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Abstract

A data cube is a popular organization for summary data. A cube is simply a multidimensional structure
that contains at each point an aggregate value, i.e., the result of applying an aggregate function to an
underlying relation. In practical situations, cubes can require a large amount of storage. The typical
approach to reducing storage cost is to materialize parts of the cube on demand. Unfortunately, this lazy
evaluation can be a time-consuming operation.

In this paper, we propose an approximation technique that reduces the storage cost of the cube without
incurring the run time cost of lazy evaluation. The idea is to characterize regions of the cube by using
statistical models whose description take less space than the data itself. Then, the model parameters can
be used to estimate the cube cells with a certain level of accuracy. To increase the accuracy, some of the
“outliers,” i.e., cells that incur in the largest errors when estimated can be retained. The storage taken by
the model parameters and the retained cells, of course, should take a fraction of the space of the full cube
and the estimation procedure should be faster than computing the data from the underlying relations. We
study three methods for modeling cube regions: linear regression, singular value decomposition and the
independence approach. We study the tradeoff between the amount of storage used for the description and
the accuracy of the estimation. Experiments show that the errors introduced by the estimation are small
even when the description is substantially smaller than the full cube. Since cubes are used to support data
analysis and analysts are rarely interested in the precise values of the aggregates (but rather in trends),
providing approximate answers is, in most cases, a satisfactory compromise. Our technique allows systems
to handle very large cubes that cannot either be fully stored or efficiently materialized on demand. Even
for applications that can only accept tiny error in the cube data, our techniques can be used to present
successive on-line refinements of the answer to a query so that a coarse picture of the answer can be
presented while the remainder of the answer is fetched from disk (i.e., to support on-line aggregation).

1 Introduction

A data cube is a popular organization for summary data [11]. A cube is simply a multidimen-
sional structure that contains at each point an aggregate value, i.e., the result of applying an
aggregate function to an underlying relation. For instance, a cube can summarize sales data
for a corporation, with dimensions “time of sale,” “location of sale” and “product type”.
Cubes are organized in a hierarchical fashion. At the base of the hierarchy are the aggre-
gates computed from the underlying relation(s) (we call these base data, following the notation
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of [9]). The aggregates in the lower levels of the hierarchy are used to construct the coarser-
grain aggregates of the higher levels. At any level in the hierarchy, data can be thought as
comprising a multidimensional matrix.

In our corporate sales example, the base data is the total retail sales by days, stores and
product, where product is a list of products sold by the corporation. Higher levels of the
hierarchy can be specified in terms of weeks, cities and product type (where product type
can be higher classification of products such as “dolls”, “VCRs,” etc.), or months, countries,
product dept. The base data (or any other level of the hierarchy in this cube) corresponds to
a three-dimensional matrix.

The underlying relation is commonly referred to as fact table in the star schema [16].
The fact table contains all the attributes that determine the dimension of the cube, plus an
attribute on which the aggregations are to be performed. Along with this table, there are
dimension tables whose keys are foreign keys of the fact table and which describe each one of
the dimension attributes.

A data cube can be implemented using an eager or a lazy materialization strategy (Widom
uses these terms to refer to warehouse materialization, although her definition of lazy is slightly
different from ours [26].). In an eager strategy, the entire cube is materialized at initialization
time. The advantage of this strategy is that the materialized cube can be queried quickly.
The primary disadvantage is that the cost of storing the materialized cube can be large. For
instance, in our previous example, if we assume 10,000 stores, 365 days and 1,000 products,
materializing just the base data requires storage for 3.65 billion aggregate values. The lazy
strategy defers computation of the cube entries until users examine them. When the entries
are needed, the system queries the underlying database to compute them. Sometimes, a
hybrid strategy is used in which part of the cube is materialized (e.g., the base data) and the
rest is computed on demand.

In this paper, we propose an approximation technique that reduces the storage cost of
the cube without incurring the run time cost of lazy evaluation. The idea is to provide an
incomplete description of the cube and a method of estimating the missing entries with a
certain level of accuracy. The description, of course, should take a fraction of the space of
the full cube and the estimation procedure should be faster than computing the data from
the underlying relations. We study the tradeoff between the amount of storage used for the
description and the accuracy of the estimation. We call these approximated cubes Quasi-
Cubes.

The Quasi-Cube data structure has two components: model parameters and retained
points. We use a model, such as linear regression, to describe parts of the data cube (e.g.,
columns, planes). The model allows us to generate an entire cube from a small set of parameter
values. However, the real cube entries will not fit the values predicted by the model exactly,
so additional storage is used to improve accuracy. During cube construction, we calculate, for
each point in the cube, the difference between the value predicted by the model and the cell’s
true value. Then, we rank the cube points by this estimation error and select the highest
ranking entries as “retained points” that will be stored rather than computed. Specifying the
most poorly predicted points improves the model’s accuracy. The more points one is willing
to retain, the lower the estimation errors will get.

Since cubes are used to support data analysis and analysts are rarely interested in the
precise values of the aggregates (but rather in trends), providing approximate answers is, in
most cases, a satisfactory compromise. Our technique can allow systems to handle very large



cubes that cannot either be fully stored or efficiently materialized on demand.

We conducted a set of experiments to evaluate Quasi-Cubes. The experiments were con-
ducted over synthetically generated data and real data sets. Several metrics were used to
evaluate the techniques: errors incurred in the estimation, space savings achieved by Quasi-
Cubes, time to build a Quasi-Cube compared to the time required to build a conventional
cube, and performance of queries over a Quasi-Cube. Our results show that for a small fraction
of retained points (10 %) the maximum estimation errors range from 1 to 20 % depending
of the distribution of the data in the set. (For the real dataset, the results were specially
encouraging.) For some datasets (including the real dataset), one can achieve savings of 80
% or more of the original space needed for a conventional cube. For some queries, drastic
reductions of 50 % or more of the running time can be achieved by tolerating maximum errors
of 10 %. While building models for the data imposes overhead over building conventional
cubes, the overhead is tolerable and moreover, it only impacts the CPU time.

For several reasons, Quasi-Cubes can be especially useful in data warehouses:

e Data warehouses can be very large. The underlying relation(s) might be archived in
tertiary storage after summarizing the data. That makes them, for all practical purposes,
not available on-line, forcing the eager strategy for supporting cubes. The eager cube for
such a large warehouse will either have very coarse-grained aggregates or be very large
itself.

e The process of generating entries in the cube may be complex. For instance, when the
data comes from a variety of sources and combining it requires some data manipulation.
(Some stores keep track of sales by the hour and another by days). The process of combi-
nation is called “data scrubbing” [26] and can be a costly operation. Lazy evaluation can
be prohibitively expensive in these environments, but Quasi-Cubes remain a reasonable
low-storage-cost alternative to eager cubes.

e The data warehouse is usually dynamic. The underlying relation(s) are extended as data
is added to the warehouse, so the cube must be either recalculated (at coarser granularity)
or storage must be added for the expanding cube. Query evaluation strategies must be
incremental or the cube generation (lazy or eager) becomes more and more expensive
over time. On the other hand, Quasi-Cubes expand incrementally fairly easily by making
incremental changes to the model parameters and replacing the model’s “retained points”
as higher-ranked ones arrive. Of course, representing more data over time with the same
amount of storage lessens the accuracy of the results.

The paper is organized as follows. In Section 2 we describe the basics of Quasi-Cubes. In
Section 3, we present some experimental results that demonstrate that the method is practical.
Section 4 discusses some additional benefits that come from modeling data regions. Section 5
summarizes the related work and finally Section 6 offers some conclusions and future avenues
of research in the area.

