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Abstract. Spatial data in CAD/CAM and geographic information sys-
tems involve arbitrarily-shaped 2- and 3-dimensional geometries. Queries
on such complex geometry data involve identification of data geometries
that interact with a specified query geometry. Since geometry-geometry
comparisons are expensive due to the large sizes of the data geometries,
spatial engines avoid unnecessary comparisons by first comparing the
MBRs and filtering out irrelevant geometries. If the query geometry is
large compared to the data geometries, this filtering technique may not
be effective in improving the performance. In this paper, we describe how
to reduce geometry-geometry comparisons by first filtering using the in-
terior approximations of geometries (in addition to and after comparing
the exteriors, i.e., the MBRs). We implemented this technique as part of
the R-tree indexes in Oracle Spatial and observed that the query perfor-
mance improves by more than 50% (or a factor of 2) for most queries on
real spatial datasets.

1 Introduction

With the proliferation of spatial, CAD/CAM and multi-media databases in the
past decade and the success of knowledge discovery in such domain-specific
and inter-domain applications, scalable database servers for such non-traditional
data have become a necessary and vital backbone in business applications. Most
database vendors have aptly responded to this need to manage multi-domain
data efficiently. Oracle launched the Spatial Cartridge for spatial, and Visual In-
formation Retrieval (VIR) for image data; Informix introduced data-blade tech-
nology, and IBM developed the spatial extender for spatial data and the QBIC
[15] image retrieval engine for image data. These products employ specialized
techniques for processing queries on domain-based data. In this paper, we de-
scribe and study one such technique for the efficient processing of spatial queries.

Spatial data occurring in GIS, CAD/CAM applications consists of geometric
data that include simple primitive elements such as lines, curves, polygons (with
and without holes), and compound elements that are made up of a combina-
tion of the primitive elements. Oracle Spatial models its spatial data using an
sdo geometry data type which conforms to the OGC (Open GIS Consortium)
standard. Oracle Spatial supports two types of spatial indexes for indexing spa-
tial data: an R-tree [11,19,2,3,13,10], and a Quadtree [18] index. These indexes
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are implemented using the extensible indexing framework of Oracle and incor-
porate and enhance some of the best proposals from existing spatial indexing
research. Spatial data in Oracle can be queried in one of the following ways.

– window queries with different “interaction” criteria [8,7]
• intersection: identify data geometries that intersect a specified query

geometry
• inside: identify data geometries that are “completely inside” the query

geometry
• coveredby: identify data geometries that “touch” on at least one border

and are inside the query geometry otherwise
• contains: reverse of inside
• covers: reverse of coveredby
• touch: identify geometries that only “touch” the query geometry but

disjoint otherwise
• equal: identify geometries that are exactly the same as the query geom-

etry
– within-distance (or epsilon [14]) queries: identify geometries that are within

a specified distance from the query geometry
– nearest-neighbor queries: identify the k nearest neighbors [12,17] for a spec-

ified query geometry.

To efficiently process the above queries on complex spatial data, most vendor
and research engines including Oracle Spatial use a 2-stage query filtering model
as shown in Figure 1. In the first stage exterior approximations for data geome-
tries such as minimum bounding rectangles (MBRs) and convex hulls [4,5,6], or
quadtree tiles [18], which completely enclose the data geometries, are used. This
first stage, usually referred to as the primary filter , typically involves a spatial
index. Candidate geometries that may satisfy a given query criterion are iden-
tified in the primary filter stage with the help of (the exterior approximations
in) the spatial index. In the second stage, referred to as the secondary filter, the
identified candidate geometries are compared with the query geometry and the
exact result set is determined and returned to the user.

R−tree

Primary  Filter

Geometry−
Geometry
Comparator

Result GeometriesCandidate Geometries

Secondary Filter 

Query

Fig. 1. Query Processing in Oracle Spatial.

