updated, updates

may also be characterized by specialized bitemporal relationships.

Previously Used Names Restricted bitemporal relationship.

Discussion of Naming The primary reason for the choice of name is consis-

tency with the naming of temporal specialization (+E1). For additional discus-

sions, see temporal specialization.

4.39 Retroactive Temporal Relation

De�nition A temporal relation schema including at least valid time is retroac-

tive if each stored fact of any instance is always valid in the past. The concept

may be applied to temporal relation instances, individual tuples, and to updates.

Discussion of Naming The name is motivated by the observation that a

retroactive bitemporal relation contains only information concerning the past

(+E8).

4.40 Predictive Temporal Relation

De�nition A temporal relation schema including at least valid time is predictive

if each fact of any relation instance is valid in the future when it is being stored

in the relation. The concept may be applied to temporal relation instances,

individual tuples, and to updates.

Previously Used Names Proactive bitemporal relation.

Discussion of Naming Note that the concept is applicable only to relations

which support valid time, as facts valid in the future cannot be stored otherwise.

The choice of \predictive" over \proactive" is due to the more frequent every-

day use of \predictive," making it a more intuitive name (+E8). In fact, \proac-

tive" is absent from many dictionaries. Tuples inserted into a predictive bitem-

poral relation instance are, in e�ect, predictions about the future of the modeled

reality. Still, \proactive" is orthogonal to \retroactive" (�E1).

4.41 Degenerate Bitemporal Relation

De�nition A bitemporal relation schema is degenerate if updates to its rela-

tion instances are made immediately when something changes in reality, with

the result that the values of the valid and transaction times are identical. The

concept may be applied to bitemporal relation instances, individual tuples, and

to updates.

Discussion of Naming \Degenerate bitemporal relation" names a previously

unnamed concept that is frequently used. A degenerate bitemporal relation resem-

bles a transaction-time relation in that only one timestamp is necessary. Unlike

a transaction-time relation, however, it is possible to pose both valid-time and

transaction-time queries on a degenerate bitemporal relation.

The use of \degenerate" is intended to re
ect that the two time dimensions

may be represented as one, with the resulting limited capabilities.

5 Concepts of Specialized Interest

5.1 Valid-time Partitioning

De�nition Valid-time partitioning is the partitioning (in the mathematical

sense) of the valid time-line into valid-time elements. For each valid-time el-

ement, we associate an interval of the valid time-line on which a cumulative

aggregate may then be applied.

Explanation To compute the aggregate, �rst partition the time-line into valid-

time elements, then associate an interval with each valid-time element, assemble

the tuples valid over each interval, and �nally compute the aggregate over each of

these sets. The value at any instant is the value computed over the partitioning

element that contains that instant.

The reason for the associated interval with each temporal element is that we

wish to perform a partition of the valid time-line, and not exclude certain queries.

If we exclude computing the aggregate on overlapping intervals, we exclude

queries such as \Find the average salary paid for one year before each hire."

Such queries would be excluded because the one-year intervals before each hire

might overlap.

Partitioning the time-line is a useful capability for aggregates in temporal

databases (+R1,+R3).

One example of valid-time partitioning is to divide the time-line into years,

based on the Gregorian calendar. Then for each year, compute the count of the

tuples which overlap that year.

There is no existing term for this concept. There is no partitioning attribute

in valid-time partitioning, since the partitioning does not depend on attribute

values, but instead on valid-times.

Valid-time partitioning may occur before or after value partitioning.

Previously Used Names Valid-time grouping.

Discussion of Naming \Grouping" is inappropriate because the valid-time

elements form a true partition; they do not overlap and must cover the time line.

However the associated intervals may be de�ned in any way.

5.2 Dynamic Valid-time Partitioning

De�nition In dynamic valid-time partitioning the valid-time elements used in

the partitioning are determined solely from the timestamps of the relation.

Explanation One example of dynamic valid-time partitioning would be to com-

pute the average value of an attribute in a relation (say the salary attribute), for

the previous year before the stop-time of each tuple. A technique which could be

used to compute this query would be for each tuple, �nd all tuples valid in the

previous year before the stop-time of the tuple in question, and combine these

tuples into a set. Finally, compute the average of the salary attribute values in

each set.

It may seem inappropriate to use valid-time elements instead of intervals,

however there is no reason to exclude valid-time elements. Perhaps the elements

are the intervals during which the relation is constant.

Previously Used Names Moving window.

Discussion of Naming The term dynamic is appropriate (as opposed to static)

because if the information in the database changes, the partitioning intervalsmay

change. The intervals are determined from intrinsic information.

