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Abstract. Moving object databases are becoming more popular due to 
the increasing number of application domains that deal with moving 
entities and need to pose queries. So far implementations of such 
systems have been rather weak and certainly not at industrial strength 
level. In this paper we define a concise data model and a set of 
powerful query predicates for moving objects. Moreover, we propose 
an implementation design based on off-the-shelf industrial solutions 
enhancing thus the applicability and robustness of our approach.  
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1   Introduction 

There is a wide variety of applications that convey or manipulate objects that change 
their spatial features through time. Examples are: GIS applications involving time (i.e. 
evolution of regions over time, etc.), and real time applications for vehicle location 
sensing (cars, trains, aircraft or vessels monitoring etc). Another category of evolving 
such applications with intensive spatiotemporal content and dependencies are: inter-
active multimedia documents, virtual reality applications, 3D animations, etc. The 
aforementioned application domains currently lack database support. It is a challenge 
to design a model that integrates the representational primitives in these domains and 
covers the requirements of the traditional spatial applications (i.e. GIS, enriched with 
time aspects) as well as of the new kind of applications mentioned above.  

Such models will enable storage of application objects as structured entities and then 
enable queries based on their spatiotemporal structure. In this context we envisage objects 
that move/change through time. These objects have a spatial extent that may change over 
time. From the extent of the object we may derive its position and, if applicable, its orien-
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tation. Then we would be interested in relationships among such objects. The relationships 
have spatial and/or temporal aspects as well as causal ones (i.e. the causes of the relation-
ship, not only the resulting image i.e. of two overlapping objects).  

This illustrates the need for capturing these aspects of the objects in the database. A 
problem with the recently proposed approaches [5] is that their feasibility for imple-
mentation is low as they provide a very large set of data types and attached operations.  

As a concrete example, fleet management involves the storage and querying of 
spatiotemporal objects. Assume a taxi service that needs to know continuously the 
location of taxi cubs and optimize their service. Potential queries include the 
following:  

- Which is the closest taxi to a specific address? 
- Which taxis will be within 5 km from a clients’ address in the next 10 

minutes?  
- Have the trajectories of taxis A and B intersected in the previous 2 hours? 
- Assuming we know the anticipated trajectories, will taxis A and B be closer 

than 2 km to each other in the next 30 minutes? 
Such queries are quite cumbersome to express in current commercial database 

products that handle spatial/temporal data. Moreover the co-existence of spatial and 
temporal attributes in the system, as well as their interdependencies make the query 
processing issue a challenging problem.  

In this paper we restrict the discussion to moving point objects, i.e. objects with 
zero extent, that change their position continuously over a road network. Such objects 
are called moving objects for short, they are pervasive, but in contrast to the discretely 
changing objects, they are much more difficult to accommodate in a database. 
Supporting these kinds of moving objects by extending existing database technologies 
is exactly the challenge addressed by this paper.  

What is needed in current real-world spatiotemporal applications is a small and 
robust set of predicates with high expressive power, suitable for realistic 
implementation based on off the shelf DBMS technology. The implementation 
solution should cover query processing schemes for the predicates and the 
accompanying indexing schemes. In this paper we introduce a model for moving 
point objects based on the underlying road network, as given by GDT maps [6]. We 
define a small set of powerful predicates that can effectively be implemented in terms 
of existing spatial operators in a commercial database/GIS environment [9], and 
provide reasonable expressive power (see Appendix A).  

 

2     The Underlying Model 
 

Hereafter we introduce the model that serves as the basis for our spatiotemporal query 
system. The initial information is a map, represented as a relation. Each tuple in the 
relation represents a city block, i.e. the road section in between 2 intersections, with 
the following attributes: 
- Polyline: the block polyline given by a sequence of 2D x,y coordinates: 

(x1,y1),(x2,y2),...,(xn,yn). Usually the block is a straight line, i.e. given by two 
(x,y) coordinates.  

- Fid: The block id number 
The following attributes are used for geocoding, i.e. translating between an (x,y) 

coordinate and an address such as "1030 North State St.": 
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L_f_add: Left side from street number 
L_t_add: Left side to street number 
R_f_add: Right side from street number 
R_t_add: Right side to street number 
Name: street name 
Type: ST or AVE 
Zipl: Left side Zip code 
Zipr: Right side Zip code 
Speed: speed limit on this city block 
Oneway: a Boolean Oneway flag 

The following attributes are used for computing travel-time and travel-distance. 