2 Quasi-Cubes

In this section, we explain the basics of constructing and querying Quasi-Cubes. The idea
behind our method is to divide the cube in regions and use a model to describe each region.
The model provides a more concise description of the region, occupying less space than the
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Figure 2: The estimated cube, using the
Figure 1: Sample Aggregates Matrix models of Equation 1

group of cells being modeled. The model can be used to estimate cells in the region. Doing
so, one introduces errors in the estimation (with regards to the original values). To keep
the errors low, the cell values with the highest errors are stored rather than modeled. The
accuracy of the method improves as more cells are retained, establishing a tradeoff between
the space devoted to the specification of the Quasi-Cube and the errors obtained.

To illustrate the point, consider the simple two-dimensional cube of aggregates shown in
Figure 1. (Throughout the section, we will use the matrix of Figure 1 as a running example.)
In general, we call an original base data cube, like that one, the aggregates cube. The entries in
the example matrix are aggregates of retail sales computed from an underlying relation. The
horizontal dimension is retail stores and the vertical dimension quarters of the year. (We keep
this cube small for illustration purposes.) The sum of the entries for this cube is 1,000.Figure 1
also has one more column at the right and one more row at the bottom than Figure 1. Each
entry in the extra column contains the sum of the other matrix entries in its row. The entries
in the last row contain the sums of the values in their respective columns.

To illustrate the notion of modeling, let us partition the cube in 1 into three regions, each
corresponding to a column. Now we can describe each one of these regions with a model that
approximates the original values. For instance, the columns in this example can be described
by the three models shown in Equation 1. (These models are not very realistic, they are just
shown for illustrating purposes.)

Ci1 — 100
co = 10X (5 + 22)
¢z = 10x 2 (1)

In each of these models, ¢;; is the estimated value of the cell with coordinates ¢, j. Notice
that the space needed to describe the models is significantly less than that needed to store
the entire cube. (In practice, however, we would like to describe all the regions of the cube
with the same type of model, to avoid having to store a description of which model is used
in each case.) Figure 2 shows the values obtained when using the models to reconstruct the
cube. For the models chosen, both the first and second columns can be rebuilt without errors
(the models fit the data perfectly). For the third column, however, one incurs in errors when
estimating cy3. The estimated value is 160, while the real value of the cell is 60, for an absolute
error of 100. The tradeoff that we face here is the following: if we are willing to store the real
value of ¢43, plus the description of the models, we can lower the error to 0. If, on the other
hand, only the model descriptions are stored, the error is 100.

Sometimes it is useful to convert the cells in the cube into probability entries by dividing
the cell values by total sum of the entries. The matrix of Figure 3 is the probability matrix
corresponding to Figure 1. Of course, for the probability matrix in Figure 3, the sum of
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Figure 3: The probability matrix, derived Figure 4: Completing the matrix from the
from the matrix of Figure 1 marginal distributions

entries is one. The row and column sums are shown in the extra column and row, respectively.
(These values are commonly known as marginal distributions [27].) We shall see shortly how
the marginal distributions are used in our method.

The first decision to be made is that of which model to use and how to divide the cube in
regions. In the next two subsections, we show two different models that we have experimented
with: the independence model and linear regression. We have to point out that in practice
the independence model performs very poorly and is kept here just for illustration purposes.
The linear regression approach, however, has given us very promising results, as we shall see
later.

2.1 Independence Assumption

The idea behind this method is to divide the cube in two-dimensional planes and follow the
simple mutual independence approach [22] which assumes total independence between the two
dimensions. (The cube can be divided in other higher-dimensional cubettes and the indepen-
dence approach can be straightforwardly applied to them.) In this technique, we estimate each
cube entry using the product of its corresponding row and column marginal distributions. The
matrix in Figure 4 is constructed in this way from the marginal distributions of the matrix
in Figure 3. As we can see, some of the entries are estimated correctly (particularly the last
row of the matrix), but most are not. The average error for this estimation is 0.0123.

We can achieve better results by storing more information. For instance, in addition to
the marginal distributions, we could retain one cell from the original matrix (see Figure 5).
(We choose, of course, the cell for which the largest estimation error is incurred.) Because
the cell is specified instead of calculated, it does not contribute to matrix error. Applying the
mutual independence approach to the new matrix yields the results shown in Figure 6. (The
exact procedure will be made clear shortly.) This new estimated matrix has an average error
of 0.0094.

Thus, by retaining the “outliers” that are farthest from fitting the independence assump-
tion, we reduce the error. Specifying more data points makes the estimation process more

0.1 7 ? 10.19
? 7 10.23 0.1 0.076  0.038
? 7 10.29 0.0851 0.092 0.046
? ? 7 10.29 0.1074 0.116 0.058
04 04 0.2 0.1074 0.116 0.05
Figure 5: Marginal distributions and one specified Figure 6: Completing the unspecified entries
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totalrow = 0.0
totalcol = c;j
fori=1,....,m
If 4,7 is not in the list of specified entries
totalrow+ = r;
else
totalcol— = P;
fori=1,....m
If 7,7 is not in the list of x,y

L _ Ty
p;j = totalcol * Totalrow

Figure 7: Algorithm IND to estimate unspecified entries in column j

accurate (although, in this example, there is no sense in retaining more than eleven values -
seven for the marginal distribution, four matrix entries - since the matrix itself has only twelve
entries). This is the essence of our method: trade the number of specified matrix entries for
accuracy. The hope is to find a point at which substantial portions of the matrix can be left
unspecified while maintaining acceptable levels of accuracy.

We now present the algorithm used to estimate entries using the mutual independence ap-
proach. Algorithm I'ND in Figure 7 shows the pseudo-code for this algorithm. The algorithm
solves a column j of the matrix. The notation p;; refers to the data point calculated for row
i, column j. The notation r; refers to the marginal distribution of row i. The notation c;
refers to the marginal distribution of column j. Specified entries are denoted by F;;. The
dimensions of the matrix are m (rows) and n (columns). The symbols r; and ¢; denote row
and column marginals respectively.

Several facts about IND are worth noticing. First, the algorithm acts by computing a
column at a time. In the case in which no entries in the column have been specified, the
algorithm simply converges to the multiplication of marginal distributions. For the general
case, the variable totalcol is computed as sum the products of the marginal distributions for
the unspecified entries in the column. Then, the estimated values are computed by distributing
the remainder of the column sum (what is left after taking the specified values out) according
to this products. Notice that, in order to compute any particular entry it necessary to compute
its column.

Algorithm I ND uses the simplest model to calculate missing entries: the assumption of
independence between the column and row variables. In that sense, it is very economical,
since it does not require the specification of any parameters (other than the row and column
marginals). In practice, however, using Algorithm I N D leads to large errors: the variables are
not necessarily independent and the estimates may differ considerably from the real values.
Consider the example of Figure 8 (we use only one column to illustrate the point, the last
column displays the row marginals). If we were to use Algorithm IND to estimate the two
entries in the given column of matrix 8, assuming that no entries are specified, the results
would be as shown in Figure 9. We can see that the errors incurred in this case are large.

Additionally, when we use the independence approach, selecting the points to retain can
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Figure 8: Example of a column that illus- Figure 9: Guessing using the indepen-
trates non-independence dence assumption

be a difficult task. The problem is that each time an entry is specified, the row and column
marginals change. This changes the estimation errors in the rest of the entries. Selecting the
k points that minimize the errors in the estimation algorithm IND implies checking every
subset of size £ in the matrix. Since this is impractical for moderate to large matrices, one
has to resort to heuristics. The best heuristic we found was to select in every column those
points that, when selected alone, make the errors incurred by IND decrease the most. We
show in the experiments section a set of graphs based on this heuristic.

Finally, an additional drawback of the independence approach is that in order to esti-
mate any entry in the matrix, if the entry is not among those specified by the Quasi-Cube
description, the entire column needs to be estimated.

