
1

1C. Shahabi

CSCI585

Introduction to Temporal Database
Research

by Cyrus Shahabi

from

Christian S. Jensen’s

Chapter 1

2C. Shahabi

CSCI585

Outline

■ Introduction & definition

■ Modeling

■ Querying

■ Database design
◆ Logical design

◆ Conceptual design

■ DBMS implementation
◆ Query processing

◆ Implementation of algebraic operators

◆ Indexing structures

■ Summary

■ Open problems



2

3C. Shahabi

CSCI585 Introduction

■ Most applications of database technology
are temporal in nature:
◆ Financial apps.: portfolio management,

accounting & banking

◆ Record-keeping apps.: personnel, medical-
record and inventory management

◆ Scheduling apps.: airline, car, hotel
reservations and project management

◆ Scientific apps.: weather monitoring

4C. Shahabi

CSCI585
Definitions

■ Temporal DBMS manages time-referenced data,
hence, times are associated with database
entities

■ Two types of time: valid time and transaction
time

■ Valid time, vt, of a fact (any logical statement that
is either true or false) is the collected times
(possibly spanning the past, present & future)
when the fact is true

■ Although all facts have a valid time, the valid
time of a fact may not necessarily be recorded in
the database (unknown or irrelevant to the app.)

◆ If a database models different worlds, database facts
might have several valid times, one for each world



3

5C. Shahabi

CSCI585 Definitions …

■ Transaction time, tt: the time that a fact is current
in the database

■ Tt may be associated with any database entity,
not only with facts

■ Although all entities can be assigned a tt, the
database designer may decide to not capture this
aspect for some entities

■ Tt aspect of an entity has a duration: from
insertion to deletion, with multiple insertions and
deletions being possible for the same entity !!!!

■ Hence, deletion is pure logical (not physically
removed but ceased to be part of the database’s
current state

6C. Shahabi

CSCI585 Definitions …

■ Tt captures time varying states of the db & apps.
that demand accountability and tractability rely
on dbs that record Tt

■ Tt, unlike vt, is well-behaved and may be
supplied automatically by the DBMS

■ Both tt and vt values are drawn from a time
domain, which may or may not stretch infinitely
into the past and future

■ Time domain may be discrete or continuous

■ In databases, a finite and discrete time domain is
typically assumed



4

7C. Shahabi

CSCI585

Definitions …

■ Time is assumed to be totally ordered, but various
partial orders and cyclic time has also been
suggested

■ Uniqueness of “Now”:
◆ the current time is ever-increasing,

◆ all activity is trapped at the current time, and

◆ current time separates the past from the future

■ The spatial equivalent “here” doesn’t have the
above properties; the biggest difference between
time and space is that time cannot be reused!

■ The uniqueness of now is one of the reasons why
techniques from other research areas are not
readily (or not at all) applicable to temporal data

■ Now offers new data management challenges
particular to temporal databases

8C. Shahabi

CSCI585 Modeling

■ To extend a DBMS to become temporal,
mechanisms must be provided for capturing
valid and transaction times of the facts recorded
by relations (temporal relations)

■ More than 24 extended relational models
proposed to add time to relational model, most of
which supported only valid time

■ We consider three bitemporal ones for a video
rental applications: customers check out tapes
for certain durations of time and dates.



5

9C. Shahabi

CSCI585 Modeling …

■ Bitemporal Conceptual Data Model (BCDM):
timestamps tuples with sets of (tt, vt) values

■ C101 rents T1234 on
May 2nd for 3 days, &
returns it on 5th

■ C102 rents T1245 on
5th open-ended, &
returns it on 8th

■ C102 rents T1234 on
9th to be returned on
12th. On 10th the rent
is extended to include
13th but tape is not
returned until 16th.

cID TapeNum

C101

C102

C102

T1234

T1245

T1234

{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4),
…, (UC,2), (UC,3), (UC,4)}

{(5,5), (6,5), (6,6), (7,5), (7,6), (7,7),
(8,5), (8,6), (8,7),…, (UC,5), (UC,6),
(UC,7)}

{(9,9), (9,10), (9,11), (10,9), (10,10),
(10,11), (10,12), (10,13),…, (13,9),
(13,10), (13,11), (13,12), (13,13), (14,9),
…, (14,14), (15,9), …, (15,15), (16,9),
…, (16,15), …, (UC,9), …, (UC,15)}

10C. Shahabi

CSCI585 Modeling …

■ Bitemporal Conceptual Data Model (BCDM):
timestamps tuples with sets of (tt, vt) values

■ C101 rents T1234 on
May 2nd for 3 days, &
returns it on 5th

■ C102 rents T1245 on
5th open-ended, &
returns it on 8th

■ C102 rents T1234 on
9th to be returned on
12th. On 10th the rent
is extended to include
13th but tape is not
returned until 16th.