Meters: length of the block in meters 
Drive Time: typical drive time from one end of the block to the other, in minutes  

This format corresponds to maps provided by the GDT Co.[6]. An intersection of 
two streets is the endpoint of the four block-polylines. Thus each map is an undirected 
graph, with the tuples representing edges of the graph. The map can be used as the 
underlying layer for locating moving objects (e.g. taxis). An important concept here is 
the trajectory of a moving object, which, intuitively, gives the route of the object 
along with the time at which the object will be at each point on the route. 

Moving Object. The route of a moving object O is specified by giving the starting 
address or (x,y) coordinate (start_point), the starting time and the ending address or 
(x,y) coordinate (end_point). An external routine available in most existing 
Geographic Information Systems, and which we assume is given a priori, computes 
the shortest cost (distance or travel-time) path in the map graph. This path denoted 
P(O) is given as a sequence of blocks (edges), i.e. tuples of the map. 

Trajectory/Route. Since P(O) is a path in the map graph, the endpoint of one block 
polyline is the beginning point of the next block polyline. Thus the whole route 
represented by P(O) is a polyline denoted L(O). For the purpose of processing 
spatiotemporal range queries in the language we define below, the only relevant 
attributes of the tuples in P(O) are Polyline and Drive-Time. 

 Given that the trip has a starting time, for each straight line segement on L(O) we 
compute the time at which the object O will arrive to the point at the beginning of the 
segment, and the distance of the point from the start of the route. 

The trajectory of an object O, denoted T(O), is a relation with attributes 
SEQUENCE#, x, y, t, b. A tuple [i, (x,y), ti, b] in this relation indicates that (x,y) is 
the i'th intermediate point on O's route L(O), and O will be there at time ti. The time ti 
is computed based on ti-1 and the drive-time parameter for the block. In other words, 
the map attributes Drive Time and Polyline define an average speed for each block, 
and we use the length of the line segment and this average speed in order to compute 
each ti. Furthermore, the time at which the object is at any intermediate point on the 
line segment is computed by linear interpolation. In other words, a trajectory is a 
piece-wise linear function in 3D.  
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Fig. 1. A moving point representation 

 
 
A trajectory may represent more than one trip of the same object. If so, the first 

tuple of the second trip indicates, using the Boolean attribute b, that the line segment 
between the endpoint of the first trip and the begin-point of the second trip is not part 
of any route of the object. Namely, if b is False in the i'th tuple of the trajectory, then 
the whereabouts of the object between ti-1 and ti are unknown. Otherwise, i.e. if b is 
True, then the object is "alive" between the two time points, and its location in the 
time interval is computed by interpolation. 

Next we define the type trajectory in terms of SQL DDL statements [11]: 
 
CREATE TYPE trajectory AS OBJECT  
(SEQUENCE# integer, x integer, y integer, t real, b boolean); 
 
The MOVING-OBJECTS relation has additional attributes such as COLOR, 

WEIGHT, DRIVER, etc. Then the moving objects (M_O) relation can be defined as:  
CREATE TYPE M_O AS OBJECT  
(OBJECT_id integer, T trajectory, color integer, weight integer, driver person_id); 
 
On the attribute T we use a 3D spatial index, i.e. a spatiotemporal index on 

2Dspace+time [16,18]. The query for selecting the trajectory of an object O is: 
 
Q1: SELECT M_O.T FROM M_O WHERE OBJECT_id = O; 
 
Sometimes, for brevity we will use the term id, instead of OBJECT_id. 
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We also need a function that returns the distance traveled along the route of an 
object between two points that belong to the route. Since the route of the object is 
defined as a polyline P, such a function is defined as: route-distance (Polyline P, 
2D_point p1, 2D_point p2). There is an ordering between p1 and p2, i.e. p1 is visited 
before p2 along the route. Similarly we define the function route-travel-time. Both 
functions will be registered as a User Defined Functions (UDFs) [9] attached to the 
M_O type.  

2.1    Definition of the Extended Functionality 

The problem we address in this paper is two fold: i. the definition of a concise set of 
data types for moving objects and ii. the design of a small but powerful set of query 
predicates. The data types have been defined in the previous section. Here we will 
define the query predicates in terms of SQL extensions. The definition of the query 
predicates embedded in an SQL statement follows:  

SELECT LOC(id, t) | WHEN_AT(id, location-L) |  
<other attributes of T or moving objects relation> 

FROM T  
WHERE id WITHIN (DISTANCE s | TRAVELTIME t) FROM R 
 [(ALONG EXISTING PATH) | (ALONG SHORTEST PATH) ] 
 [(ALWAYS BETWEEN) | (SOMETIMES BETWEEN) starttime AND  

   endtime] 
where:  

- LOC(id, t) is the location on the map of a moving object identified by id, at a 
specific time t. The predicate returns a 2D point corresponding to the location of 
the object.  