2.2 Using Regression

Using independence gives a simple, concise way of estimating entries, but can lead to intoler-
able errors. To solve this, we introduce the use of linear regression as a model to describe the
entries for a particular column. In other words, (for a two-dimensional plane) we will use a
equation of the form:

pij = bOTi + b1 (2)

to model column j of the matrix. In this case, r; is the marginal distribution for column i.
The known values of p;; and r; are used to produce the best estimate of by and b; by linear
regression techniques [27]. Notice that it is really not necessary to use probabilities in the
case of regression: we can also use the cell value directly and make r; the marginal sum for
column 7. The value of the cell can be simply recovered by multiplying p;; by the sum of all
the aggregates in the cube.

In the case of the column shown in the matrix of Figure 6, the regression would result in
an equation of the form:

If we apply Equation 3, using the row distribution marginals of that matrix, we obtain the
correct, entries 0.36 and 0.24 for the column. Unfortunately, in practice we do not always get
the correct answers, but using regression results in better estimates for the unknown entries
in a column.

For every column in the matrix we will keep three parameters: the values of by(j) and by (j)
and the value of the so-called “standard deviation for the unexplained error”, easily calculated
by the regression procedure. We denote this quantity by stdev(j). The value of stdev(yj) is
used to further correct the estimates by adding or subtracting it from the value we get by
applying Equation 2. In order to know whether to add or to subtract this value, we keep a



fori=1,...m
If 7, j is not in the list of x,y
pij = bo(j)ri + b1 + sign(i, j)stdev(j)

Figure 10: Algorithm REG to estimate unspecified entries in column j, using regression parameters

bit vector of signs. We call this vector sign. The corresponding sign of row 7 and column j is
denoted by sign(i, j).

As in the independence case, we will store specified entries in the Quasi-Cube to improve
the accuracy of the estimates. We select as specified points those that will minimize the
errors incurred by the estimation algorithm. Unlike the independence case, the rank that
we use to determine whether a matrix entry would make a good specified point is calculated
independently for each matrix entry. Choosing to retain one point does not affect whether or
not another should be chosen.

Summarizing, the Quasi-Cube is described by the following data:

e The marginal distributions per row (r;).

e Three values per column: by(j), by(j) and stdev(j).

e A bit vector: sign, which will be used to correct the estimates.
e A set of k specified entries.

e The total value of the aggregates total (to reconstruct the aggregates matrix).

Algorithm REG in Figure 10 is the procedure we use in the warehouse to estimate any of
the entries in the matrix. Although the algorithm shows how to estimate an entire column of
entries, individual entries can be estimated separately.

In practice, cubes are often sparse, i.e., many of the cells have a zero value. It would be
unwise to subject these cells to an estimation process, since it is unlikely that the estimated
values would be exactly zero. Moreover, many current OLAP products take advantage of the
sparseness to effectively reduce the size of the cube by using specialized data structures that
retain only the non-zero cells, Incorporating empty cells in the Quasi-Cube would eliminate
the storage savings achieved by our technique. Thus, we need a method to mark empty cells
and to involve only non-zero cells in the modeling process. This is easily achieved by keeping a
bitmap description of the cube that contains 0’s for the zeros and 1’s for the positive cells. This
bitmap can be heavily compressed, and therefore will not take much space. To avoid paying
the overhead of decompression during retrieval one can rely on methods of doing “AND” and
“OR” operations on compressed bitmaps [10].

In any given column, the linear regression would be performed over the non-zero cells of
the column. When answering a query, the system would consult first the bitmap to see if the
needed point is zero, and in the case it is not, would check if it is a retained point. If none of
these cases apply, then the point would be estimated using the stored parameters.

We now need to extend the method to higher dimensional cubes.



2.2.1 Higher Dimensional Matrices

There are two ways of dealing with cubes of dimension n > 2:

e Multiregression For each value s in the domain of one of the dimensions, represent
the sub-cube formed by the other n — 1 dimensions by a multiregression on the marginal
distributions for each of the dimensions. For instance, for a three-dimensional matrix,
one could: For each point s in the third dimension, represent the corresponding plane by
a multiregression of the form:

Pijs = boc; + bir; + by (4)

where ¢; is the marginal distribution for column j in plane s and r; is the marginal
distribution for row 7 in plane s. With this method, each value in the domain of the third
dimension would be described by four values: by, by, by, and stdev(s).

e Divide-and-conquer Regard the n dimensional cube as a set of ¢ sub-cubes of dimension
n — 1. Do this recursively until the sub-cubes have two dimensions. Then represent the
two dimensional matrices using the method we described in this section.

Again, for a three-dimensional cube, we could describe each plane s, as a two dimensional
matrix, representing each column j in the plane with a simple regression of the form of
Equation 2.

Multiregression as a strategy becomes more complex as the number of dimensions increases.
However, for the same percentage of specified points, the description of the Quasi-Cube is more
compact when using the multiregression approach than in the case of divide-and-conquer.

Another issue in the selection of the method to be employed for higher dimensions is the
space and time needed to build the Quasi-Cube. In the case of multiregression, the space is
usually greater than in the divide-and-conquer approach, since we need to keep around all the
points involved in the sub-cube on which the multiregression is to be performed. However,
the divide-and-conquer approach requires the computation of regression parameters for every
plane in the cube, a process that can potentially slow down the Quasi-Cube construction.

2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) [20, 25] is a technique that has been used to approximate
matrices, perform statistical analysis [15], text retrieval [8] and dimensional reduction [7].
Recently, Korn et al [17], published a technique to use SVD to compress large matrices into
a format that supports approximate queries.

The formal definition of SVD follows. Given an N x M matrix of reals X, we can express
it using Equation 5, where U is a column-orthonormal (its columns are mutually orthogonal
unit vectors) N x k matrix, A is a diagonal k£ x k matrix of the eigenvalues \; of X, and V' is
a column-orthonormal M x k matrix.

X = Ux \xV (5)

Equation 5 can be alternatively written as the spectral decomposition form, shown in Equa-
tion 6, where u; and V — 4 are column vectors of U and V respectively, and \; the diagonal
elements of the matrix A.



X = A\ug X vl + g X vh + o+ Aug X v (6)

The matrix X can be approximated by selecting the x largest values of the set of \;s.
Doing this, we need Nk data elements from the U matrix, s entries for the eigenvalues and
kM data elements from the V' matrix. So, the total number of parameters used to represent
the original matrix X is given by Equation 7.

Pyg = Nk + Kk + kM (7)

Korn et al [17] propose a method, called SVDD, that gives better performance than just
approximating the matrix by truncating the number of eigenvalues used. In SVDD, the entries
that give the greatest estimation errors are retained (as we do in the previous two methods),
to guarantee that the error incurred by the estimation is kept low.

As we shall see in the experiments section, SVDD can be successfully used to model planes
of a cube, giving excellent error bounds. To use SVDD for cubes of more than two dimensions,
we have to apply the divide-and-conquer method presented in Section 2.2.1. SVDD, however,
has the following drawbacks:

e The running time of the algorithm is greater than that of linear regression or the inde-
pendence approach. Although approximate, randomized solutions have been proposed
for SVD [19], these solutions are only asymptotically superior and their benefits have not
been studied in practice yet.

e There is no known method to extend SVD to higher-dimensional matrices. Therefore,
we are forced to use divide-and-conquer to deal with cubes of more than 2 dimensions.
Given the running time of the application of SVD for each plane of the cube, the overall
running time to model the cube may be prohibitive in real life cases.

e There is no way of taking advantage of spareness in SVD. Even if a cell is 0, it will
have to participate in the computation. This is a serious drawback, since, as we saw in
the linear regression case a better performance can be achieved if the modeling does not
have to be performed including cells that have 0 as their values. (Of course, cells with
zero value can be marked as such using a bitmap, as we did for linear regression, thus
eliminating the need to estimate them, but the whole plane of cells will be used to find
the eigenvalues.)

e Besides having to use zero-valued cells in the computation, the estimated values obtained
in sparse matrices are worse than those obtained for dense matrices (as we will show in
the experiments section).