In this paper, we study the performance of large spatial queries in the above
2-stage filtering model and propose new techniques to bypass the expensive sec-
ondary filter. In Section 2, we motivate the discussion and examine and ana-
lyze the bottlenecks in query performance. In Section 3, we propose a general
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methodology for improving query performance. In Section 4, we propose specific
techniques for improving query performance when the query window is a con-
vex polygon. In Section 5, we address concave query windows which are more
common in geographic datasets. Together, these techniques improve the query
performance by upto 50% for most queries. In the final section, we conclude the
paper with pointers to further research.

2 Analyzing the Performance of Large Queries

For most spatial datasets, the data geometries typically have hundreds or thou-
sands of vertices and are arbitrarily complex. Secondary filter computation for
such geometries takes a long time as opposed to the primary filter. Figure 2(a)
illustrates this by comparing the time taken for primary and secondary filters in
Oracle Spatial. The data consists of 230K polygons representing the US census
blocks. The queries correspond to an approximate geometry that represents a
circle of 0.25, 0.5, 1, 2, 5, 10, 25, 50, or 100 mile radius on the surface of earth.
Since arcs and circles are not easily representable on the surface of earth the cir-
cle queries are densified to regular convex polygons in geodetic and non-geodetic
domains. The center of the query is randomly-generated using locations of busi-
ness centers across the United States. Note that such queries, where the query
area is larger than those of the spatial features, are quite common in most GIS
applications and spatial analysis queries. The x-axis shows the radius in miles
from the query center and the y-axis plots the response time for each filter. The
figure illustrates that the secondary-filter time is at least twice that of the filter
time and dominates the overall computation time. This holds for all radii for the
query circle.

The high cost for secondary-filter is due to two reasons: (1) the loading cost
for geometries, or in other words, the cost of the table accesses that fetch can-
didate geometries, and (2) the comparison cost, which is the cost of comparing
complex data geometries with the query geometry. For point datasets, the load-
ing cost dominates and for polygon datasets, both costs contribute significantly.
Since there is no easy way to reduce these costs, in this paper we examine al-
ternate ways to improve performance: specifically by avoiding secondary filter
comparisons whenever possible. In this context, we revisit the experiment of
Figure 2(a). Interestingly, the number of geometries eliminated in the secondary
filter are quite small compared to the total number retrieved. Figure 2(b) shows
that in almost all the cases the difference in primary and secondary filter results
is less than 10%. Besides, the figure also indicates that as the query radius in-
creases a substantial number of the results are completely inside the query. From
this, it could be inferred that whenever the query window is large compared to
data sizes, checking for containment in the query may be a useful pruning strat-
egy for bypassing the secondary filter, i.e., if a data geometry is completely inside
a query geometry, then it could be accepted without passing it to the expensive
secondary filter.
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Fig. 2. Comparison of primary and primary+secondary filter queries on 230K-polygon
USBG dataset: (a) Response times plotted: Secondary filter time is more than 2 times
that of primary filter. (b) Secondary and Primary Filter results are plotted:The third
curve shows the number of geometries inside the query.

Based on this insight, we propose to use interior approximations for query
geometries to speed up the overall query time in Oracle Spatial. We primarily fo-
cus on R-tree indexes although the enhancements can also be made to quadtrees.
We describe how to use the interior approximations to bypass secondary-filter
comparisons. We then present novel techniques to compute the interior approx-
imations for convex and concave query geometries. We incorporate these tech-
niques in the Oracle-version of R-trees in Oracle Spatial. In experiments on real
data sets using Oracle Spatial, we observe that our approach achieves upto a
factor of 2 improvement in the execution speed of most queries.

Note that Badaway et al. [1] use interior tiles in quadtrees to speed up in-
tersection queries. Our work generalizes the concept to non-intersection-type
queries and examines its application in the context of R-trees. Unlike the work
of Badaway et al. [1], our approach does not store any additional information
to be maintained in the index. Instead, we compute the interior approximations
only for query geometries and at query time. This strategy ensures no structural
changes need to be made to the indexes of Oracle Spatial server. Since the inte-
rior is computed once per query, any additional overhead is amortized over the
number of geometries that are retrieved. Experiments with this approach sug-
gest that for some queries the time spent in the secondary filter reduces to less
than 10% of the overall time (and to 16% of the original secondary-filter over-
head). These results indicate that our approach requires little or no structural
changes to a commercial database server like Oracle but obtains the meat of the
performance enhancements from using interior approximations in a practical sce-
nario. In the next section, we describe the general methodology for using interior
approximations of a query to speed up query processing in Oracle Spatial.
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3 Intermediate Filter in Oracle Spatial