The existing term for this concept does not have an opposing term suitable

to refer to static valid-time partitioning, and can not distinguish between the

two types of valid-time partitioning (�E3, +E9). While various temporal query

languages have used both dynamic and static valid-time partitioning, they have

not always been clear about which type of partitioning they support (+E1).

Utilization of these terms will remove this ambiguity from future discussions.

5.3 Static Valid-time Partitioning

De�nition In static valid-time partitioning the valid-time elements used are

determined solely from �xed points on a calendar, such as the start of each year.

Explanation Computing the maximum salary of employees during each month

is an example which requires using static valid-time partitioning. To compute

this information, �rst divide the time-line into valid-time elements where each

element represents a separate month on, say, the Gregorian calendar. Then,

�nd the tuples valid over each valid-time element, and compute the maximum

aggregate over the members of each set.

Previously Used Names Moving window.

Discussion of Naming This term further distinguishes existing terms (�E3,

+E9). It is an obvious parallel to dynamic valid-time partitioning (+E1). Static is

an appropriate term because the valid-time elements are determined from extrin-

sic information. The partitioning element would not change if the information

in the database changed.

5.4 Valid-time Cumulative Aggregation

De�nition In cumulative aggregation, for each valid-time element of the valid-

time partitioning (produced by either dynamic or static valid-time partitioning),

the aggregate is applied to all tuples associated with that valid-time element.

The value of the aggregate at any instant is the value computed over the

partitioning element that contains that instant.

Explanation One example of cumulative aggregation would be �nd the total

number of employees who had worked at some point for a company. To compute

this value at the end of each calendar year, then, for each year, de�ne a valid-

time element which is valid from the beginning of time up to the end of that

year. For each valid-time element, �nd all tuples which overlap that element, and

�nally, count the number of tuples in each set.

Instantaneous aggregationmay be considered to be a degenerate case of cumu-

lative aggregation where the partition is per granule and the associated interval

is that granule.

Previously Used Names Moving window.

Discussion of Naming Cumulative is used because the interesting values are

de�ned over a cumulative range of time (+E8). This term is more precise than

the existing term (�E3, +E9).

5.5 Instantaneous Aggregation

De�nition In instantaneous aggregation, for each granule in a granularity, the

aggregate is applied to all tuples valid at that granule.

Discussion of Naming The term instantaneous is appropriate because the

aggregate is applied over every granule, which are used to represent instants. It

suggests an interest in the aggregate value over a very small time interval, much

as acceleration is de�ned in physics over an (in�nitesimally) small time (+R3).

Many temporal query languages perform instantaneous aggregation, others

use cumulative aggregation, while still others use a combination of the two. This

term will be useful to distinguish between the various alternatives, and is already

used by some researchers (+R4,+E3).

5.6 Temporal Modality

De�nition Temporal modality concerns the way according to which a fact origi-

nally associated with a granule or interval at a given granularity distributes itself

over the corresponding granules at \�ner" granularities or within the interval at

the same level of granularity.

Explanation (Nota Bene: The term \�ner" in this discussion refers to granular-

ities that are related by a groups-into relationship, see the granularity glossary

for a discussion of granularity relationships.)

We distinguish two basic temporal modalities, namely sometimes and always.

The sometimes temporal modality states that the relevant fact is true in at

least one of the corresponding granules at the �ner granularity, or in at least one

of the granules of the interval in case an interval is given. For instance: \The light

was on yesterday afternoon," meaning that it was on at least for one minute in

the afternoon (assuming minutes as the granularity).

The always temporal modality states that the relevant fact is true in each

corresponding granule at the �ner granularity. This is the case, for instance, of

the sentence: \The shop remained open on a Sunday in April 1990 all the day

long" with respect to the granularity of hour.

This issue is relate to attributes varying within their validity intervals.

5.7 Macro-event

De�nition A macro-event is a holistic fact with duration, i.e., something oc-

curring over an interval taken as a whole. A macro-event is said to occur over an

interval I if it occurs over the set of contiguous granules representing I (consid-

ered as a whole).

Previously Used Names Process.

Discussion of Naming \Process" is an over-loaded term, that is, a term having

quite di�erent meanings in di�erent contexts (�E9).

Examples of macro-events are baking a cake, having a dinner party,
ying

from Rome to Paris.

It is worth remarking the distinction between macro-events and interval rela-

tions. Saying that a macro-event relates to the structure of an interval as whole

means that if it consumes a certain interval it cannot possibly transpire during

any subinterval thereof.

5.8 Temporally Indeterminate

De�nition Information that is temporally indeterminate can be characterized

as \don't know when" information, or more precisely, \don't know exactly when"

information.

More precisely the modi�er `temporally indeterminate' indicates that the

modi�ed object, e.g., a fact or an event, has an associated time, but that the

time is not known precisely.