2.4 Implementing Quasi-Cubes

The previous subsections described several algorithms for reconstructing cubes from incom-
plete descriptions. In this section, we outline the implementation details of Quasi-Cubes.
We assume that the cell values need to be computed from the fact table. We aim for a
construction technique that requires one pass over this relation. On that pass, the entries that
would cause the greatest errors when applying Algorithm REG are selected to be part of the
specification. We assume in this section that we are using the regression technique to model
regions of the cube. Notice that, when using regression, unlike the independence approach,
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retaining an entry does not change the errors incurred on the estimation of the entries left
unspecified. The selection procedure is as follows:

1. Select the size of the regions to be modeled.
2. For each region:

(a) Compute the cell values in the region by aggregating tuples in the fact table.

(b) Compute the regression parameters, assuming no items are retained. (Le., all non-
zero cells in the column enter in the regression calculation.) Compute the sign vectors
as well.

(c) Estimate all the cells in the region by using regression.

(d) Compute the errors incurred by the procedure as the modulo of the difference between
the estimated value and the known value for the entry. For each entry, try adding and
subtracting the value stdev(j), and keep the smaller of the two errors, also recording
the sign (if the addition results in the smaller error, the sign is positive, otherwise it
is negative) in sign(i, j).

(e) For each cell, if the error is bigger than or equal to a predefined threshold value,
store the cell value.

A lot of the work of building a Quasi-Cube and a conventional cube is the same. In both
we need to calculate of the aggregates (cell values) from the underlying facts table first. After
that, there is a tradeoff between conventional cubes and Quasi-Cubes. In Quasi-Cubes we
increase the CPU overhead by computing the regression parameters (or the parameters of
whatever model we are using), but we store only a fraction of the cell values. In the case of a
conventional cube, all the cell values will be stored. We will report the overhead incurred by
the construction of the Quasi-Cube in the experiments section.

Temporary space is also a concern when building a Quasi-Cube. We need enough space in
main memory to hold the cells of the region we are currently processing. In practice, since
cubes are sparse, this requirement is not very strict. All we need to store temporarily is the
non-zero cells and their position in the region. The position can be stored as an array of
integers that correspond to a predetermined way of traversing the cube. I.e., the integer x
could be translated to a set of cube coordinates by the successive application of the algorithm
shown in Equation 9, where coord(i) is the position in the ith coordinate and dim(i) the
cardinality of that dimension.

T
coord(1 = 01 if ¢ 7£ 0 8
x if 1 =0
i—1
=« % []dim(y)
j=0

For instance in a three dimensional cube with cardinalities 2, 3 and 5 respectively, the cell
(1,1,4) would occupy the position 2 = 4 x 3 x 2+ 1 x 2+ 1 = 27. Transforming z into
coordinates would result in the following operations:

11



27

coord(2) = c 4 9)
r = 271 % 6=3

coord(l) = g =1
r =3 %2=1

coord(0) = 1

We take advantage of the fact table being sorted according to one of the dimensions (this
is a common occurrence: for instance, if time is one of the dimensions, the table is naturally
sorted on the time values). Then we select the regions to be modeled as be subsets (not
necessarily proper subsets) of the regions described by each value in the domain of the sorted
dimension ( a range of values works equally well). We bring all the tuples corresponding to
that value to memory and perform the aggregations there. Notice that the regions can be
defined as the cubettes formed by the particular value (or values) of the sorted dimension or
as subsets of those cubettes, if further restrictions on the other dimensions are imposed. If the
regions are proper sub-cubettes (i.e., proper subsets of the cubettes), then the tuples of the
fact table corresponding to the value(s) of the sorted dimension stay in main memory until
all the sub-cubettes corresponding to this value(s) have been processed. The sub-cubettes are
built following an algorithm similar to the one presented in [23]. We make a pass through the
set, of tuples in memory. For each tuple of them we compute the coordinates of the cell that the
tuple contributes to. If the coordinates do not fall inside of the sub-cubette being processed,
the next tuple is selected. Otherwise, if there is a counter already allocated for this cell (i.e,
these coordinates), we increment it using the value of the aggregate attribute for that tuple.
(The presence of a counter for this cell means that a previous processed tuple corresponded
to the same cell.) If not, then we create a new counter and initialize it with the value of the
aggregate attribute for that tuple. Notice that the final number of counter corresponds exactly
to the number of non-zero cells in the sub-cubette. Along with the counters we keep an array
of positions that identify the cell that each counter represents. This algorithm performs very
well for sparse cubes, since the number of counters per sub-cubette will be small.

Notice that we also need the temporary space in main memory to store the tuples of the
fact table that are going to be modeled next. Either the number of tuples that correspond to
the region fit in main memory, or we bring them in blocks of tuples that do fit in memory.
Since we only execute one pass over the set of tuples, in the later case we can discard a block
of tuples as soon as it is processed and bring the next one to memory.

Once the description of the Quasi-Cube is completed, we need to store it in a compact
form. The regression parameters and row marginals are stored contiguously. They are few
enough that they can be cached in main memory at run time. The specified entries may be
too large to cache, however, so a more careful organization is needed. We group them into
variable-sized segments, each segment containing selected points for a region of the cube. An
index of regions is built indicating where in the disk the regions are stored. Like the regression
parameters the index can fit in main memory at run time. Alternatively, we could simply use
a global index that stores each retained cell using its coordinates in the cube. There have
been many proposals to index cube data ranging from the usage of standard R-trees and
bit-mapped indices ([21]) to specialized structures ([14]).
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As for the sign data, it can be stored as a bitmap, similar to the one used to indicate
whether cells are zero or non-zero. Both bitmaps can be heavily compressed to reduce their
storage requirements.

2.5 Space Savings

This subsection deals with the gains in space achieved by Quasi-Cubes. The space taking by
a Quasi-Cube can be broken into the following items:

e Space for the retained cells. This can vary according to the way retained cells are stored.
A simple structure (such as the one explained in Section 2.4) would require two values
per cell: one for the actual entry and one for the offset. A more elaborate structure may
include an index (such a B-tree) which will add space overhead to the space needed for
the cells alone. Let us call this space S,.

e Space for the model parameters. In the case of regression that space amounts to the
marginal sums (or distributions) plus the estimated parameters of the regression model.
For SVD, we need to store k& columns of the matrices U and V, plus k eigenvalues. Let
us call this space S,.

e Space taken by bitmaps. The bitmap needed to deal with the sparseness will occupy
some space (although this space will not be very significant compared with the other
requirements). Also, in the case of regression, the sign vectors can be encoded with a
bitmap whose space overhead will be roughly the same taken by the sparse bitmap.

2.6 Incremental Updates

Since the data in a warehouse is bound to change incrementally, we need to discuss how to
reflect those changes in the Quasi-Cube, without having to rebuild it entirely.

We discuss how to do this when using the regression method. For SVD it is not clear how to
incrementally update the model. The first, and easiest possibility is that the cells that we use
in the regression procedure are immutable. For instance, if one is using the divide-an-conquer
approach and the row marginals are kept for a dimension such as time, we do not need to
worry about the entry points ever changing. (E.g., sales of a given product for a given store
at a given day in the past will never change.) However, new rows will be incrementally added
to the cube (e.g., the next day of sales aggregates). In order to deal with these new values,
one can proceed by estimating the new points using the regression parameters computed for
the original column. One of two things can happen: the error is acceptable and then we can
simply discard the point, or the error is too high and we keep the point as a selected one.

