
Quasi�Cubes� A space�e�cient way to support approximate

multidimensional databases

Daniel Barbar�a � Mark Sullivan
George Mason University Juno Online Services

ISSE Dept� ��� West ��th Street� �	th
oor
Fairfax� VA ����� New York� NY �����

dbarbara
isse�gmu�edu sullivan
sta��juno�com

February ��� �		�

Abstract

A data cube is a popular organization for summary data� A cube is simply a multidimensional structure
that contains at each point an aggregate value� i�e�� the result of applying an aggregate function to an
underlying relation� In practical situations� cubes can require a large amount of storage� The typical
approach to reducing storage cost is to materialize parts of the cube on demand� Unfortunately� this lazy
evaluation can be a time�consuming operation�

In this paper� we propose an approximation technique that reduces the storage cost of the cube without
incurring the run time cost of lazy evaluation� The idea is to characterize regions of the cube by using
statistical models whose description take less space than the data itself� Then� the model parameters can
be used to estimate the cube cells with a certain level of accuracy� To increase the accuracy� some of the
�outliers�� i�e�� cells that incur in the largest errors when estimated can be retained� The storage taken by
the model parameters and the retained cells� of course� should take a fraction of the space of the full cube
and the estimation procedure should be faster than computing the data from the underlying relations� We
study three methods for modeling cube regions� linear regression� singular value decomposition and the
independence approach� We study the tradeo� between the amount of storage used for the description and
the accuracy of the estimation� Experiments show that the errors introduced by the estimation are small
even when the description is substantially smaller than the full cube� Since cubes are used to support data
analysis and analysts are rarely interested in the precise values of the aggregates �but rather in trends	�
providing approximate answers is� in most cases� a satisfactory compromise� Our technique allows systems
to handle very large cubes that cannot either be fully stored or e
ciently materialized on demand� Even
for applications that can only accept tiny error in the cube data� our techniques can be used to present
successive on�line re�nements of the answer to a query so that a coarse picture of the answer can be
presented while the remainder of the answer is fetched from disk �i�e�� to support on�line aggregation	�

� Introduction

A data cube is a popular organization for summary data ����� A cube is simply a multidimen�
sional structure that contains at each point an aggregate value� i�e�� the result of applying an
aggregate function to an underlying relation� For instance� a cube can summarize sales data
for a corporation� with dimensions �time of sale�� �location of sale� and �product type��

Cubes are organized in a hierarchical fashion� At the base of the hierarchy are the aggre�
gates computed from the underlying relation�s� �we call these base data� following the notation

�phone� ���������	�
 fax������������

�

of �	��� The aggregates in the lower levels of the hierarchy are used to construct the coarser�
grain aggregates of the higher levels� At any level in the hierarchy� data can be thought as
comprising a multidimensional matrix�

In our corporate sales example� the base data is the total retail sales by days� stores and
product� where product is a list of products sold by the corporation� Higher levels of the
hierarchy can be speci�ed in terms of weeks� cities and product type �where product type

can be higher classi�cation of products such as �dolls�� �VCRs�� etc��� or months� countries�
product dept� The base data �or any other level of the hierarchy in this cube� corresponds to
a three�dimensional matrix�

The underlying relation is commonly referred to as fact table in the star schema �����
The fact table contains all the attributes that determine the dimension of the cube� plus an
attribute on which the aggregations are to be performed� Along with this table� there are
dimension tables whose keys are foreign keys of the fact table and which describe each one of
the dimension attributes�

A data cube can be implemented using an eager or a lazy materialization strategy �Widom
uses these terms to refer to warehouse materialization� although her de�nition of lazy is slightly
di�erent from ours ������� In an eager strategy� the entire cube is materialized at initialization
time� The advantage of this strategy is that the materialized cube can be queried quickly�
The primary disadvantage is that the cost of storing the materialized cube can be large� For
instance� in our previous example� if we assume ������ stores� ��� days and ����� products�
materializing just the base data requires storage for ���� billion aggregate values� The lazy
strategy defers computation of the cube entries until users examine them� When the entries
are needed� the system queries the underlying database to compute them� Sometimes� a
hybrid strategy is used in which part of the cube is materialized �e�g�� the base data� and the
rest is computed on demand�

In this paper� we propose an approximation technique that reduces the storage cost of
the cube without incurring the run time cost of lazy evaluation� The idea is to provide an
incomplete description of the cube and a method of estimating the missing entries with a
certain level of accuracy� The description� of course� should take a fraction of the space of
the full cube and the estimation procedure should be faster than computing the data from
the underlying relations� We study the tradeo� between the amount of storage used for the
description and the accuracy of the estimation� We call these approximated cubes Quasi�
Cubes�

The Quasi�Cube data structure has two components� model parameters and retained
points� We use a model� such as linear regression� to describe parts of the data cube �e�g��
columns� planes�� The model allows us to generate an entire cube from a small set of parameter
values� However� the real cube entries will not �t the values predicted by the model exactly�
so additional storage is used to improve accuracy� During cube construction� we calculate� for
each point in the cube� the di�erence between the value predicted by the model and the cell�s
true value� Then� we rank the cube points by this estimation error and select the highest
ranking entries as �retained points� that will be stored rather than computed� Specifying the
most poorly predicted points improves the model�s accuracy� The more points one is willing
to retain� the lower the estimation errors will get�

Since cubes are used to support data analysis and analysts are rarely interested in the
precise values of the aggregates �but rather in trends�� providing approximate answers is� in
most cases� a satisfactory compromise� Our technique can allow systems to handle very large

�

cubes that cannot either be fully stored or e�ciently materialized on demand�
We conducted a set of experiments to evaluate Quasi�Cubes� The experiments were con�

ducted over synthetically generated data and real data sets� Several metrics were used to
evaluate the techniques� errors incurred in the estimation� space savings achieved by Quasi�
Cubes� time to build a Quasi�Cube compared to the time required to build a conventional
cube� and performance of queries over a Quasi�Cube� Our results show that for a small fraction
of retained points ��� �� the maximum estimation errors range from � to �� � depending
of the distribution of the data in the set� �For the real dataset� the results were specially
encouraging�� For some datasets �including the real dataset�� one can achieve savings of ��
� or more of the original space needed for a conventional cube� For some queries� drastic
reductions of �� � or more of the running time can be achieved by tolerating maximum errors
of �� �� While building models for the data imposes overhead over building conventional
cubes� the overhead is tolerable and moreover� it only impacts the CPU time�

For several reasons� Quasi�Cubes can be especially useful in data warehouses�

� Data warehouses can be very large� The underlying relation�s� might be archived in
tertiary storage after summarizing the data� That makes them� for all practical purposes�
not available on�line� forcing the eager strategy for supporting cubes� The eager cube for
such a large warehouse will either have very coarse�grained aggregates or be very large
itself�

� The process of generating entries in the cube may be complex� For instance� when the
data comes from a variety of sources and combining it requires some data manipulation�
�Some stores keep track of sales by the hour and another by days�� The process of combi�
nation is called �data scrubbing� ���� and can be a costly operation� Lazy evaluation can
be prohibitively expensive in these environments� but Quasi�Cubes remain a reasonable
low�storage�cost alternative to eager cubes�

� The data warehouse is usually dynamic� The underlying relation�s� are extended as data
is added to the warehouse� so the cube must be either recalculated �at coarser granularity�
or storage must be added for the expanding cube� Query evaluation strategies must be
incremental or the cube generation �lazy or eager� becomes more and more expensive
over time� On the other hand� Quasi�Cubes expand incrementally fairly easily by making
incremental changes to the model parameters and replacing the model�s �retained points�
as higher�ranked ones arrive� Of course� representing more data over time with the same
amount of storage lessens the accuracy of the results�

The paper is organized as follows� In Section � we describe the basics of Quasi�Cubes� In
Section �� we present some experimental results that demonstrate that the method is practical�
Section � discusses some additional bene�ts that come from modeling data regions� Section �
summarizes the related work and �nally Section � o�ers some conclusions and future avenues
of research in the area�

� Quasi�Cubes

In this section� we explain the basics of constructing and querying Quasi�Cubes� The idea
behind our method is to divide the cube in regions and use a model to describe each region�
The model provides a more concise description of the region� occupying less space than the

�

��� �� �� ���
��� �� �� ���
��� ��� �� ���
��� ��� 	� ���
��� ��� ���

Figure �
 Sample Aggregates Matrix

��� �� ��
��� �� ��
��� ��� ��
��� ��� �	�

Figure �
 The estimated cube� using the
models of Equation �

group of cells being modeled� The model can be used to estimate cells in the region� Doing
so� one introduces errors in the estimation �with regards to the original values�� To keep
the errors low� the cell values with the highest errors are stored rather than modeled� The
accuracy of the method improves as more cells are retained� establishing a tradeo� between
the space devoted to the speci�cation of the Quasi�Cube and the errors obtained�

To illustrate the point� consider the simple two�dimensional cube of aggregates shown in
Figure �� �Throughout the section� we will use the matrix of Figure � as a running example��
In general� we call an original base data cube� like that one� the aggregates cube� The entries in
the example matrix are aggregates of retail sales computed from an underlying relation� The
horizontal dimension is retail stores and the vertical dimension quarters of the year� �We keep
this cube small for illustration purposes�� The sum of the entries for this cube is ������Figure �
also has one more column at the right and one more row at the bottom than Figure �� Each
entry in the extra column contains the sum of the other matrix entries in its row� The entries
in the last row contain the sums of the values in their respective columns�

To illustrate the notion of modeling� let us partition the cube in � into three regions� each
corresponding to a column� Now we can describe each one of these regions with a model that
approximates the original values� For instance� the columns in this example can be described
by the three models shown in Equation �� �These models are not very realistic� they are just
shown for illustrating purposes��

ci� � ���

ci	 � ��� �� � �i�

ci� � ��� �i ���

In each of these models� cij is the estimated value of the cell with coordinates i� j� Notice
that the space needed to describe the models is signi�cantly less than that needed to store
the entire cube� �In practice� however� we would like to describe all the regions of the cube
with the same type of model� to avoid having to store a description of which model is used
in each case�� Figure � shows the values obtained when using the models to reconstruct the
cube� For the models chosen� both the �rst and second columns can be rebuilt without errors
�the models �t the data perfectly�� For the third column� however� one incurs in errors when
estimating c��� The estimated value is ���� while the real value of the cell is ��� for an absolute
error of ���� The tradeo� that we face here is the following� if we are willing to store the real
value of c��� plus the description of the models� we can lower the error to �� If� on the other
hand� only the model descriptions are stored� the error is ����

Sometimes it is useful to convert the cells in the cube into probability entries by dividing
the cell values by total sum of the entries� The matrix of Figure � is the probability matrix
corresponding to Figure �� Of course� for the probability matrix in Figure �� the sum of

�

��� ���� ���� ����
��� ���� ���� ����
��� ���� ���� ����
��� ���� ���	 ����
��� ��� ���

Figure �
 The probability matrix� derived
from the matrix of Figure �

����	 ����	 ����� ����
����� ����� ����	 ����
����	 ����	 ���
� ����
����	 ����	 ���
 ����
��� ��� ���

Figure �
 Completing the matrix from the
marginal distributions

entries is one� The row and column sums are shown in the extra column and row� respectively�
�These values are commonly known as marginal distributions ������ We shall see shortly how
the marginal distributions are used in our method�

The �rst decision to be made is that of which model to use and how to divide the cube in
regions� In the next two subsections� we show two di�erent models that we have experimented
with� the independence model and linear regression� We have to point out that in practice
the independence model performs very poorly and is kept here just for illustration purposes�
The linear regression approach� however� has given us very promising results� as we shall see
later�

��� Independence Assumption

The idea behind this method is to divide the cube in two�dimensional planes and follow the
simple mutual independence approach ���� which assumes total independence between the two
dimensions� �The cube can be divided in other higher�dimensional cubettes and the indepen�
dence approach can be straightforwardly applied to them�� In this technique� we estimate each
cube entry using the product of its corresponding row and column marginal distributions� The
matrix in Figure � is constructed in this way from the marginal distributions of the matrix
in Figure �� As we can see� some of the entries are estimated correctly �particularly the last
row of the matrix�� but most are not� The average error for this estimation is �������

We can achieve better results by storing more information� For instance� in addition to
the marginal distributions� we could retain one cell from the original matrix �see Figure ���
�We choose� of course� the cell for which the largest estimation error is incurred�� Because
the cell is speci�ed instead of calculated� it does not contribute to matrix error� Applying the
mutual independence approach to the new matrix yields the results shown in Figure �� �The
exact procedure will be made clear shortly�� This new estimated matrix has an average error
of ����	��

Thus� by retaining the �outliers� that are farthest from �tting the independence assump�
tion� we reduce the error� Specifying more data points makes the estimation process more

��� � � ����
� � � ����
� � � ����
� � � ����
��� ��� ���

Figure

 Marginal distributions and one speci�ed
entry

��� ����	 �����
����
� ����� ����	
������ ����	 ���
�
������ ����	 ���

Figure 	
 Completing the unspeci�ed entries

totalrow � ���
totalcol � cj
for i � �� ����m

If i� j is not in the list of speci�ed entries
totalrow� � ri

else
totalcol� � Pij

for i � �� ����m
If i� j is not in the list of x� y

pij � totalcol � ri
totalrow

Figure �
 Algorithm IND to estimate unspeci�ed entries in column j

accurate �although� in this example� there is no sense in retaining more than eleven values �
seven for the marginal distribution� four matrix entries � since the matrix itself has only twelve
entries�� This is the essence of our method� trade the number of speci�ed matrix entries for
accuracy� The hope is to �nd a point at which substantial portions of the matrix can be left
unspeci�ed while maintaining acceptable levels of accuracy�

We now present the algorithm used to estimate entries using the mutual independence ap�
proach� Algorithm IND in Figure � shows the pseudo�code for this algorithm� The algorithm
solves a column j of the matrix� The notation pij refers to the data point calculated for row
i� column j� The notation ri refers to the marginal distribution of row i� The notation cj
refers to the marginal distribution of column j� Speci�ed entries are denoted by Pij� The
dimensions of the matrix are m �rows� and n �columns�� The symbols ri and cj denote row
and column marginals respectively�

Several facts about IND are worth noticing� First� the algorithm acts by computing a
column at a time� In the case in which no entries in the column have been speci�ed� the
algorithm simply converges to the multiplication of marginal distributions� For the general
case� the variable totalcol is computed as sum the products of the marginal distributions for
the unspeci�ed entries in the column� Then� the estimated values are computed by distributing
the remainder of the column sum �what is left after taking the speci�ed values out� according
to this products� Notice that� in order to compute any particular entry it necessary to compute
its column�

Algorithm IND uses the simplest model to calculate missing entries� the assumption of
independence between the column and row variables� In that sense� it is very economical�
since it does not require the speci�cation of any parameters �other than the row and column
marginals�� In practice� however� using Algorithm IND leads to large errors� the variables are
not necessarily independent and the estimates may di�er considerably from the real values�
Consider the example of Figure � �we use only one column to illustrate the point� the last
column displays the row marginals�� If we were to use Algorithm IND to estimate the two
entries in the given column of matrix �� assuming that no entries are speci�ed� the results
would be as shown in Figure 	� We can see that the errors incurred in this case are large�

Additionally� when we use the independence approach� selecting the points to retain can

	