The most common kind of temporal indeterminacy is valid-time indetermi-

nacy or user-de�ned time indeterminacy. Transaction-time indeterminacy is rare

because transaction times are always known exactly.

Explanation Often a user knows only approximately when an event happened,

when an interval began and ended, or even the duration of a span. For instance,

she may know that an event happened \between 2 P.M. and 4 P.M.," \on Friday,"

\sometime last week," or \around the middle of the month." She may know

that a airplane left \on Friday" and arrived \on Saturday." Or perhaps, she

has information that suggests that a graduate student takes \four to �fteen"

years to write a dissertation. These are examples of temporally indeterminate

information.

There are (at least) three possible sources of indeterminacy in a statement

with respect to time: (i) a discrepancy between the granularities of the temporal

reference, or quali�cation, and the occurrence time; (ii) an under-speci�cation

of the occurrence time, when the granularities of the temporal quali�cation and

the occurrence time coincide; and (iii) relative times.

As a �rst approximation, we can say that a statement is temporally indeter-

minate if the granularity of its reference to time (in the examples, the granularity

of days) is coarser than the granularity of the time at which the denoted events

(instantaneously) occur. Notice that temporal indeterminacy as well as relativity

of references to time are mainly quali�cations of statements rather than of the

events they denote (that is, temporal indeterminacy characterizes the relation

between the granularity of the time reference of a statement and the granularity

of the event occurrence time). Notice also that it does not depend on the time

at which the statement is evaluated. The crucial, and critical, point is clearly

the determination of the time granularity of the event occurrence time.

Some problems could be avoided by adopting the following weaker notion of

temporally indeterminacy: a statement whose reference to time has granularity

G (e.g., days) is temporally determinate with respect to every coarser granularity

(e.g., months) and temporally indeterminate with respect to every �ner granu-

larity (e.g., seconds).

However, we do not like this solution because it does not take into account

information about the denoted occurrence time. In particular, for a macro-event

there exists a (�nest) granularity at which its occurrence time can be speci�ed,

but with respect to �ner granularities, the event as a whole does not make sense,

and must, if possible, be decomposed into a set of components.

But not all cases of temporally indeterminate information involve a discrep-

ancy between the granularity of the reference to time and the granularity of the

occurrence time. Consider the sentence: \The shop remained open on a Sunday in

April 1990 all the day long." `Days' is the granularity of both the time reference

and the occurrence time. Nevertheless, this statement is temporally indetermi-

nate because the precise day in which the shop remained open is unknown (we

know only that it is one of the Sundays in April 1990).

Statements that contain a relative reference to time are also temporally inde-

terminate, but the reverse does not hold: temporally-indeterminate statements

can contain relative as well as absolute references to time. The statements \Jack

was killed sometime in 1990" and \Michelle was born yesterday" contain abso-

lute and relative references to time, respectively, but they are both temporally

indeterminate.

Previously Used Names Fuzzy time, temporally imprecise, time incomplete-

ness.

Discussion of Naming The adjective \temporal" allows parallel kinds of inde-

terminacy to be de�ned, such as spatial indeterminacy (+E1). We prefer \tem-

porally indeterminate" to \fuzzy time" since fuzzy has a speci�c, and di�erent,

meaning in database contexts (+E8). There is a subtle di�erence between in-

determinate and imprecise. In this context, indeterminate is a more general

term than imprecise since precision is commonly associated with making mea-

surements. Typically, a precise measurement is preferred to an imprecise one.

Imprecise time measurements, however, are just one source of temporally inde-

terminate information (+E9). On the other hand, \time incompleteness" is too

general. Temporal indeterminacy is a speci�c kind of time incomplete informa-

tion.

5.9 Temporally Determinate

De�nition The modi�er temporally determinate indicates that the modi�ed

object, e.g., a fact or an event, has an associated time that is known precisely.

Explanation See the explanation for \temporally indeterminate."

Previously Used Names Precise.

5.10 Temporally-indeterminate Instant

De�nition A temporally-indeterminate instant (or just indeterminate instant,

when the context is clear) is an instant that is known to be located sometime

during an admissibility interval, which is a sequence of granules. Non-contiguous

granules for the possible time of an instant can be modeled by an exclusive-or

disjunction of (indeterminate) instants.

Explanation \Sometime between March 1 and March 5" is a typical indetermi-

nate instant. Note that an instant with noncontiguous temporally-indeterminate

information, such as \a Friday night in 1990," is not an indeterminate instant

since the possible times for the instant are non-contiguous. The incomplete tem-

poral information could be more substantial. For instance, an indeterminate

instant could have an associated probability mass function which gives the prob-

ability that the instant occurred during each granule.