For cases in which the old aggregates themselves can change, we can follow a similar pro-
cedure: compute the estimate of the changed point and compare it with the new value. If the
error incurred is bigger than the level of error that one wants to support the new cell needs
to be retained (if it was not retained before). Otherwise, the cell will be correspondingly esti-
mated when needed. This, may, in the long run, cause deterioration of the model parameters
(as new points are incorporated, the old parameters may not be able to properly model the
column anymore), causing the system to retain, perhaps unnecessarily, many cells. So, an
eventual recomputation of the affected models is advisable. The updating of the model can
be achieved by using techniques similar to those described in [4] to update polynomial models
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for selectivity estimation. The techniques use a method called recursive least-square-error [28]
to avoid a lot of expensive recomputation.

2.7 Query processing

Once the Quasi-Cube is constructed, we can use it to answer queries. Any query will request
a chunk of the matrix entries which spans one or more of our regions. For each cell in the
query, we use the index to decide if the entry is in the list of retained points or not. (For some
recent work in how to index cubes see [14, 21].) If it is not, we use the model parameters to
compute it. The I/O required to fetch the retained values dominates the performance of the
query. Obviously, the performance is going to be heavily affected by the match between the
choice of region dimension and the query workload.

3 Evaluation

In this section, we present the results of a series of experiments in which we partially specified
matrices and used the estimation algorithm to reconstruct them. We will measure the accuracy
of the estimation along with the space savings achieved by the method. Before presenting the
experiments themselves, however, we first describe the metrics used to compare the estimated
matrix to the original one.

3.1 Comparison Metrics

In what follows, g; is the original entry in the original cube, i is the vector of coordinates
that defines the cell position. total = } e; is the sum of all the cell values in the cube, p;
is the corresponding value in the original probability matrix (i.e., p; = toc;f—idl)’ and e; is the
estimated cell probability value. (Notice that for retained entries, e; = p;.) Finally, N is the
number of non-zero cells in the cube.

The first comparison metric is the normalized average absolute error. To define this metric
we first define the average absolute error as:

> |total * (e; — p;)|

AVGERR =
VGERR N

(10)

AV GERR is then the expected value of the absolute differences between the entries in the two
matrices. To make the value of the average absolute error comparable across different matrix
sizes, we normalize it by dividing it by the average entry value in the aggregates matrix ave,
given by:

ave = ZNgz (11)
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The value ave, of course, depends on the distribution of values. Dividing AVGERR by ave
we obtain a metric which we call A.

i AVGERR (12)

ave

We are also interested in the cumulative error, which is defined as

CUMERRZZ|€;—]);| (13)

The value CUM ERR has two useful interpretations. First is the total error incurred by
the estimation process: if this value is low we know the estimation is a good one. The second
interpretation can be found if we multiply and divide the term inside the sum of Equation 13
by p;. That is,

& _p2|)

CUMERR:Z(' ), (14)

)

The term (W) is simply a random variable that corresponds to the fractional error.
13
That is, the error incurred as a fraction of the probability entry p;. Multiplying that term by
the corresponding probability and adding over all the values, we get the expected value of the
fractional error. Then, CUM FERR can be also interpreted as the expected fractional error.
Finally, we are also interested in the normalized maximum error that can be incurred, given

by the following equation:

W= max; ;(|total * (e; — p;)|)

ave (15)

3.2 Experiments

The experiments presented in this section were conducted on a Sun UltraSparc 2 machine
with 256 Mbytes of RAM, running SunOS 5.5.1 (Solaris).

3.2.1 Error Metrics

We wanted to evaluate the errors incurred by our method using both synthetic data and real
data. Synthetic datasets allowed us to experiment with a variety of data distributions and see
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Uniform (0-200)
Normal (mean 100, std dev 20)
Normal (mean 100, std dev 10)
Normal (mean 100, std dev 2)
Correlated Row/Col (2% X +Y £5))
Bimodal
Zipf(0.8,1)
Zipt(0.8,10)

Table 1: Distribution of the entries in our test matrices

how they affect our method. The real dataset allowed us to check our method for real-world
data.

For the synthetic data cubes, the aggregate values in the cube were drawn from one of
the five different data distributions listed in Table 1. The first four are standard probability
distributions in which each cell is calculated independently from its neighbors. Note that our
technique performs better when there is more structure to the data, so Uniform Distribution
is the worst case. The three Normal Distributions differ only in the standard deviation.
The correlated distribution gives a matrix in which the aggregate value is roughly a linear
combination of the row and column values. The final distribution is a bimodal one, composed
of two normal distributions of means 105 and 55 respectively, with standard deviations of 2
for each of them. Ten percent of the points are generated with the distribution of mean 55
and the remaining 90 % of the points obey the other distribution. The overall mean (as in
the other distributions) is 100. The last two are Zipf distributions. In both, 80% of the time,
a number from a given set is generated, of the remaining 20%, 80% of the time, a number
from a second set is generated, and so on. The first set in the first Zipf distribution contains
a single number N, the second contains the number N + 1, and so on. In the second Zipf
distribution, the first set contains 10 numbers: N, N +1,..., N +9, the second set another 10:
N +10,N + 11, ..., N + 19, and so on. In both distributions N is chosen so that the mean of
the distribution is 100.

Figures 11,12 and 13 show the results for our three metrics. Each graph gives the accuracy
metric on the Y axis. The X axis in each case is the fraction of the original cube retained. For
each data point, we generated six different cubes (using different seeds for the data generators)
and computed the mean value. In all cases, the standard deviation over the six runs was much
less than 1% of the mean. First, we tested the results over two-dimensional cubes of dimension
100, 200, 500, 1,000 and 10,000. The results were indistinguishable for different matrix sizes
(remember our metrics are scaleless), so we present only the 10,000x10,000 results in the
figures. We also tested our results for a three dimensional matrix of size 100 x 100 x 100,
using the multiregression method. The results are indistinguishable from those obtained
for two dimensional matrices. We also performed experiments using the divide-and-conquer
approach on cubes with several dimensions. In each case, the results were indistinguishable
from the previous ones. The biggest cube we experimented with had 10 dimensions, 8 of
them with a domain of 5 values and 2 of them with a domain of 1,000 values (the complete
cube would have 390,625 x 10° points and occupy 2.84 Terabytes of storage). Finally, we
perform again all the tests for cubes where only 10the cells were non-zero. For all the sizes
and dimensions mentioned above, the results remain unchanged. (Of course, the X-axis in
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Figure 11: Mean Error for Estimated Cube Entries (A4), using regression. The X axis gives the
fraction of the matrix that is specified in the Quasi-Cube. The Y axis is the error in the entry
value as a percentage of the mean entry value.

those cases represents the percentage of retained points with respect to number of non-zero
cells.)

The graphs of the regression Quasi-Cubes each have roughly the same shape. The mean
error, maximum error and total error probability decrease as the data becomes less random
and as more of the matrix is specified in the Quasi-Cube.