Since comparison of two geometries (query geometry and a candidate data ge-
ometry) in the secondary filter is expensive, in this section we introduce an
intermediate filter in Oracle Spatial to reduce the number of such expensive
comparisons. This intermediate filter uses interior approximations of geometries
to bypass the expensive secondary filter whenever the data geometry is inside
the query geometry . Figure 3 illustrates this concept.

G

Query Q

MBR(Q)

MBR(G)

Interior(Q)

Fig. 3. Interior approximations for geometries.

Consider the query geometry Q and data geometry G of Figure 3. We assume
the query is finding all geometries that intersect the query geometry (window
query with intersection-type of interaction). The exterior approximations, which
are MBRs for Oracle Spatial R-trees [16], are shown as dashed boxes and the
interior rectangles are shown as solid boxes for the geometries. The primary filter
determines that query Q may interact with geometry G using their exterior
approximations, the MBRs, which happen to intersect each other. Since the
exterior of the geometry G is inside the interior of the query Q, it follows that
the geometry satisfies the intersection criterion of the query. This eliminates the
need for the expensive loading and comparison of the geometry and query in
the secondary filter. As illustrated in this example, intermediate filtering using
interior approximations could enable some query-satisfying geometries to bypass
the secondary filter. The two-stage filtering process of Figure 1 is augmented
using such an intermediate filter as shown in Figure 4.

Next, we describe in detail how Oracle Spatial uses interior approximations
in its intermediate filter. We then describe how and when the engine computes
interior approximations. In the next section, we examine performance benefits
from adopting this approach.
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Fig. 4. Augmented primary Filter in Oracle Spatial.

3.1 Using Interior Approximations in Intermediate Filter

The R-tree index uses the MBRs of query and candidate data geometries to
determine whether or not they interact. If they do interact, then the query
and the geometry are passed on to the intermediate filter. The intermediate
filter takes the query q, and a candidate geometry g and returns true if the
geometry is to be included in the result set, false if not, and unknown if it cannot
determine the relationship, in which case the query-candidate pair is passed to
the secondary-filter to determine the exact relationship. These paths from the
intermediate filter are shown with unknown, true, false labels in Figure 4.

Next, we describe the operational behavior of the intermediate filter for differ-
ent queries. For the sake of notation, let I(g) denote the interior approximations
for a geometry g, and E(g) denote the exterior approximation (in our case, the
MBR) for the geometry g.

Window Queries

Intersection (g intersects q), inside (g inside q):
– If (I(q) contains E(g)) then return true
– Otherwise return unknown

Here, the interior approximation of the query is used to eliminate unneces-
sary comparisons in secondary filter as in the example of Figure 3. If the
above test evaluates to true, then the geometry is directly included in the
result set bypassing the comparisons in secondary filter. These are one of the
most-frequently used queries in practice. As such, this optimization impacts
a large gamut of user queries.

Contains (q inside g):
– If (E(q) is not inside E(g)) then return false
– Otherwise, return unknown (i.e., process using secondary filter)

Note that instead of passing directly to the secondary filter, the interior of
the geometry, if exists, could be checked against the exterior of the query.
However, in this case the primary filter would already test for the MBR of
query being inside the MBR of the candidate geometry before invoking any
such comparison. In most spatial applications, the number of such geometries
satisfying the primary-filter test would be quite few given the small sizes
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of data geometries (compared to the sizes of the query geometries). The
improvements would be limited in this case.

Other types of interaction (covers, coveredby, touch,..):
– If (I(q) contains E(g)) then return false
– Otherwise, return unknown

Here, the interior approximation of the query is used to eliminate “false hits”
that may otherwise propagate to the secondary filter.

Within-distance query can be implemented as a window query (query window
enlarged by the specified distance) checking for intersection with data geometries.