- WHEN_AT (id, location-L) returns the time at which the moving object 
identified by id was at the location location-L. A set of time values is returned. 
The cardinality of the result is 0 if the object never passed though location-L, 1 if 
it passed once, and more than one if it has passed there several times.  

- WITHIN (DISTANCE s | TRAVELTIME t) FROM R is a predicate that requires 
one of the two operands: DISTANCE s or TRAVELTIME t, where s and t are 
real numbers. R is a point (given by its coordinates) on one of the line segments 
of the map, and can be obtained, for example, by geocoding an address. The 
predicate returns True when either: i. the object needs to travel less than s 
distance units in order to arrive to R or ii. the object needs to travel less than t 
time units in order to arrive to R. This predicate is further refined by the 
following two groups of quantifiers: 

a. ALONG EXISTING PATH and ALONG SHORTEST PATH. They are 
optional mutually exclusive quantifiers. The former requires the WITHIN 
criterion to hold along the route of the object (which implies that R belongs to 
the route of the object). Intuitively, this means that the object can reach R 
within the cost metric while traveling along its existing path. The second 
quantifier requires that the WITHIN criterion holds when following the 
shortest path between the object's current location and R. If none of them is 
present in the query ALONG EXISTING PATH is used as the default value.  

b. ALWAYS BETWEEN and SOMETIMES BETWEEN starttime AND 
endtime. These optional quantifiers relate to the temporal duration of the 
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WITHIN criterion. The former requires that the WITHIN criterion is true for 
all times between the starttime and endtime values, while the latter requires 
that the WITHIN criterion is true for some times between starttime and 
endtime. If none of them is present in the query ALWAYS BETWEEN is used 
as the default value, and the starttime and endtime are assigned the starttime 
and endtime of the trip respectively.  

 
As is evident, the WHERE clause may have regular SQL atomic conditions on 

regular database attributes (i.e. other than trajectory). 
Hereafter we elaborate on the combined semantics of the WITHIN predicate 

depending on the values of the route related (1. ALONG EXISTING PATH or 2. 
ALONG SHORTEST PATH) and time related quantifiers (A. ALWAYS BETWEEN 
or B. SOMETIME BETWEEN). 

  
1A: the condition is satisfied for object if every point on o's route between starttime 

and endtime is within route-distance s or route-travel-time t from R (observe that 
using the GDT map format one can compute both travel time and distance as different 
cost measures). Remember, route distance (route travel time) between two points is 
the distance (travel time) along the current trajectory, in the forward (increasing time) 
direction. 

2A: the condition is satisfied for an object o if every point on o's route between 
starttime and endtime is within travel-time t or travel-distance s from R. Here distance 
means distance along the shortest path. 

1B: the condition is satisfied for o if some point on o's trajectory between starttime 
and endtime is within route-distance s or route-travel-time t from R 

2B: the condition is satisfied for o if some point on o's trajectory between starttime 
and endtime is within distance s or travel-time t from R. Here distance means distance 
along the shortest path. 

2.2    Spatiotemporal Index 

We adopt a 3D spatiotemporal indexing scheme similar to the ones proposed in 
[18][10][16]. The 2D space in which the object moves, and the time dimension form a 
3D space. We are interested in subsets of this domain depending on the quantifiers of 
the WITHIN predicate. We assume the existence of a 3D index in the database 
management system. 

Now we consider the insertion of a trajectory into the database index. To do so we 
enclose each 3D straight line segment into the minimum axes-parallel 3D rectangle 
that contains the segment. This is the Minimum Bounding Rectangle (MBR) of the 
trajectory segment. Observe that the trajectory segment is a diagonal of its MBR. 
Each line segment of a trajectory, its sequence number in the trajectory, its MBR, and 
the object id are inserted as a record in the 3D index. 

 In this paper we establish the mapping of the query to a 3D query window Q, such 
that we retrieve all the trajectories that intersect Q. This is the only retrieval from the 
hard disk assuming that the contents of Q are a small part of the database and can fit 
into main memory. Then further processing of the query is carried out in memory.  

Indeed, trajectories in real-life applications like the ones we consider here contain a 
small number of line segments. For instance if a typical trajectory is 10km long and 
each city block is about 0.5 km long, then the trajectory consists of  nodes.  