For the normal and correlated matrices, the cube is easily characterized by the regression
algorithm and the Quasi-Cube performs well. The normal with the smallest deviation has
a mean error of about 1% which, not surprisingly, does not decrease much as more of the
matrix is specified. For the input matrices with larger standard deviation, the mean error
decreases linearly as more of the matrix is specified. For the normal with standard deviation
of twenty, the mean error varies between about 9% and 3%. Even in our worst case, the
Uniform Distribution, the mean error never goes beyond about 23%. As more of the matrix
is specified, the mean error drops to about 15% when half of the matrix is specified and 5%
when 80% is specified. For the correlated matrix, the correlation is predicted exactly by the
linear regression and the 45 noise we added to each point in the matrix determines the mean
error. In all cases, the maximum error is roughly twice as much as the mean error in each of
these cases, hence it drops more quickly as more of the matrix is specified. We see that in the
Bimodal distribution, the maximum error drops significantly when going from 10% to 20% of
the matrix being specified. In this case, the second part of the distribution (mean 55 with
10% of the points) drags the regression coefficients, causing some of the points in the first
part of the distribution (mean 105, 90% of the points) to be wrongly estimated. After roughly
20% of the entries have been specified, most of the points obeying the smallest distribution
are already retained, but the effect of them on the regression coefficients lingers, making the
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Figure 12: Maximum Error for Estimated Cube Entries (M), using regression. The X axis gives
the Fraction of the matrix that is specified in the Quasi-Cube. The Y axis is the maximum
error in the entry value as a percentage of the mean entry value.
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Figure 13: Cumulative Error (CUMERROR), using regression. The X axis gives the fraction of

the matrix that is specified in the Quasi-Cube. The Y axis is the cumulative error in the entry
values of the probability matrix corresponding to the Quasi-Cube.
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drop of the error less pronounced than in the other curves. Nevertheless, even with this badly
behaved distribution our method performs extremely well: the mean error never exceeds 11
%. The curves corresponding to the Zipf distribution show the method does extremely well:
the maximum error for Zipf(0.8,1) and Zipf(0.8,10) are 1% and Tthe fact that most of the
numbers generated by this distributions are clustered in a small region, making the linear
regression model fit the data very well. Although the distributions have a long tail, the values
in the tail are not many and can be easily retained.

The curve(s) labeled RDATA in Figures 11,12 and 13 corresponds to a real data set which
contains data from a survey of retailers. From each tuple of the dataset seven attributes were
used (the rest of the data in the tuple is textual). The first six are dimension attributes (such
as product, store) and the seventh one is the attribute aggregate attribute (i.e., sale amount).
The corresponding cardinalities of the attributes are 597, 42, 966, 1764, 4, 69. The size of
each tuple is 102 bytes and the dataset had a total of 764,993 tuples (i.e., 78,029,286 bytes).
The complete cube for this data set would have 11,792,568,586,176 cells, but since the data is
sparse only 335,324 cells are non-zero. Quasi-cubes of various error levels were built for this
dataset in a manner that will be described in Section 3.2.3. We modeled 597 cubettes (one per
each value of the first attribute) of size 42 x 966 x 1764 x 4 x 69 each one, using multiregression
on the five dimensions. Here we wanted to report the error levels vs. the fraction of points
in the cube that were retained, to compare that performance with that of the synthetic data.
As can be seen in the figures, the errors obtained with this dataset are small (considerably
less than the worse case represented by the uniform distribution).

Unlike regression, SVD gives different error results for different matrix sizes and shapes.
In Figures 14,15 and 16 we show the results of using SVD to model planes of size 1000 x 100
in the cubes. (Le., we tried cubes of several dimensions in which two of the dimensions had
cardinalities 1000 and 100 respectively.) Figures 17, 18 and 19 show the results obtained when
modeling planes of size 100 x 100 in the cubes. All these results were obtained by generating
cubes using the distributions shown in Table 1, in the same way we did for the regression
experiments. For each cube, we use the divide-and-conquer approach, modeling planes of the
cube. In each case the number of eigenvalues used is 10 % of the number of rows in the matrix.
Square matrices always perform worse than rectangular ones for SVD. (It is also true that for
rectangular ones we obtain a better space reduction, since we only need N x k+k +k x M
parameters for the estimation, and M < N.)

As we can see in the figures, the percentage of points needed to be retained to achieve the
same level of errors we got with the regression approach is smaller. Although the errors for
the other distributions are very encouraging, we should point out that, given the increased
running time of SVD when compared with regression (we will show the figures later on in this
section), we were not able to try SVD in cubes as big as we used for the regression approach.
We tried different cubes from two dimensional ones (of sizes 100 x 100, and 1000 x 100), to
cubes with many dimensions, obtaining similar results in every case. We also tried sparse
cubes (in which the fraction of non-zero cells was 10% of the total number of cells) obtaining
similar results. (The biggest cube we tried had 5 dimensions 3 of them with 5 values, one
with 100 values and one with 1,000 values, for a total of 12.5 million cells.) Finally, Figure 20
reveals a serious drawback of the SVD approach. The curves show the maximum error as a
function of the percentage of points retained for three planes of size 100 x 100 with spareness
0%, 50% and 90% respectively. The measurements show that as the matrices become more
sparse, the results are worse. I.e, the percentage of points needed to retain the same level of
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Figure 14: Mean Error for Estimated Cube Entries using SVD in cubes with planes of size
1000 x 100(A). The X axis gives the fraction of the matrix that is specified in the Quasi-Cube.
The Y axis is the error in the entry value as a percentage of the mean entry value.

error increases drastically. In other words, SVD, does not deal very well with sparse cubes.
We did not conduct tests over RDATA using SVD for the following reasons:

1. We would have had to model the cube plane by plane. Due to the spareness of the
dataset, each plane has very few non-zero cells (usually 1 or 0). SVD is ineffective in
that case, since the estimation of the cells gives high errors and the algorithm ends up
retaining most of the cell values.

2. The overhead imposed by using SVD is considerably higher than that caused by regres-
sion. This along with the need of modeling the cube by planes, would have resulted in
an extremely large time to build the Quasi-Cube for RDATA.

When Quasi-Cubes are constructed using the independence assumption, the mean error is
slightly worse than in the regression approach. However, the maximum error is significantly
worse (see Figure 21). Also, for some of the distributions, the behavior is erratic (bimodal,
correlated): the error can go up as more points are specified. This is due to the property
that we mentioned in Section 2: when using the independence approach, retaining a cell has a
impact on the errors incurred in estimating the others. The worst part about the independence
Quasi-Cube is that the more “interesting” the data in the underlying database, the worse the
Quasi-Cube will behave. The graphs of Figure 21 were obtained using the heuristic described
in Section 2.1.

3.2.2 Space Savings

Figure 22 shows how much storage is saved by Quasi-Cubes using the regression approach. In
this graph, the X axis shows the maximum acceptable error. The Y axis shows what percent
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Figure 15: Maximum Error for Estimated Cube Entries, using SVD in cubes with planes of size
1000 x 100 (M) The X axis gives the Fraction of the matrix that is specified in the Quasi-Cube.
The Y axis is the maximum error in the entry value as a percentage of the mean entry value.
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Figure 16: Cumulative Error using SVD in cubes with planes of size 1000 x 100 (CUM ERROR).
The X axis gives the fraction of the matrix that is specified in the Quasi-Cube. The Y axis is the
cumulative error in the entry values of the probability matrix corresponding to the Quasi-Cube.
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Figure 17: Mean Error for Estimated Cube Entries using SVD in cubes with planes of size
100 x 100(A). The X axis gives the fraction of the matrix that is specified in the Quasi-Cube.
The Y axis is the error in the entry value as a percentage of the mean entry value.
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Figure 18: Maximum Error for Estimated Cube Entries, using SVD in cubes with planes of size
100 x 100 (M) The X axis gives the Fraction of the matrix that is specified in the Quasi-Cube.
The Y axis is the maximum error in the entry value as a percentage of the mean entry value.
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Figure 19: Cumulative Error using SVD in cubes with planes of size 100 x 100 (CUM ERROR).
The X axis gives the fraction of the matrix that is specified in the Quasi-Cube. The Y axis is the
cumulative error in the entry values of the probability matrix corresponding to the Quasi-Cube.
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Figure 20: Maximum Error for Estimated Cube Entries, using SVD in cubes with planes of
size 100 x 100 (M) for three different levels of spareness.The term z% sparse means that r out
of each 100 cells are zero. The X axis gives the Fraction of the matrix that is specified in the
Quasi-Cube. The Y axis is the maximum error in the entry value as a percentage of the mean
entry value.
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Figure 21: Maximum Error under the Independence Assumption. The X axis gives the fraction
of the aggregate matrix that is specified in the Quasi-Cube. The Y axis is the maximum error
for any entry. In these experiments we used the independence assumption to select specified
points and to estimate the unspecified ones

of the storage required by a full cube one saves using the Quasi-Cube. When the maximum
acceptable error is 3% and the input matrix is normally distributed (mean 100, sd 2), the
space savings is 0.85. Thus, a Quasi-Cube for this data will use 15% of the storage required
by a full data cube.