Nearest-Neighbor Queries. In addition to regular window queries, nearest-
neighbor algorithms too can benefit from the use of interior approximations.
Nearest-neighbor algorithms could use the interior of the query to obtain a more
precise estimation of the distances between query and a candidate geometry
MBR and use these distances in query pruning and reducing actual-distance
calculations. We briefly describe this process below.

Nearest neighbor queries retrieve a specified number, say k, of the data ge-
ometries that are closest to a query geometry. Nearest neighbor queries are eval-
uated by progressively refining the search area from a sphere of infinite radius to
a sphere of distance-to-kth-neighbor radius. In this context, the actual minimum
distance d(q, g) between a query geometry and a candidate geometry g satisfies
the following relation:

d(mbr(q), mbr(g)) ≤ d(q, g) ≤ d(I(q), I(g)) ≤ D(I(q), E(g))

Here d(a, b) denotes the minimum distance between objects a and b and
d(I(q), I(g)) denotes the minimum of the minimum distances between every pair
of rectangles qi and gi where qi ∈ I(q) and gi ∈ I(g). The distance D(I(q), E(g))
denotes the minimum of the maximum distance from any point in the interior
of I(q) to E(g). This distance serves as an upper bound on the distance from
query to data geometry.

The minimum distance between the MBRs, (d(mbr(q), mbr(g)), could be
used to prune away all geometries farther than the current k-nearest-neighbor
radius (see [12,17] for details). If a geometry falls within the current k-nn radius,
then current systems pass it to the secondary filter to determine the actual
distance and see if it needs to be included in the k-nn result set. Using the
interior approximations for the query geometry, one could get a good upper
bound on the actual distance, which can be used to determine whether or not to
include the geometry in the result set. The actual distance has to be computed
only when the interior-mbr distance is greater than the k-nn search radius, or
when it is greater than the distance to the (k-1) neighbor (i.e., the geometry is
being considered for the kth neighbor spot and for setting the k-nn radius). This
strategy may eliminate expensive computation of the “actual distance d(q, g)”
from query geometry to a candidate data geometry for candidate geometries
that fall inside the k-nn radius.
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In the rest of the paper, we primarily focus on window queries although
the techniques can be easily extended to nearest-neighbor and other queries
as described above. In the next two sections, we describe how to compute the
interior for convex and concave geometries and present experimental results to
illustrate the usefulness of the proposed techniques.

4 Interior Approximations for Convex Query Windows

Several algorithms exist in computational geometry literature for the fast com-
putation of a maximally inscribed rectangle for a convex polygon. We use the
approach of [9] to obtain a maximally inscribed rectangle for a convex polygon. A
maximal interior rectangle with 3 points on the polygon boundary, is computed
as follows: Divide the polygon boundary into 4 zones: south-west, north-west,
north-east and south-east using the extreme vertices in x and y-dimensions as
demarcators. In each zone, perform a binary search on the vertices in that zone to
identify the (vertex or) edge where the interior rectangles pivoted at either of its
vertices is maximum. (An interior rectangle pivoted at a vertex is computed by
drawing x-parallel and y-parallel lines to the polygon boundary in other zones).
Perform a binary search on the points on the edge to identify the maximum
interior rectangle for that zone. Repeat this process for the other zones and ob-
tain the interior rectangle that has maximum area. Likewise, interior rectangles
with 2 vertices on the polygon boundary are computed. The authors of [9] show
that the maximal interior rectangle is obtained by choosing the maximum area
rectangle of the two.

To further maximize the interior area captured for a convex polygon, our
approach is to divide a convex polygon into several pieces using the x or the y
dimension (whichever has the maximum span) and find the maximally inscribed
rectangle for each of these pieces. Our experiments on real data show that 4 pieces
obtain a good trade-off between interior computation time and the area captured.
Next, we describe a theorem which will be useful in improving the effectiveness
of these interior approximations in reducing secondary-filter comparisons.