1 175
1

5

9

9



6

11C. Shahabi

CSCI585 Modeling …

■ BCDM pros:
◆ Since no two tuples with mutually identical explicit

values are allowed in BCDM relation instance, the full
history of a fact is contained in exactly one tuple

◆ Relation instances that are syntactically different have
different information content and vice versa

■ BCDM cons:
◆ Bad internal representation and display to users of

temporal info

◆ Varying length and voluminous timestamps of tuples
are impractical to manage directly

◆ Timestamp values are hard to comprehend in BCDM
format

12C. Shahabi

CSCI585 Modeling …
■ Fixed-length format for tuples, where each

tuple’s timestamp encodes a rectangular or stair-
based bitemporal region

■ Several tuples may be needed to represent a
single fact

cID TapeNum

C101

C102

C102

T1234

T1245

T1234

C102 T1245

C102 T1234

C102 T1234

C102 T1234

Ts Te Vs Ve
2 UC

5 7

8 UC

9 9

10 13

14 15

16 UC

2 4

5 now

5 7

9 11

9 13

9 now

9 15

■ C101 rents T1234 on
May 2nd for 3 days, &
returns it on 5th

■ C102 rents T1245 on 5th

open-ended, & returns it
on 8th

■ C102 rents T1234 on 9th

to be returned on 12th.
On 10th the rent is
extended to include 13th

but tape is not returned
until 16th.



7

13C. Shahabi

CSCI585 Modeling …
■ Non-first-normal-form representation

■ Relation is thought of as recording
information about some types of objects
(e.g., information about customers)

CustomerID TapeNum
■ C101 rents T1234 on

May 2nd for 3 days, &
returns it on 5th

■ C102 rents T1245 on 5th

open-ended, & returns it
on 8th

■ C102 rents T1234 on 9th

to be returned on 12th.
On 10th the rent is
extended to include 13th

but tape is not returned
until 16th.

[2, Now] x [2,4] C101 [2, Now] x [2,4] T1234

[5, 7] x [5, inf] C102 [5, 7] x [5, inf] T1245
[8, Now] x [5, 7]

[9,9] x [9, 11]

[10,13] x [9, 13]

[14,15] x [9, inf]

[16, Now] x [9, 15]

[8, Now] x [5, 7]

[9,9] x [9, 11] T1234

[10,13] x [9, 13]

[14,15] x [9, inf]

[16, Now] x [9, 15]

14C. Shahabi

CSCI585 Modeling …

■ Note that 2nd tuple records two facts: rental
information for customer C102 for the two tapes

■ Pros of the two latter models:
◆ No need to update the relation at every tick, it is

achieved by introducing “now” variable that assume
the current value

■ Two choices to enter time values into relations
1. At the level of tuples (tuple timestamping)

2. At the level of attribute values (attribute timestamping)



8

15C. Shahabi

CSCI585 Modeling …

■ Relation instances that all three models may
record are snapshot equivalent (corresponding
to a point-based view of data), e.g.,

A Vs Ve
a
b

2
2

8
8

A Vs Ve
a
a

2
5

4
8

b 2 8

A Vs Ve
a
b

2
2

8
4

b 5 8

■ The first relation is coalesced version of the
other two, but they are snapshot equiv.

■ Coalescing operation merges value equivalent
tuples with same non-timestamp attributes and
adjacent or overlapping time intervals

16C. Shahabi

CSCI585 Modeling …

■ BCDM only allows coalesced relation
instances, i.e., relations are only different
if they are not snapshot equivalent
◆ The last two relations are not legal in BCDM

■ However, the three relations are not
equivalent from an interval-based view:
◆ First relation: a tape was checked out for 7

days

◆ Second relation: the tape was checked out for
3 days initially and then for 4 more days



9

17C. Shahabi

CSCI585 Querying

■ Temporal queries “can” be expressed via
conventional query languages such as SQL (e.g.,
current temporal applications); however, with
great difficulty

cID TapeNum
C101
C102
C102
C103

T1234

T1425
T1324
T1243

cID TapeNum
C101

C102

C102

C103

T1234

T1245

T1324

T1243

C101 T1245

C102 T1425
C102 T1434

Vs Ve
2

5
22
9

4

9

7 21

now

14

19
25
10

now

■ At time 17, the first relation is a snapshot of the
second

S-CheckedOut

V-CheckedOut

18C. Shahabi

CSCI585 Querying …

■ Number of current checkouts:
◆ SELECT COUNT (TapeNum) FROM S-CHeckedOut

■ Temporal generalization of the above query: time-
varying count of tapes checked out

◆ If now is replaced with a fixed time value, this can be done
in SQL in 6 steps and 35 lines!