26         M. Vazirgiannis and O. Wolfson 
 

 

For Boolean combinations of spatial/temporal predicates (i.e., combination of 
WITHIN predicates) always the resulting set of trajectories will be the intersection (for 
conjunctive queries) or the union (for disjunctive ones) of the respective query spaces. 
Hence the spatiotemporal indexing scheme suffices for Boolean combination of queries.  

3   Implementation Design of the Predicates in a Spatial Database 
Environment 

Assuming that the data types needed are implemented in an OR-DBMSs [11, 9, 4] we 
need to implement functions/operators that represent the functionality of these data 
types. These functions are implemented as user defined functions (UDFs) [4], which 
implement operators, or methods, that can be applied to user defined data types. In the 
following we review how commercial DBMSs handle the issues of definition, 
implementation and retrieval of user defined functions. DB2 Spatial Extender in-
cludes pre-defined functions for operations such as spatial calculations (for example, 
the distance between two points), comparisons (the customers located within a five-
mile radius of a store), data exchange, and others. To achieve better performance, 
Spatial Extender functions run in an “unfenced” mode in the same address space as 
the database server itself. To support the Spatial Extender, IBM has also extended the 
notion of UDFs to allow them to be used as user-defined predicates. When a query 
includes, in a “where” clause, a UDF that is also defined as a predicate, the optimizer 
knows to look for an index on the column that would help in evaluating the predicate. 
User-defined predicates can be used, for example, to compare two spatial objects, 
such as two polygons or a point and a polygon, to see if they overlap or if one is 
contained within another. As predicates, UDFs trigger the use of indexes. In the case 
of Informix [9] user-defined routines can be written using Informix’s Stored Proce-
dure Language (SPL), or third-generation languages such as C, C++, or Java. SPL 
routines contain SQL statements that are parsed, optimized, and stored in the system 
catalog tables in executable format, making it ideal for SQL-intensive tasks. Routines 
written in third-generation languages are compiled and loaded into a shared object file 
or dynamic link library (DLL). The routine and name of the shared object are declared 
to the server and once invoked, the shared object is linked to the server. Since C, C++, 
and Java are powerful, full-function development languages, routines written in these 
languages can carry out much more complicated computations than SPL functions.  

Commercial DBMSs provide support for alternative indexing methods in order to 
speed up queries involving user defined operators. In the case of IBM DB2, the DB2 
index manager is open so that new index types—called index extensions—can be 
defined. This includes the type of index, which data types it works with, how index 
entries are generated from column values, and how the index can be exploited to 
evaluate queries efficiently. All of these index extensions are implemented through 
SQL extensions; this high-level API makes it relatively easy for the developer to 
integrate complex, user- defined index functionality. Especially for spatial data these 
extensions were used to implement support for spatial indexes, called grids, in the 
Spatial Extender. 

In the context of Informix, developers can index new data types using existing 
access methods, or add new access methods of their own. Two access methods are 
supported: B-tree index and R-tree index. A B-tree index organizes index information 
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and is arranged as a hierarchy of pages. The Universal Data Option introduces the R-
tree index, optimized for multidimensional data.  

In the following we propose an implementation design of the proposed query 
predicates in terms of functions and operators provided by commercial DBMSs.  

3.1   Query Processing Scheme for LOC and WHEN_AT Predicate 

LOC(id o, time t) 

This function gets as input an object identifier o and a time t and returns the object’s 
position at time t. The object o is retrieved using an index on the id attribute. 

If t is before the starttime (or after ending time) of the object trajectory, then the 
position returned is the start_point (or the end point) of the trajectory. 

Otherwise, we locate the two times ti, ti+1 in T(o) for which it is true that ti < t < ti+1. 
Then we can compute the exact position (x,y) of the object at time t by using linear 
interpolation:  

x = xi + ((xi+1- xi)/( ti+1- ti)) (ti+1-t)  
y = yi + ((yi+1- yi)/( ti+1- ti)) (ti+1-t)   

Then the 2Dpoint (x,y) is the location of the object at time t.  

When_at(id o, 2D_point p) 

The algorithm retrieves the object, and performs the following steps:  
a. Check if the point belongs to the route (the route of the object is obtained by 

disregarding the time of the Trajectory attribute) of the object. For this one can 
use the system provided function intersect(position, o.route). If it does not, then 
null is returned.  

b. If it belongs, then find the line segment(s) of the route to which point p belongs.  
c. For each one of them, compute by interpolation the time when the object was at p 

 
The object may pass more than once by the same point p so the result of the 

function can be a set of times.  

3.2   Query Processing Scheme for WITHIN Predicate 

In the sequel we elaborate on the query processing scheme for the predicate WITHIN.  
 