Previously Used Names Temporally-incomplete instant, temporally-fuzzy

instant, temporally-imprecise instant.

Discussion of Naming Currently, there is no name used in the literature to de-

scribe the incomplete temporal information associated with an event. The mod-

i�er \incomplete" is too vague (-E9), while \fuzzy" has unwanted connotations

(i.e., with fuzzy sets) (-E9). \Indeterminate" is more general than \imprecise;"

imprecise commonly refers to measurements, but imprecise clock measurements

are only one source of indeterminate instants.

5.11 Temporally-indeterminate Interval

De�nition A temporally-indeterminate interval (or just indeterminate interval

when the context is clear) is an interval bounded by at least one temporally-

indeterminate instant. Since an interval cannot end before it starts, the possible

times associated with the bounding instants can overlap on only a single granule.

Previously Used Names Temporally-incomplete interval, temporally-fuzzy

interval, temporally-imprecise interval.

Discussion of Naming Currently, there is no name used in the literature

to describe the incomplete temporal information associated with an interval.

The modi�er \incomplete" is too vague (�E9), while \fuzzy" has unwanted

connotations (i.e., with fuzzy sets) (�E9). \Indeterminate" is more general than

\imprecise;" imprecise commonly refers to measurements, but imprecise clock

measurements are only one source of indeterminate intervals.

5.12 Admissibility Interval

De�nition The admissibility interval is either an anchored duration associated

with an indeterminate instant or a duration associated with an indeterminate

span, that delimits the range of possible times represented by the instant or

span.

Previously Used Names Period of indeterminacy.

Discussion of Naming The admissibility interval associated with an indeter-

minate instant is an anchored duration that delimits the range of possible times

during which the instant occurred. The instant is located sometime during the

admissibility interval but it is unknown exactly when. The name \admissibility

interval" is more intuitive than \period of indeterminacy" (+E8). The name was

used in the TSOS system (+E3).

Contributors

An alphabetical listing of names, a�liations, and e-mail addresses of the con-

tributors follows.

M. B�ohlen, Computer Science Dept., Aalborg University, Denmark, boeh-

len@cs.auc.dk; C. Dyreson, Computer Science Dept., James Cook University,

Australia, curtis@cs.jcu.edu.au; R. Elmasri, Computer Science Engineering

Dept., University of Texas at Arlington elmasri@cse.uta.edu; S. K. Gadia,

Computer Science Dept., Iowa State University, gadia@cs.iastate.edu; F.

Grandi, CIOC-CNR, DEIS, University of Bologna, Italy, fgrandi@deis.cine-

ca.it; P. Hayes, Beckman Institute, phayes@cs.uiuc.edu; S. Jajodia, Informa-

tion & Software Systems Engineering Dept., GeorgeMason University, jajodia@-

gmu.edu; W. K�afer, Mercedes Benz; N. Kline, Microsoft, kline@cs.arizona.-

edu; N. Lorentzos, Informatics Laboratory, Agricultural University of Athens,

Greece, lorentzos@auadec.aua.ariadne-t.gr; Y. Mitsopoulos, Informatics

Laboratory, Agricultural University of Athens, Greece; A. Montanari, Dip. di

Matematica e Informatica, Universit�a di Udine, Italy, montana@dimi.uniud.it;

D. Nonen, Computer Science Dept., Concordia University, Canada, daniel@-

cs.concordia.ca; E. Peressi, Dip. di Matematica e Informatica, Universit�a di

Udine, Italy; B. Pernici, Electronic Engineering and Information Sciences Dept.,

Politecnico di Milano, Italy, pernici@elet.polimi.it; J. F. Roddick, School of

Computer and Information Science, University of South Australia, roddick@cis.-

unisa.edu.au; N. L. Sarda, Computer Science and Engineering Dept., Indian

Institute of Technology, Bombay, India, nls@cse.iitb.ernet.in; M. R. Scalas,

University of Bologna, Italy, mrscalas@deis.unibo.it;A. Segev, School of Busi-

ness Adm. and Computer Science Research Dept., University of California,

segev@csr.lbl.gov; R. T. Snodgrass, Computer Science Dept., University of

Arizona, rts@cs.arizona.edu; M. D. Soo, Computer Science and Engineer-

ing Dept., University of South Florida, soo@babbage.csee.usf.edu; A. Tansel,

Bernard M. Baruch College, City University of New York uztbb@cunyvm.cuny.-

edu; P. Tiberio, CIOC-CNR., DEIS, University of Bologna, Italy, ptiberio@-

deis.unibo.it; G. Wiederhold, Computer Science Dept., Stanford University,

gio@cs.stanford.edu.

This article was processed using the LATEX macro package with LLNCS style