■ Specifying a key constraint:
◆ ALTER TABLE S-CheckedOut ADD PRIMARY KEY

(TapeNum)

■ TapeNum is also a key for V-CheckedOut at each
point in time

◆ It takes 12 lines and a complex SQL statement to express
this constraint



10

19C. Shahabi

CSCI585 Querying …

■ Hence, some 40 temporal query languages have
been proposed (most with their own data model),
e.g., TSQL2

■ Simple queries should remain simple:
◆ VALIDTIME

SELECT COUNT (TapeNum) FROM V-CheckedOut

◆ CONSTRAINT temporalkey VALIDTIME UNIQUE TapeNum

■ Early languages based on: relational algebra

■ Later: calculus-based, Datalog-based and OO

■ Recent: extensions to SQL

20C. Shahabi

CSCI585 Querying …

■ Many modeling issues impact the language
design, e.g., time stamping tuples or attributes

■ Language design must consider:
◆ time-varying nature of data,

◆ predicated on temporal values,

◆ temporal constructs,

◆ supporting states and/or events,

◆ supporting multiple calendars,

◆ modification of temporal relations,

◆ cursors, views, integrity constraints, handling now,
aggregates, schema versioning, periodic data



11

21C. Shahabi

CSCI585 Querying …

■ Desired properties of temporal query
languages:

1. Temporal upward compatibility: conventional
queries and modifications of temporal
relations should act on the current state

2. Pervasive support for sequence queries: that
request the history of something, e.g.,
temporal aggregation above

3. Support for point-based and interval-based
view of data

4. Adequate expressive power

5. Ability to be efficiently implemented

22C. Shahabi

CSCI585 DBMS Design

■ Database schemas capturing time-referenced
data are complex

■ Two traditional contexts of database design:
◆ Data model of DBMS at 3 levels: view, logical, physical

(e.g., relational model for the first two)

◆ A high-level conceptual design model: ER model

■ Then, mappings bring a conceptual design into a
schema that conforms to the specific
implementation data model (e.g., ER to relational
mapping)

■ Here: we consider temporal database “logical”
and “conceptual” design



12

23C. Shahabi

CSCI585 Logical Design

■ Need for guidelines such as formalization
guidelines, but conventional normalization
concepts are not applicable to temporal
relational data models

■ A range of temporal normalization concepts have
been proposed: temporal dependencies, keys
and normal forms

■ Conventional dependencies do not apply:
TapeNum does not determine cID, (go through 3
examples, but it should!)

■ But it should: at any point in time, a tape can
only be checked out by a single customer

◆ !!!! TapeNum temporally determines cID, but the reverse
does not hold

24C. Shahabi

CSCI585 Logical Design …

1. A temporal relation satisfies a temporal
dependency if all its snapshots satisfy the
corresponding conventional dependency

■ How to determine snapshots? Timeslice
operators:
◆ Temporal predicate as argument: e.g., contain

◆ A time point as parameter: e.g., (tt, vt)

◆ Returns snapshot of the relation corresponding to the
specified time point, omitting the timestamp attribute

■ Problem: an atemporal approach! which applies
to each snapshot of a temporal relation in
isolation and hence fails to account for
“temporal” aspects of data



13

25C. Shahabi

CSCI585 Logical Design …

2. Consider dependencies and associated
normal forms that hold between time
points

■ Build in the notion of time granularity
into the normalization concepts

■ Not only consider snapshots computed
at non-decomposable time points, but
also at coarser granularities:

◆ Video rental examples: day as finest
granularity, weeks and months may also be
considered

26C. Shahabi

CSCI585 Logical Design …

3. Introducing new concepts that capture the
temporal aspects of data and may form the
basis for new database design guidelines

■ Most prominent candidate: time patterns
◆ Video rental example: since the set of tapes checked

out by a customer changes more frequently than the
customer’s address, they should be stored in separate
relations

■ Another candidate: lifespan

■ Attributes with different lifespan (to avoid null
values) or with different precision (hour vs. day)
should be stored separately



14

27C. Shahabi

CSCI585 Conceptual Design

■ ER diagrams become obscure and cluttered
when an attempt is made to capture temporal
aspects (see example)

■ CheckedOut relationship should become ternary
by introducing an artificial entity set to capture
time of rental

■ However, still issues remain: varying rental price
over time, transaction time inclusion, …

■ Some industrial solution: ignore temporal
aspects in the ER diagram and supplement it
with textual phrases, e.g., “full temporal support”

◆ !!!! no automatic mapping from ER to model

■ Dozens of temporally enhanced ER models
proposed

28C. Shahabi

CSCI585 Conceptual Design …

1. Give all existing ER constructs temporal
semantics, similar to “applies to all snapshots”
for normalization
➩ Does not result in any new syntactical constructs

➪ Rules out databases with non-temporal parts: while
the syntax of legacy diagrams remain valid their
semantics have changed!