(1At): for option 1A (ALONG EXISTING PATH/ALWAYS BETWEEN) assuming that 
the cost, say 5, is given in terms of travel-time: 

Then the query is formulated as follows: 
 Q 2: 
SELECT id FROM M_O 
WHERE id WITHIN 5 minutes   FROM R  

         ALONG EXISTING PATH  
    ALWAYS BETWEEN starttime and  

        endtime 
/* semantics: retrieve each  object for which at 
every time point between starttime and endtime, 
the object will reach R within 5 minutes, while 
traveling on its trajectory. */ 
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We use a filter and refinement approach to process this query. The filter uses the 
spatiotemporal index, and it is as follows. The query window Q is a line segment in 
3D perpendicular to the plane t = starttime. It starts at the plane t = starttime and has 
length (endtime+5−starttime). Thus the line ends on the plane t = endtime+5. Using 
the spatiotemporal index we retrieve the set S of all the trajectories that intersect Q. 
These are the trajectories of objects o, that go through the point R sometime between 
starttime and endtime+5. 

The refinement step is as follows. For each trajectory T of S we consider the sub 
trajectory s between starttime and endtime. If the object is not "alive" on some 
segment of this sub-trajectory, then the trajectory is eliminated from S. 

Otherwise, let e1 be the time-point when T crosses R for the first time between 
starttime and endtime+5; let e2 be the time-point when T crosses R for the second 
time in the same interval; etc. 

Note that e1 ≥ starttime by definition. If e1 − starttime > 5, then clearly the location 
of the object at starttime is more than 5 minutes away from R along the trajectory, 
thus T is eliminated from S. Otherwise, i.e. if 5 ≥ e1 − starttime, then we consider 
endtime. If e1≥endtime, this means that at endtime the object has not reached the 
point R yet; but then clearly, from its location at endtime it will reach the point within 
5 minutes, since at starttime it is not more than 5 minutes away. We conclude that the 
trajectory satisfies the condition, and the algorithm continues to examine the next 
trajectory. Otherwise, i.e. if endtime > e1, we have to examine whether the subsection 
of the trajectory between e1 and endtime satisfies the condition with respect to e2, e3, 
e4, etc. In order to verify this we assign e1 to starttime and repeat the procedure 
recursively. Specifically, if e2 does not exist or if e2 − starttime > 5, then clearly the 
location of the object at starttime is more than 5 minutes away from R along the 
trajectory, thus T is eliminated from S. 

Otherwise, i.e. if 5 ≥ e2 - starttime, then we consider endtime. If e2 ≥endtime, this 
means that at endtime the object has not reached the point R (for the second time) yet; 
but then clearly it will reach R again within 5 minutes. Thus the trajectory satisfies the 
condition, and the algorithm continues to examine the next trajectory.  

Otherwise, i.e. if endtime > e2, we have to examine whether the subsection of the 
trajectory between e2 and endtime satisfies the condition with respect to e3, e4, etc. 

The trajectories that remain in S after the refinement step constitute the answer to 
the query. 
 
 (1Bt): for options 1B (ALONG EXISTING PATH / SOMETIME BETWEEN) 
assuming that the cost 5 is given in terms of travel-time: 

Then the query is formulated as follows. 
Q 3:  
SELECT id FROM M_O 
WHERE id WITHIN 5 mins                FROM R  ALONG EXISTING PATH 

    SOMETIME BETWEEN starttime and  
       endtime 

/* semantics: give me the objects that sometime 
between starttime and endtime are less than 5 
minutes from  R  when they travel along their 
designated trajectory */ 
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The trajectories that satisfy Q3 are the trajectories that intersect R sometime 

between starttime and endtime+5. This query is simpler than the 1At case. The filter 
step is the same, and the refinement is much simplified. Specifically, the query 
window Q is a line segment perpendicular to the plane t = starttime, and having length 
(endtime+5−starttime). Thus the line ends on the plane t = endtime+5. Using the 
spatiotemporal index we retrieve the set S of all the trajectories that intersect Q. These 
are the trajectories that cross R sometime between starttime and endtime+5. 

The refinement step is as follows. For each trajectory T of S we consider the 
trajectory segments that are "alive" between starttime and endtime. T is in the answer 
set if and only if at least one of them is within route-travel-time 5 minutes from R. 