Theorem 1. If the vertices of a candidate geometry G are inside a convex
polygon geometry Q, then the candidate geometry G is inside the convex polygon
geometry Q.
Proof Sketch: Since the geometry Q is convex, all points inside are to the right
of its edges when we traversed in a counter-clockwise order. If the edge (a, b)
of geometry G has a segment which is not inside the convex geometry Q, then
either a or b are not inside, which is not true, or an edge of Q intersects edge
(a, b). This again implies that either vertex a or b is not to the right of an edge
of Q (i.e., not inside in Q) which is a contradiction.

Corollary 1. If the vertices of the MBR of a geometry G (convex or otherwise)
are inside a convex polygon geometry Q then the geometry G is inside the convex
polygon Q.
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The above corollary allows us to use all the interior approximations of a convex
geometry together in determining if a polygon is inside. This rule, referred to as
combined-interior-acceptance rule could be used to accept candidate geometries
whenever their geometries are not inside any single interior MBR for a query ge-
ometry (i.e., the rules of the previous section fail). In such a case, we determine if
the four corners of the MBR of a candidate geometry are inside any of the interior
MBRs. To determine the usefulness of this rule, we ran the following experiment.
We considered the USBG dataset which has 230K polygon geometries. We picked
100 random counties from the US counties dataset and used the convex hulls
of these counties to query against the US Blockgroup dataset. The average of
the results for these queries are shown in Table 1. We note that on an average
20% of the results are eliminated due to the combined-interior-acceptance rule.
The query time improves by more than 35%, although the number of additional
geometries eliminated were only 20%. This is because the geometries that are
eliminated are larger in comparison to other geometries and their elimination
from secondary filter comparison improved the performance drastically.

Table 1. Comparison of interior optimization with and without combined-interior-
acceptance rule for convex polygons: The total number of results is 561.

Combined-Interior-Acceptance Interior
response time 3.06s 4.21s

# of secondary filter
comparisons eliminated 475 380

4.1 Experiments

In this subsection, we describe experimental results that support the use of inte-
rior approximations for query geometries in spatial processing. We used two
datasets: the US Blockgroup dataset consisting of around 230K arbitrarily-
shaped polygon geometries, and the US Business Area dataset consisting of
around 10M data points. For each of these datasets, we identified some of
the most-densely populated areas and randomly generated query center points
within the area. For instance, for the ABI dataset we used the New York Manhat-
tan center as one query center. Using such query centers, we generated a query
window of different radii from 0.25 miles width to 100 miles width. For each of
these datasets, we compared the query response time for each query window (i.e.,
each query radius) with and without an intermediate filter. This intermediate
filter computed the interior-rectangle for query geometries (or data geometries
in case of a contains query) and applies the combined-interior-acceptance rule
and other rules of Sections 3.1 and 4 whenever applicable. The primary filter is
an Oracle version of an R-tree index constructed using a fanout of 35. We con-
ducted the experiments on a Sun Ultra-1 166MHz machine with 256MB memory.
We implemented the R-tree and the intermediate and secondary filters on top
of Oracle server running a version of Release 9.0.1.
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Fig. 5. Intersection query performance for (a) USBG dataset: Interior curve shows
query times using for secondary+intermediate+primary filters, Regular curve shows
times using secondary+primary filters, and Primary curve shows times for primary
filter; Interior curve as good as Primary curve and (b) ABI dataset: Interior curve is
nearly twice as fast as Regular and matches the performance of primary filter as almost
all data are accepted using the interior optimization.

Figure 5 shows the results of comparison for the average query time with
and without the intermediate filter that uses interior-rectangles for the query ge-
ometries. The queries identify all geometries that intersect the query windows.
In the figures, the query window radius (in miles) is plotted along the x-axis
and the query response (in milliseconds) is plotted along the y-axis. Note that
both scales are logarithmic. Figure 5(a) shows the results for the USBG dataset.
Three time curves are plotted: the time for the primary filter (Primary curve),
the time for primary+secondary filter (Regular curve), and the time for pri-
mary+intermediate+secondary filter (Interior curve). The last one reports the
total time for a query when processed using interior rectangles. We observe that
using interior rectangle approximations improves query response times by around
25% for a query radius of 1 mile and 50% (or a factor of 2) for a query radius of 2
miles. At a radius of 2 miles, a query on the USBG dataset returned around 350
geometries. The performance gain improves as query windows become larger.
For instance, at larger radii of 10-100 miles, the performance improves by nearly
70% (in other words, by a factor of 3). This is because as the query window be-
comes large, more and more candidate geometries fall inside the query interior
and are straight away included in the result set bypassing the secondary-filter.
This is verified by the fact that Interior curve is quite close to the Primary curve
which implies the time is spent in secondary-filter is less than 10% of the overall
query time (which is less than 16% of the original secondary-filter overhead).