Figure 23 shows the space savings obtained when using SVD on cubes with planes of dimen-
sion 1000 x 100. Notice that the gains observed in terms of fraction of retained points needed
for a given error (Figure 15) are somewhat offset by the need of keeping more parameters than
in the regression approach. Nevertheless, the overall space savings for SVD are greater than
those obtained by the regression approach.

3.2.3 Building Quasi-Cubes

To measure the overhead imposed by modeling sections of the cube in the total time of building
the Quasi-Cube, we implemented a prototype that follows the description of Section 2.4. The
system can build regions of the data cube in memory by aggregating the appropriate tuples
from a fact table. Regions are computed by computing the aggregate values for each cell
in the region, using the tuples in the fact table in the manner explained in Section 2.4. To
improve performance, regions are characterized as containing all the tuples for one (or more)
values of the first dimension attribute. Since the fact table is ordered by the values of the
first dimension, it is possible to load at once all the tuples that contain an specific value(s)
for that attribute and proceed to compute the aggregates in memory. Once the region is
computed, the modeling process over that region takes place. Those cells whose errors are
larger than a prespecified error are retained. For the rest of the cells, the errors are evaluated
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Figure 22: Space Savings (fs;) using the regression approach. The X axis gives the maximum
error. The Y axis is the space savings obtained by the Quasi-Cube as a fraction of the total
space taken by the cube.
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Figure 23: Space Savings (f;) using SVD, for a cube with planes of dimension 1000 x 100. The
X axis gives the maximum error. The Y axis is the space savings obtained by the Quasi-Cube
as a fraction of the total space taken by the cube.
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Dimensions Time to build the Quasi-Cube | Time to build the conventional Cube
597 x 42 x 966 x 1764 x 4 x 69 4,580 sec 74.84 sec
1x42 x 966 x 1764 x 4 x 69 6.0 sec. 0.1 sec.

Table 2: Time to build Quasi-Cubes and cubes

and the metrics are updated accordingly. This process continues until all the regions have
been modeled. Alternatively, to allow comparison with regular cubes, the system allows the
building of entire cubes, i.e., computing aggregates to figure out every cell in each region but
not modeling the region.

We used this software for building Quasi-Cubes for the RDATA dataset using regression as
the modeling tool (with the error results reported in the previous section). Table 2 shows the
performance of this system. The second column lists the time it takes to build a Quasi-Cube,
while the third column list the time to build the whole cube (without modeling regions). The
first row in the table corresponds to the experiment we ran using RDATA. For the second
row, we took only a subset of RDATA, corresponding to the first value of attribute 1 and
built a smaller Quasi-Cube (and cube) of the dimensions shown in the table. The overhead
imposed by the regression method, although considerable (61:1) is manageable: a Quasi-Cube
of the larger size (597 x 42 x 966 x 1764 x 4 x 69) takes approximately 1.5 hours to be built
in its entirety. We also see that the time to build Quasi-Cubes scales well with the size and
dimensions of the dataset. The time to build the small Quasi-Cube is not exactly 5%7 of the
time needed to build the larger one, simply because the region we chose contains less than the
average number of non-zero cells of regions in the larger cube (286 non-zero cells were present
in the smaller cube, while the average per region in the larger cube is 561.68). The process
of building Quasi-Cubes is CPU bound. Only 45.22 seconds were spent waiting for I/O when
building the large Quasi-Cube. The system does not require anymore I/O than the necessary
to bring the relation (in steps) to memory. As stated previously, we did not conduct the tests
over RDATA using SVD.

We also conducted an experiment to compare the running time of the regression and SVD
techniques. The results are shown in Table 3. The running times shown are to model planes of
the size indicated in each column, once the whole matrix was in memory. (They were obtained
by measuring the time needed to model 1,000 planes and dividing that time by 1,000.) The
spareness of the matrix is shown in the second column of the table (e.g., a value of 90% means
that ninety percent of the cells of the matrix were 0). Two things are made clear by this table.
First, the running times of SVD are clearly several orders of magnitude greater than those of
the regression technique. Secondly, unlike regression, where the running time decreases with
the spareness of the matrix, SVD running time is independent of how sparse the matrix is.

3.2.4 Queries

We wanted to understand the behavior of queries on the proposed method. In order to do
that, we indexed the retained values using a B-tree. As the key of the B-tree we used the
concatenated coordinate values that define the position of the retained cell in the cube. (Le.,
in a tridimensional cube, the cell 4, j, k will have the concatenated key ijk.) Then we ran a
series of queries and measure their response time. Each query’s response time was measured
for a number of different error thresholds (recall that the error threshold selected determines
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Algorithm size spareness (%) | running time (msec.)
Regression | 100 x 100 10% 1.9
100 x 100 50% 1.0
100 x 100 90% 0.5
200 x 200 10% 130
200 x 200 50% 50
200 x 200 90% 40
500 x 500 10% 370
500 x 500 50% 350
500 x 500 90% 240
500 x 10 10% 7
500 x 10 50% 5
500 x 10 90% 1
500 x 20 10% 9
500 x 20 50% 6
500 x 20 90% 2
SVD 100 x 100 10% 1,590
100 x 100 50% 1,590
100 x 100 90% 1,590
200 x 200 10% 12,500
200 x 200 50% 12,500
200 x 200 90% 12,500
500 x 500 10% 229,400
500 x 500 50% 229,400
500 x 500 90% 229,400
500 x 10 10% 190
500 x 10 50% 190
500 x 10 90% 190
500 x 20 10% 200
500 x 20 50% 200
500 x 20 90% 200

Table 3: Comparison of running times for building models using regression and SVD
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Figure 24: Response time for a query of size 1 x 1 x 10 over a Quasi-Cube of dimensions
1000 x 1000 x 10. The Y axis gives the response time in seconds (this value is the average of 100
queries). The X axis is the maximum error in the entry value as a percentage of the mean entry
value.

the points that need to be retained). The results are shown in Figures 24, 25 and 26 which
correspond to queries of sizes 1 x 1 x 10, 1 x 1000 x 1 and 500 x 500 x 5 performed over a
Quasi-Cube of size 1000 x 1000 x 10. (For a given query size, we generated different queries
by moving the cubettes defined by the query around the cube. We averaged the results of
100 different queries in each case.) In each case we can appreciate the tradeoff between errors
and response time: tolerance for errors translates into drastically better performance. For
instance, in the largest query (500 x 500 x 5), the difference between the perfect’s answer
performance (18 sec) and the performance obtained with 20 % of error is almost an order of
magnitude. These measurements suggest that our technique is a very good way of supporting
“Online Aggregation” [13], by providing quick, approximate answers to queries and refining
the answers as the user looks at them. It would be enough to order the retained points
according to the level of error they incur when estimated, and successively substitute the
estimations by the real values (going to the disk). We plan to address this issue in future
research.

4 Other Benefits of Modeling

Beside achieving space compression and helping support multiresolution queries and on-line
aggregation, modeling parts of the cube gives a lot of useful information that helps to under-
stand patterns in the data and to answer analytical questions.