 
 (1As): ALONG EXISTING PATH/ ALWAYS BETWEEN) assuming that the cost 5 is 
given in terms of distance: 

The query is formulated as follows: 
Q 4: 
SELECT id FROM M_O  
WHERE id WITHIN 5 km               FROM R  

     ALONG EXISTING PATH  
ALWAYS BETWEEN starttime AND endtime 

 
We again use a filter and refinement approach to process this query. The filter uses 

the spatiotemporal index, and it is as follows. The query window Q is a prism having 
a square G as its base on the plane t = starttime, and having height (endtime − 
starttime). 

G is a square with R at its center of gravity, and with a side of length 2*5km. Using 
the spatiotemporal index we retrieve the set S of all the trajectories that intersect Q. 

All the trajectories of objects o that go through the point R in their route segment 
between LOC(o, starttime) and [LOC(o, endtime) plus route-distance 5km] are in S. 

The refinement step is as follows. For each trajectory T of S we consider the sub 
trajectory s between starttime and endtime. If the object is not "alive" on some 
segment of this sub-trajectory, then the trajectory is eliminated from S. 

Otherwise, let e1 be the location when T crosses R for the first time in the route 
segment between LOC(o,starttime) and [LOC(o,endtime) plus route-distance 5km]; 
let e2 be the location when T crosses R for the second time in the same interval; etc. 

Note that the time at e1≥ starttime by definition. If the route-distance between 
LOC(o,starttime) and e1 is more than 5km, then clearly the location of the object at 
starttime is more than 5km away from R along the trajectory, thus T is eliminated 
from S. Otherwise, i.e. if the route-distance between LOC(o,starttime) and e1 is not 
more than 5km, then we consider WHEN_AT(o,e1). If WHEN_AT(o,e1)≥endtime, 
this means that at endtime the object has not reached the point R yet; but then clearly, 
from its location at endtime the distance to R is not more than 5km, since at starttime 
it is not more than 5km away. We conclude that the trajectory satisfies the condition 
of the query, and the algorithm continues to examine the next trajectory. 

Otherwise, i.e. if endtime > WHEN_AT(o,e1), we have to examine whether the 
sub- trajectory between e1 and LOC(o,endtime) satisfies the condition with respect to 
e2, e3, e4, etc. In order to verify this we assign e1 to starttime and repeat the proce-
dure recursively. Specifically, if e2 does not exist or if e2 is more than 5km away 
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from LOC(o,starttime), then clearly the location of the object at starttime is more than 
5km away from R along the trajectory, thus T is eliminated from S. Otherwise, i.e. if 
e2 is not more than 5km away from LOC(o,starttime), then we consider endtime. If 
endtime <= WHEN_AT(o,e2), this means that at endtime the object has not reached 
the point R (for the second time) yet; but then clearly it will reach R again within 
5km. Thus the trajectory satisfies the condition, and the algorithm continues to exa-
mine the next trajectory. Otherwise, i.e. if endtime > WHEN_AT(o,e2), we have to 
examine whether the sub-trajectory between e2 and endtime satisfies the condition 
with respect to e3, e4, etc. The trajectories that remain in S after the refinement step 
constitute the answer to the query.  

 
(1Bs): ALONG EXISTING PATH/ SOMETIME BETWEEN) assuming that the cost 5 
is given in terms of distance: 

The trajectories that satisfy this predicate are the trajectories for which R is within 
a route-distance of 5km from some point on the sub-trajectory between 
LOC(o,starttime) and [LOC(o,endtime) + route-distance 5]. 

The query window Q is a prism having a square G as its base on the plane t = 
starttime, and having height (endtime - starttime). G is a square with R at its center of 
gravity, and with a side of length 2*5km. Using the spatiotemporal index we retrieve 
the set S of all the trajectories that intersect Q. All the trajectories of objects o that go 
through the point R in their route segment between LOC(o,starttime) and 
[LOC(o,endtime) + route-distance 5] are in S. 

The refinement step is as follows. For each trajectory T of S we consider the 
trajectory segments that are "alive" between starttime and endtime. T is in the answer 
set if and only if at least one of them is within route-distance 5km from R. 
 
 (2As): ALONG SHORTEST PATH / ALWAYS BETWEEN, assuming that the cost 5 is 
given in terms of distance: 

Here we will use again the spatiotemporal index mentioned in previous sections. 
The query box Q must contain all the space that can be covered by an object starting 
from R moving along the shortest path in any direction between starttime and 
endtime. The query box Q will have the following dimensions:  
- 2D space: it will be a square centered at R having a side equal to 2*5km. (see Fig 

2).  
- time: endtime – starttime   

 
 

 
 
 
 
 
 
 
 

 
 

Fig 2. A projection of the query box Q to the x,y plane 
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It can be shown that the query box Q contains all the potential answers to the query 
2As. Let us call S the set of trajectories that intersect the query box Q . We obtain S 
after the filter step. Consider the refinement step. First we compute the set P of whole 
or partial route segments that are at distance at most 5km from R. The trajectories that 
satisfy the predicate 2As are the trajectories of S for which the following condition is 
satisfied: all the trajectory segments between starttime and endtime are "alive", and 
their projection on the (x,y) plane is contained in P.  