Similar performance enhancements are also obtained for the ABI dataset as
shown in Figure 5(b). Notice that for the ABI dataset, even the smallest size
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query shows an improvement unlike the USBG dataset. This is because ABI
dataset contains point data and potential candidates can be accepted right away
using the interior rectangles for even the smallest-size query. This excludes the
need for a secondary-filter comparison where the points (geometries) are loaded
again from the database table and re-compared with the query. Note also that
the overall performance matches that of the primary filter as most of the result
data fall inside the interior rectangles and are therefore accepted right away.
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Fig. 6. Performance for USBG dataset: (a) Inside queries: Interior rectangles are used
for returning satisfying geometries (b) Touch queries: Interior rectangles are used for
eliminating “false hits”.

Next, we present the results for inside-type window queries. The results for
the USBG dataset are plotted in Figure 6(a) and indicate gains similar to those
for intersection queries. In these queries, the interior approximations are used
to identify candidate geometries that satisfy the query and to include them in
result set thereby bypassing the secondary filter. The interior approximations
are also useful in eliminating “false hits” for other-type of interactions such as
touch, covers, or coveredby. Figure 6(b) shows the results for touch queries. We
observe that the performance gains for 2 mile radius query is around 50% (a
factor of 2), and for 10-100 mile radii it is around 84% (a factor of 6). Similar
results are also obtained for other masks and for the ABI dataset.

5 Interior Approximations for Concave Queries

The above technique for computing the interior approximation could be extended
to concave polygons as follows: divide the concave query window into convex
pieces at concave vertices and compute interior rectangles for each of them. This
approach has the following drawbacks: (1) the number of concave vertices for
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most practical concave query windows is quite large: of the order of hundreds.
This might result in a large number of interior rectangles – requiring a lot of
memory and possibly a spatial-searching mechanism for quick comparison with
candidate MBRs. (2) Since the interiors of different pieces of the concave polygon
need not be contiguous any more, the combined-acceptance-rule could not be
applied. This means the query interior is treated as fragmented and it is not
possible to directly accept a data MBR that spans multiple pieces but is still
completely inside the combined interiors. To avoid these drawbacks, we propose
an alternate technique for finding the interior approximations for concave query
windows. The idea is to tile the concave geometry and identify tiles that are
interior to it. Candidate MBRs are also tiled and the tiles for the candidate
MBR are searched among the interior tiles for the concave query window.

5.1 Computing the Interior

We illustrate the process of computing the interior of a concave query using the
simple concave query polygon of Figure 7.

1. Compute the MBR of the concave window.
2. Using the MBR as the tiling domain, tile the concave geometry as in the case

of a quadtree. So, if level-1 tiling is chosen, then the MBR is divided into 4
quadrants, if level-2 tiling is chosen each level-1 quadrant is subdivided into
4 sub-quadrants and so on.
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Fig. 7. Interior tiling for concave query polygon: Query is shown in thick lines. Interior
tiles are shown as dashed boxes and are identified by their x- and y-positions with
respect to the lower-left corner of MBR of the polygon.
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3. Each tile is identified by (xcode, ycode), where xcode and ycode refer to the
tile coordinates along the x- and y-axes respectively. Specifically, in Figure 7
the tile at the lower-left corner has (xcode, ycode) values as (0,0) and the
tile at the lower-right corner has (7, 0).

4. Among the tiles that cover the concave window, identify the tiles that are
interior. In Figure 7, the interior tiles are shown as shaded boxes.