For instance, the parameters in a regression model tell us to which dimensions the aggre-
gates are more sensitive to. Consider, for instance a regression model built for sales data on
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Figure 25: Response time for a query of size 1 x 1000 x 1 over a Quasi-Cube of dimensions
1000 x 1000 x 10. The Y axis gives the response time in seconds (this value is the average of 100
queries). The X axis is the maximum error in the entry value as a percentage of the mean entry
value.
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Figure 26: Response time for a query of size 500 x 500 x 5 over a Quasi-Cube of dimensions
1000 x 1000 x 10. The Y axis gives the response time in seconds (this value is the average of 100
queries). The X axis is the maximum error in the entry value as a percentage of the mean entry
value.
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three dimensions: date, average temperature on that day and dollars invested in publicity.
Assume one of such models has been created for each region in the country. The resulting
model has the form shown in Equation 16.

Sy = oD+ 3.1+, P, (16)

where each parameter has been indexed using the region that corresponds to the model. A
model that results in v >> 3, 7 >> «, is indicating right away that publicity has a
deeper effect in sales than any of the other factors involved. Moreover, comparing models
for different regions, one can see how the corresponding parameters fare, perhaps making
meaningful conclusions along the way. (E.g., publicity has a more direct effect in sales in the
Northeast than in the Midwest.)

Regression models are not by any means the only ones that offer interesting information.
Using SVD, for instance one may uncover hidden correlations among the different dimensions
of the problem. Using the previous example, one could perform SVD in planes of date vs.
publicity (keeping the rest of the dimensions fixed) and discover for which days publicity has
the most significant effect. This can be achieved easily by considering the approximation
shown in Equation 17, after selecting the k largest eigenvalues in Equation 5, substituting X
by S (sales), U by D (date) and V' by P (publicity).

Sk = Dix \ xP (17)
k

The rows of P! x A, above represent, the publicity described by the dates in which it has the
most effect on sales.

Finally, the outliers are valuable pieces of information. They tell the analyst that this cells
do not quite conform to the model that describes the rest of the cells well. An outlier can
show, for instance, an exceptionally large sales value for a combination of dimension values
that is worth looking into to understand what event brought the unexpected increase in sales.

Thus, modeling parts of the data cube can be also regarded as a first approach to mine
information from the data warehouse.

5 Related Work

Multidimensional data bases are a central concept in the field commonly known as On-Line
Analytical Processing (OLAP). OLAP systems are typically implemented either directly on
top of relational systems or as a combination of a relational system and a proprietary multi-
dimensional database (MDDB) [5]. In both approaches the underlying database is stored in
a relational system. In a fully relational implementation (ROLAP), data cube queries are
transparently converted into queries on the underlying relational database. Clever indexing
schemes and careful query optimization are used to improve the performance of these queries.
In the MDDB approach, the cube data is extracted from the database, converted into multi-
dimensional arrays, and clustered so that common cube queries require minimal I/O. There
are products in both the relational arena [24] and the MDDB world (Sinper’s Spreadsheet
Connector) that materialize only parts of the data cube. However, ours is the first approach
that uses approximate cubes to save storage.

The Stanford University Data Warehousing Project studies methods to achieve efficient
implementations of complete data cubes. A summary of research problems is presented in
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[26]. Harinarayan, Rajaraman and Ullman [12] describe a near optimal algorithm to decide
which parts of the cube should be materialized to obtain best performance and lowest space
utilization.

The problem of completing partially specified tables given constraints on the sum by
columns and rows has been studied in the domain of statistics and linear algebra [22]. S.
Abad [1] uses three methods: mutual independence, maximum correlation and minimum cor-
relation to combine statistical tables. The three estimates provide bounds for the answers.
However, our experiments show that providing just the column and row sums does not give
sufficient accuracy for moderate and large matrices. Also, we have observed that the errors
incurred by using the mutual independence approach are bigger than those incurred by our
regression method.

6 Conclusions

The data warehousing community has found data cubes to be a useful way to present sum-
mary descriptions of large databases to users. In this paper, we have shown a technique for
presenting essentially the same information as a standard data cube but with significantly
reduced storage cost. The Quasi-Cube structure uses a concise data representation consist-
ing of a fraction of the standard cube entries and a set of model parameters. Queries of
the Quasi-Cube estimate the missing entries with a reasonable level of accuracy using linear
regression.

Our experiments have shown that Quasi-Cubes based on linear regression work better than
ones based on the independence model or SVD. While the mean error is roughly the same for
both methods, linear regression does a better job in keeping the maximum error down. We also
should point out that the major disadvantage of the independence method is that the optimal
selection of specified points is a difficult task. Our results hold over several different kinds of
data distributions, including some that are badly behaved, such as the bimodal distribution.
The results are also independent on the size of the matrix. Although SVD achieves better error
rates than regression for dense cubes, the main problems with this method are its overhead,
the fact that the method cannot take advantage of spareness and performs poorly with very
sparse cubes and the need to always model the cubes plane by plane.

Altogether, we believe that our approach is a very practical way of reducing the space
needed to store cubes and that Quasi-Cubes are a viable alternative to the methods used
currently in practice to do OLAP. We have shown that our results are robust over a variety
of data distributions and sizes of the cube, holding even for cubes with a large number of
dimensions and points (10 dimensions and over 390 billion entries).

Although the building of a Quasi-Cube imposes an overhead in running time over the
building of a traditional cube (mainly due to the need of computing regression parameters),
we have seen that this overhead is manageable. It is also a fact that in building Quasi-Cubes
instead of cubes, we are trading I/O time (in queries) and disk space for CPU time (in building
the Quasi-Cube). This is a reasonable trade since CPU speeds tend to grow faster than I/0O
speeds. Moreover, the regression and estimation of errors is a highly parallelizable operation,
opening the door for more speedups.

Sometimes, one of the points of doing OLAP is to find extraordinary numbers, e.g., very
high sales of a product. For this applications, it would be convenient to retain the entries that
satisfy the criterion of “extraordinary.” This can be simply incorporated into our proposal by
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making sure that every point is tested for qualification. If a point qualifies, it is not discarded
(but rather, retained), regardless of the error incurred by its estimate. By doing so, however,
one pays the price of an increased number of retained points in the Quasi-Cube, therefore
reducing the storage gains.

Even if the application cannot tolerate the smallest errors our method provides a systematic
way of ordering cube cells according to the error they incur when estimated. Cells can be
classified in bins each one corresponding to an error level. Cells belonging to the same bin can
be cluster together in the disk. When a query is posed, a quick, approximate answer can be
given by fetching the cells needed for the answer that correspond to the highest error level,
while estimating the rest of the cells in the answer. This answer can be refined by bringing
cells from the next level and substituting their estimated values by the real ones. Successive
levels can be brought from the disk until either the user is satisfied with the answers accuracy
or the answer contains no error. This process is similar to that presented in [13], with one
exception: while their technique is based in sampling the fact table, our technique is based
in pre-classifying the cells according to the model used for the QQuasi-Cube construction. We
plan to experiment with this technique in the future and evaluate its performance and merits.

Two additional uses of our technique are worth noticing. First, our methods can serve
as the basis to implement Online aggregation [13], a method by which quick, approximate
answers to queries are initially given to the user, while the system keeps refining them in an
online fashion. We are currently implementing a system that uses Quasi-Cubes to support
Online aggregation. Secondly, the models utilized to characterize parts of the cube offer a rich
set of parameters that are very useful to the analyst, as we discussed in Section 4.

Furthermore, there are other modeling techniques that need to be studied in the context
of compressing data cubes. Among these we want to study in the future wavelets [6, 18] and
loglinear models [2] (specially suited for categorical data, i.e. data whose sale consists of a
series of categories). A preliminary study of the characteristics of modeling techniques can be
found in [3].

In practice, some data distributions may arise for which our methods will not perform
as well as shown here. Perhaps Quasi-Cubes based on models more complex than linear
regression can be used in those cases. However, even if Quasi-Cubes cannot replace normal
data cubes in all instances, it is still a useful technique for data warehouse designers.
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