(2Bs): ALONG SHORTEST PATH / SOMETIMES BETWEEN, assuming that the cost 
5 is given in terms of distance: 

In this case it must be true that for at least one point in the route of the object 
between starttime and endtime, it is closer than 5km from R along the shortest path.  

Again we use the spatiotemporal index, and S as it results from the query 2As. The 
set P is also similarly defined. Finally, the trajectories that satisfy the predicate 2Bs 
are the trajectories of S for which the following condition is satisfied: some the 
trajectory segments between starttime and endtime are "alive", and their projection on 
the (x,y) plane is contained in P.  

(2At): ALONG SHORTEST PATH / ALWAYS BETWEEN, assuming that the cost 5 is 
given in terms of travel time: 

The filter step constructs the query Q as follows. First we compute the set M of 
route segments (consisting of the points) that are at travel-time at most 5 minutes 
from R. We do so by using the standard shortest path algorithm on the map graph. For 
each route segment r we construct a rectangle in 3D with base r on the plane t = 
starttime, and a height (endtime−starttime) perpendicular to that plane. The query Q 
consists of all these rectangles. Then we retrieve the set S of trajectories that intersect 
this set of rectangles. 

The refinement step is as follows. For each trajectory T in S we compute the set 
T.M of route segments that the object travels between starttime and endtime. If the 
object is not alive on all these route segments, then T is eliminated from S. The 
trajectories that satisfy the query are: the subset of S consisting of each trajectory T 
for which T.M is a subset of M. 
 
 (2Bt): ALONG SHORTEST PATH / SOMETIME BETWEEN, assuming that the cost 5 
is given in terms of travel time: 

The filter step is the same as in 2At. The refinement step is as follows. For each 
trajectory T in S we compute the set T.M of route segments that the object travels 
between starttime and endtime, and on which the object is "alive". The trajectories 
that satisfy the query are: the subset of S consisting of each trajectory T for which the 
intersection of T.M and M is nonempty. 

4   Related Work 

Temporal data models provide built-in support for capturing one or more temporal 
aspects of the database entities. It is conceptually straightforward to also associate the 
database entities with spatial values. Concrete proposals include a variant of Gadia's 
temporal model [14, Ch. 2], a derivative of this model [2], and STSQL [1]. 
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Essentially, these proposals introduce functions from the product of time and space to 
base domains, and they provide languages for querying the resulting databases. These 
proposals are orthogonal to the specifics of types and simply abstractly assume types 
of arbitrary subsets of space and time; no frameworks of spatiotemporal types are 
defined. The data model by Worboys [17] represents this approach. Here, spatial 
objects are associated with two temporal aspects, and a set of operators for querying is 
provided. However, this model does not provide an expressive type system, but 
basically proposes only a single type, termed ST-complex, with a limited set of 
operations. In addition, two papers exist that consider spatiotemporal data as a 
sequence of spatial snapshots and in this context address implementation issues 
related to the representation of discrete changes of spatial regions over time [12].  

Reference [13] presents a model for moving objects along with a query language. 
However, the new language constructs there are purely temporal and nonstandard, and 
the model does not capture full trajectories. In contrast, the constructs in this paper are 
refinements of standard spatiotemporal range queries.  

Work in constraint databases is applicable to spatiotemporal settings, as arbitrary 
shapes in multidimensional spaces can be described. Papers that explicitly address 
spatiotemporal examples and models include [7, 3]. However, this kind of work 
essentially assumes the single type "set of constraints," and is not concerned with 
types in the traditional sense. Operations for querying are basically those of relational 
algebra on infinite point sets. Recent work recognizes the need to include other 
operations, e.g., distance [7].  

The Informix Dynamic Server with Universal Data Option covers type 
extensibility [8]. So-called DataBlade modules may be used with the system, thus 
covering new types and associated functions that may be used in columns of database 
tables. Of relevance to this paper, the Informix Geodetic DataBlade Module [8] 
covers types for time instants and intervals as well as spatial types for points, line 
segments, strings, rings, polygons, boxes, circles, ellipses, and coordinate pairs. 
Informix does not cover any integrated spatiotemporal data types. Limited spatiotem-
poral data support may be obtained only by associating separate time and spatial 
values. The framework put forward in this paper provides a foundation allowing 
Informix or a third-party developer to develop a DataBlade that extends Informix with 
expressive and truly spatiotemporal data types.  