5. Store the interior tiles twice: once in an X-ordered array and a second
time in a Y-ordered array. The X-ordered array orders the tiles first by
the xcode value of the tile and if these match then using the ycode values.
The Y-ordered array orders the tiles first using ycode values and then using
xcode values for tiles with matching ycodes. For illustration purposes, the
X-ordered array (X-array for simplicity) for Figure 7 has the interior tiles in
the following order:

{(1, 4), (1, 5), (2, 3), (2, 4), . . . , (5, 2)}

5.2 Using the Concave Interior in Intermediate Filter

Whenever the query MBR intersects the data MBR, the data MBR is compared
with the interior tiles of the concave geometry. If the data MBR is inside or
matches the interior, then the data geometry is right away included or excluded
(based on the interaction criterion: see section 3 for details) in the result set
bypassing the secondary filter. Otherwise, the data geometry is passed on to the
secondary filter. Next, we describe how to determine whether a data MBR is
inside the interior of the concave query window.

Consider two data MBRs A and B that happen to intersect the query MBR
of Figure 8. To determine whether a candidate MBR is inside the query interior,
we search in the interior tile arrays of the concave query as follows:

1. Identify the tile corresponding to each corner of the candidate MBR. Let
these be the tiles (x0, y0), (x1, y0), (x1, y1), and (x0, y1). For instance, the
data MBR A has corners in the tiles (2,3), (4,3), (4,5) and (2,5). Likewise,
the data MBR B has corners at (4,0), (5,0), (5,2) and (4,2).

2. Next, we determine if all the 4 tile borders of the data MBR corresponding
to the 4 sides of the MBR are inside the interior of the query. If they are,
then the data MBR is inside the query window. For example in Figure 8, for
MBR A all the tile borders are inside the interior tiles of the query whereas
for MBR B only one is inside and the other 3 span non-interior tiles.
Each border of the MBR is searched in the tile array as follows.
– If the border is parallel to the x-axis (i.e., y-code values are same for both

endpoints), then search in the Y-ordered tile array, otherwise search in
the X-ordered tile array. The border (i.e., interval in tile domain) is used
to perform a range search in the appropriate interior (X-ordered or Y-
ordered) tile array. If the number of tiles retrieved is equal to the length
(i.e., difference in x-codes) of the border, then the border is said to be
inside; otherwise not. For example, the border joining tiles (2,3) and
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(0,0) (7,0)

(7,7)(0,7)

(1,4)

(1,5)

(2,6)

(3,2)

(3,1) (4,1)
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(4,3)
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(3,3)(2,3)

  B

A

Fig. 8. Query processing using interior tiles: Candidate MBRs A and B are shown as
dashed rectangles. MBR A is inside interior tiles of the concave polygon, whereas MBR
B is not.

(4,3) is inside the query interior as all tiles between (2,3) and (4,3) are
also interior whereas the border joining tiles (4,0) and (5,0) of MBR B is
not inside as the tile (5,0) is not an interior tile of the query. Note that
each such border search involves 2 ∗ log n time where n is the number of
interior tiles for the query window.

Since binary searches are performed, the above searching takes at most
O(log n) time if there are at most n tiles. As will be seen in our experiments,
this time is quite negligible for most queries.

5.3 Choosing the Tiling Level

The next issue that needs to be addressed is how to choose an appropriate tiling
level for the query geometry. The amount of interior that is captured increases
with the tiling level and contributes directly to reduction in query time. At tiling
level 0 or 1, there will not be any interior tiles for any query window since all
relevant tiles for the query would intersect the query polygon border. At tilling
level 2, there are at most 4 interior tiles out of a total of 16 tiles; at level 3, there
are at most 36 interior tiles out of a total of 64 tiles (56% interior); at level 4 there
are at most 196 interior tiles out of a total of 256 tiles (78% interior). In general,
assuming the window to be a simple MBR for the best case, at level l, there will
be 4 ∗ (2l − 1) tiles that form the border (not interior) out of a total of 4l tiles.
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This indicates that for higher tiling levels, the amount of interior that could be
captured will be more and this may lead to higher gains in query performance
(due to elimination of secondary-filter comparisons). However, as the tiling level
increases, the cost of tiling the window to the specified level is an additional
overhead to the query time and may offset any gains from the interior-based
query gains. In what follows, we describe some experiments to identify the best
tiling level and the resulting performance gains from this strategy.