2. Devise new notational shorthand for frequent
temporal aspects in ER diagram (e.g., time
varying attributes)
➩ Both non-temporal and mixed databases can be

modeled

➪ More difficult to understand



15

29C. Shahabi

CSCI585 Conceptual Design …

■ All existing models assume mapping to
relational model

■ None tries to map to one of the several
time-extended relational models

■ Also mapping to emerging models (e.g.,
SQL3/ORDBMS) are missing.

30C. Shahabi

CSCI585 DBMS Implementation

■ Integrated approach: internal modules of a DBMS
are modified or extended to support time-varying
data

◆ Efficiency

■ Layered approach: a software layer interposed
between the user applications and DBMS that
converts temporal query language statements to
conventional statements

◆ Realistic for short and medium term

■ Popular approach: integrated, utilizing
timestamping tuples with time intervals



16

31C. Shahabi

CSCI585 Query Processing

■ Temporal queries are large and complex

■ Also, the predicates might be temporal, e.g.,
overlap among two time intervals

■ Unlike equality predicate in conventional joins,
temporal joins require multiple inequality
predicates to be examined: two intervals I and j
overlap iff st(i) <= end(j) and st(j) <= end(i)

■ Coalescing of data should be implemented
efficiently: interactions among coalescing,
duplicate removal and ordering

32C. Shahabi

CSCI585 Query Processing …

■ Opportunities for temporal query optimization:
◆ Time advances continuously, hence for transaction

time, time value used most recently in updates is the
largest value used so far

!!!! natural sorting and clustering: if current and
logically deleted tuples are stored separately, then

• Current clustered on st(tt)
• Deleted clustered on end(tt)

◆ Integrity constraint st(j)<end(j)

◆ Intervals associated with a key value are contiguous in
time (end of one interval is the beginning of the other)



17

33C. Shahabi

CSCI585 Implementation of Algebraic Operators

■ Efficient implementation of temporal selection,
joins, aggregates, and duplicate elimination !!!!
temporal index structures

■ Variety of binary temporal joins have been
proposed: time-join, time-equijoin, … as
extensions of nested loop or merge join that
exploits orders or local workspace as well as
partitioning based joins

■ Also, incremental techniques for implementing
operators on relations capturing transaction time
have been discussed

◆ Caching the results of previous computations to be
reused later (easy to do since the records of updates,
I.e., changes to previously cached results, are already
contained in a temporal DBMS)

34C. Shahabi

CSCI585 Imp. Of Algebraic Ops…

■ Efficient implementation of time-varying
aggregates

■ Efficient implementation of coalescing:
1. Sorting the argument relation on the explicit

attribute values as well as the valid time

2. Perform the merging in the subsequent scan



18

35C. Shahabi

CSCI585 Indexing Structures

■ Similar to spatial index structures can be
based on traditional indexes such as B+-
tree or multidimensional ones such as R-
tree

■ Index structures usually used for
selection operators

■ Active research investigation: use index
structures for temporal joins, coalescing
and aggregates

36C. Shahabi

CSCI585 Summary

■ Popular approaches:
◆ Snapshot-based semantics for database design

◆ BCDM for modeling

◆ TSQL2 as a query language

■ Well understood issues (some with efficient
implementation):

◆ Semantics of the time domain: its structure,
dimensionality, and indeterminacy

◆ Representational issues and operations on timestamps

◆ Temporal joins, aggregates and coalescing

◆ Temporal index structures supporting vt, tt, or both

◆ Prototype implementations of temporal DBMS



19

37C. Shahabi

CSCI585 Open Problems

■ Legacy awareness

■ Architecture awareness

■ Visualization of temporal data

■ Conceptual design

■ Performance (cost models for temporal
operators and maintaining statistics for
query optimizer)

38C. Shahabi

CSCI585 Open Problems …

■ Related research that can benefit from
and/or challenge temporal DBMS
research:
◆ Active databases

◆ Spatiotemporal databeses

◆ Moving objects

◆ Multimedia, virtual reality, immersive apps.

◆ Temporal data mining

◆ Warehousing