Since 1996, the Oracle DBMS has offered a so-called spatial data option, also termed 
a Spatial Cartridge, that allows the user to better manage spatial data [11]. Current sup- 
port encompasses geometric forms such as points and point clusters, lines and line 
strings, and polygons and complex polygons with holes. However, no spatiotemporal 
types are available in Oracle. The support offered by Oracle resembles the support 
offered by DB2's Spatial Extender [4], which offers spatial types such as point, line, and 
polygon, along with \multi-" versions of these, as well as associated functions, yielding 
several spatial ADT's. Like Oracle, spatiotemporal types are absent.  

A recent effort for a foundation of spatiotemporal data types and query language 
design appears in [5], where all the design is based on the moving point and moving 
region data types and the associated operations.  

One of the most recent efforts dealing with indexing of moving points is [10]. 
There the authors deal mainly with the problem of moving objects on a line and they 
propose a dual representation that is claimed to give logarithmic response time to 
range queries. That paper only covers indexing issues (not modeling or linguistic 
issues as we do here), and considers standard range queries.  
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In [18] the authors propose a comprehensive approach to embedding moving 
objects support in a commercial DBMS. Several issues are addressed such as: 
indexing moving objects, uncertainty regarding the position of an object, dynamic 
behavior evolving with time. However, the model and language constructs in this 
paper are new. 

5   Conclusions 

In this paper we introduced a model for moving objects on road networks. The road 
network is represented by an electronic map. The connection between the moving 
object trajectory model and the road network represents one of the innovative aspects 
of this work. We also defined a small set of expressive predicates that can effectively 
be implemented in terms of existing spatial operators within commercial 
database/GIS systems. The language we propose handles a large number of 
reasonable queries about moving objects.  

Although the model paradigm was build on GDT maps as a running example, the 
design of the predicates is applicable to other contexts in which objects move in a 
spatial grid. The design presented in the paper is directly applicable to such contexts, 
provided that the appropriate spatial grid model and associated support functions 
(such as the one for shortest path or distance computation) are provided.  

Another issue that arises is the representation of non polygonal trajectories. This 
case will be further investigated. As a first approach it can be treated in two ways:  
- either approximated by polygonal lines using interpolation and or extrapolation 

techniques 
- or represented by mathematical expressions – patterns- that represent trajectories 

in as a continuous function of time.  

Further work will be committed in the following directions:  
- Deal with uncertainty features. This work will be based on initial work on spatial 

relationships [15].  
- Consider the dual model as the database representations scheme.  
- Implementation of the predicates defined in the paper, and performance 

evaluation. We plan to have two parallel implementations based on different 
database products exploiting their respective type extension facilities. 
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Appendix A. Primitives Provided by Commercial Products 

 
In this section we refer to the spatial and other functions provided by commercial pro-
ducts and are exploited in our design. The primitives indicates by * are provided by 
both Informix Spatial Datablade and ArcView. The ones without * are provided only 
by ArcView. 

 
Function name Semantics 
*contains(shape1,shape2) returns TRUE if shape1 contains shape2  
*intersect(shape1,shape2) returns TRUE shape1 intersect shape2 
along(polyline,dist) 
 

returns a point on a polyline, the route distance of 
which is "dist" length units away.  

selectby(shape) selects the features that intersect “shape” 
traveltime(polyline p).  
 

returns the travel time along the polyline p in time 
units 
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Although Arcview/Informix do not use the notion of time, they use the notion of 
cost. So given GDT maps, cost can be interpreted as travel-time or distance. IBM 
Spatial Extender [4] provides the following functions for spatial data manipulation:  

Comparison functions: contains, cross, disjoint, equals, intersects, overlap, touch, 
within, envelopes intersect 

Relationship functions: common point, embedded point, line cross, area intersect, 
interior intersect, etc. 

Combination functions: difference, symmetric difference, intersection, overlay, 
union, etc. 

Calculation functions: area, boundary, centroid, distance, endpoint, length, 
minimum distance, etc. 

Data-exchange functions: astext (for Open GIS well-known text representation), 
asbinary (for Open GIS well-known binary representation), asbinaryshape (for ESRI 
shape representation), etc. 

Transformation functions: buffer, locatealong, locatebetween, convexhull, etc. 
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