5.4 Experiments

First, we examine how query performance varies with the tiling level. For this
purpose, we experiment with both datasets: 230K USBG dataset of polygons,
and 10M ABI dataset of points. As concave query windows, we chose 100 ran-
domly selected counties from the set of 3200 counties in the United States.
Figure 9 shows the results for different tiling levels. The tiling level is plotted
along the x-axis and the query response time along the y-axis. For small tiling
levels (2 or 3), the number of interior tiles is also small and hence the perfor-
mance improvements will be negligible. As the tiling level increases from 3 to 4,
or 4 to 5 as in Figure 9(a), the number of interior tiles but the tiling time also
increases and may offset any gains in response time due to acceptance of interior
candidates.

Due to the conflicting effects of increasing or decreasing the tiling level on
the number of interiors and the tiling time, tiling levels 3 and 4 achieve good
performance for one of the two datasets and perform poorly for the other. This
is illustrated in Figure 9(a) and (b) using USBG and ABI datasets. Tiling level
3 achieves best performance for USBG data and performs relatively poorly for
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Fig. 9. Anyinteract-Query performance variation with tiling level for (a) USBG
dataset: Level-4 interior tiling obtains 25% improvement over regular approach and
(b) ABI dataset: level-4 interior tiling obtains 75% improvement over regular approach.
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Fig. 10. Touch-Query performance variation with tiling level for (a) USBG dataset:
Level-4 interior tiling obtains 30% improvement over regular approach and (b) ABI
dataset: level-4 interior tiling obtains 75% improvement over regular approach.

ABI data, whereas tiling level 5 achieves best results for ABI data and performs
poorly for USBG data. In contrast, tiling level of 4 achieves nearly the best
performance for both the point and polygon datasets: for the USBG dataset,
this level of tiling obtains 25% improvement, and for the ABI dataset, it obtains
around 75% improvement in query response time. For the ABI dataset, tiling
level 4 obtains nearly 75% improvement in performance, as nearly 2000 out of
2500 results are accepted using the interior optimization.

The results for a “touch”-type of query interaction for the two datasets are
shown in Figure 10. We observe that once again tiling level 4 obtains consistently
good performance gain: 30% for USBG dataset and nearly 75% for ABI dataset.
Similar results are also obtained for other interaction-type queries. From these
results, we conclude that a tiling level of 4 achieves good performance gains in
all cases. In all subsequent experiments, we work with a tiling level of 4.

Next, we examine the improvements for more rugged query windows such
as state boundaries. Tables 2 and 3 present the improvements from interior
approximations when the state of “Maryland” is used as the query window for
the USBG dataset and the ABI dataset respectively. We observe that the query
performance improves by 25-30% in both cases.

6 Conclusions

In this paper, we examined the performance of large spatial queries that fre-
quently occur in spatial databases. Most of the time spent in the query goes in
secondary-filter comparisons and such expensive comparisons can be reduced by
using interior approximations for query geometries. We proposed efficient and
effective techniques for computing and using interior approximations for both
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Table 2. Performance gains from interior optimization for USBG dataset using Mary-
land state as the query window: Improvement is around 25%.

Query Concave Interior Regular
interaction response time (s) response time(s)
Anyinteract 78 92

Inside 102 132
Touch 530 722

Table 3. Performance gains from interior optimization for ABI dataset using Maryland
state as the query window: Improvement is around 30%.

Query Concave Interior Regular
interaction response time (s) response time(s)
Anyinteract 450 600

Inside 413 612
Touch 390 580

convex and concave query windows. Experiments with real datasets inside Or-
acle server showed that using such approximations, query performance can be
significantly improved. For convex query windows, query times can be reduced
by 85% for point data and by a factor of 60% for polygon data. For concave query
windows, query times are reduced by 75% for point data and by 30% for poly-
gon data. In future, we plan to extend these performance-improving techniques
to other types of queries like nearest-neighbor and to other spatial indexes like
quadtrees. In addition, we would also like to investigate alternate mechanisms
for efficiently finding the interior of concave geometries.
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