���� ��	
���	 ���
��	

Figure �
 Example of a column that illus�
trates non�independence

���	 ��	
���� ���
��	

Figure �
 Guessing using the indepen�
dence assumption

be a di�cult task� The problem is that each time an entry is speci�ed� the row and column
marginals change� This changes the estimation errors in the rest of the entries� Selecting the
k points that minimize the errors in the estimation algorithm IND implies checking every
subset of size k in the matrix� Since this is impractical for moderate to large matrices� one
has to resort to heuristics� The best heuristic we found was to select in every column those
points that� when selected alone� make the errors incurred by IND decrease the most� We
show in the experiments section a set of graphs based on this heuristic�

Finally� an additional drawback of the independence approach is that in order to esti�
mate any entry in the matrix� if the entry is not among those speci�ed by the Quasi�Cube
description� the entire column needs to be estimated�

��� Using Regression

Using independence gives a simple� concise way of estimating entries� but can lead to intoler�
able errors� To solve this� we introduce the use of linear regression as a model to describe the
entries for a particular column� In other words� �for a two�dimensional plane� we will use a
equation of the form�

pij � b�ri � b� ���

to model column j of the matrix� In this case� ri is the marginal distribution for column i�
The known values of pij and ri are used to produce the best estimate of b� and b� by linear
regression techniques ����� Notice that it is really not necessary to use probabilities in the
case of regression� we can also use the cell value directly and make ri the marginal sum for
column i� The value of the cell can be simply recovered by multiplying pij by the sum of all
the aggregates in the cube�

In the case of the column shown in the matrix of Figure �� the regression would result in
an equation of the form�

pij � ����ri � ��� ���

If we apply Equation �� using the row distribution marginals of that matrix� we obtain the
correct entries ���� and ���� for the column� Unfortunately� in practice we do not always get
the correct answers� but using regression results in better estimates for the unknown entries
in a column�

For every column in the matrix we will keep three parameters� the values of b��j� and b��j�
and the value of the so�called �standard deviation for the unexplained error�� easily calculated
by the regression procedure� We denote this quantity by stdev�j�� The value of stdev�j� is
used to further correct the estimates by adding or subtracting it from the value we get by
applying Equation �� In order to know whether to add or to subtract this value� we keep a

�

for i � �� ����m
If i� j is not in the list of x� y
pij � b��j�ri � b� � sign�i� j�stdev�j�

Figure ��
 Algorithm REG to estimate unspeci�ed entries in column j� using regression parameters

bit vector of signs� We call this vector sign� The corresponding sign of row i and column j is
denoted by sign�i� j��

As in the independence case� we will store speci�ed entries in the Quasi�Cube to improve
the accuracy of the estimates� We select as speci�ed points those that will minimize the
errors incurred by the estimation algorithm� Unlike the independence case� the rank that
we use to determine whether a matrix entry would make a good speci�ed point is calculated
independently for each matrix entry� Choosing to retain one point does not a�ect whether or
not another should be chosen�

Summarizing� the Quasi�Cube is described by the following data�

� The marginal distributions per row �ri��

� Three values per column� b��j�� b��j� and stdev�j��

� A bit vector� sign� which will be used to correct the estimates�

� A set of k speci�ed entries�

� The total value of the aggregates total �to reconstruct the aggregates matrix��

Algorithm REG in Figure �� is the procedure we use in the warehouse to estimate any of
the entries in the matrix� Although the algorithm shows how to estimate an entire column of
entries� individual entries can be estimated separately�

In practice� cubes are often sparse� i�e�� many of the cells have a zero value� It would be
unwise to subject these cells to an estimation process� since it is unlikely that the estimated
values would be exactly zero� Moreover� many current OLAP products take advantage of the
sparseness to e�ectively reduce the size of the cube by using specialized data structures that
retain only the non�zero cells� Incorporating empty cells in the Quasi�Cube would eliminate
the storage savings achieved by our technique� Thus� we need a method to mark empty cells
and to involve only non�zero cells in the modeling process� This is easily achieved by keeping a
bitmap description of the cube that contains ��s for the zeros and ��s for the positive cells� This
bitmap can be heavily compressed� and therefore will not take much space� To avoid paying
the overhead of decompression during retrieval one can rely on methods of doing �AND� and
�OR� operations on compressed bitmaps �����

In any given column� the linear regression would be performed over the non�zero cells of
the column� When answering a query� the system would consult �rst the bitmap to see if the
needed point is zero� and in the case it is not� would check if it is a retained point� If none of
these cases apply� then the point would be estimated using the stored parameters�

We now need to extend the method to higher dimensional cubes�

�

����� Higher Dimensional Matrices

There are two ways of dealing with cubes of dimension � � ��

� Multiregression For each value s in the domain of one of the dimensions� represent
the sub�cube formed by the other �� � dimensions by a multiregression on the marginal
distributions for each of the dimensions� For instance� for a three�dimensional matrix�
one could� For each point s in the third dimension� represent the corresponding plane by
a multiregression of the form�

pijs � b�cj � b�ri � b	 ���

where cj is the marginal distribution for column j in plane s and ri is the marginal
distribution for row i in plane s� With this method� each value in the domain of the third
dimension would be described by four values� b�� b�� b	� and stdev�s��

� Divide�and�conquer Regard the � dimensional cube as a set of q sub�cubes of dimension
� � �� Do this recursively until the sub�cubes have two dimensions� Then represent the
two dimensional matrices using the method we described in this section�

Again� for a three�dimensional cube� we could describe each plane s� as a two dimensional
matrix� representing each column j in the plane with a simple regression of the form of
Equation ��

Multiregression as a strategy becomes more complex as the number of dimensions increases�
However� for the same percentage of speci�ed points� the description of the Quasi�Cube is more
compact when using the multiregression approach than in the case of divide�and�conquer�

Another issue in the selection of the method to be employed for higher dimensions is the
space and time needed to build the Quasi�Cube� In the case of multiregression� the space is
usually greater than in the divide�and�conquer approach� since we need to keep around all the
points involved in the sub�cube on which the multiregression is to be performed� However�
the divide�and�conquer approach requires the computation of regression parameters for every
plane in the cube� a process that can potentially slow down the Quasi�Cube construction�

��� Singular Value Decomposition

Singular Value Decomposition �SVD� ���� ��� is a technique that has been used to approximate
matrices� perform statistical analysis ����� text retrieval ��� and dimensional reduction ����
Recently� Korn et al ����� published a technique to use SVD to compress large matrices into
a format that supports approximate queries�

The formal de�nition of SVD follows� Given an N �M matrix of reals X� we can express
it using Equation �� where U is a column�orthonormal �its columns are mutually orthogonal
unit vectors� N � k matrix�

V
is a diagonal k� k matrix of the eigenvalues �i of X� and V is

a column�orthonormal M � k matrix�

X � U �
�
�V ���

Equation � can be alternatively written as the spectral decomposition form� shown in Equa�
tion �� where ui and V � i are column vectors of U and V respectively� and �i the diagonal
elements of the matrix

V
�

�

X � ��u� � vt� � �	u	 � vt	 � ��� � �kuk � vtk ���

The matrix X can be approximated by selecting the � largest values of the set of �is�
Doing this� we need N� data elements from the U matrix� � entries for the eigenvalues and
�M data elements from the V matrix� So� the total number of parameters used to represent
the original matrix X is given by Equation ��

Psvd � N� � �� �M ���

Korn et al ���� propose a method� called SVDD� that gives better performance than just
approximating the matrix by truncating the number of eigenvalues used� In SVDD� the entries
that give the greatest estimation errors are retained �as we do in the previous two methods��
to guarantee that the error incurred by the estimation is kept low�

As we shall see in the experiments section� SVDD can be successfully used to model planes
of a cube� giving excellent error bounds� To use SVDD for cubes of more than two dimensions�
we have to apply the divide�and�conquer method presented in Section ������ SVDD� however�
has the following drawbacks�

� The running time of the algorithm is greater than that of linear regression or the inde�
pendence approach� Although approximate� randomized solutions have been proposed
for SVD ��	�� these solutions are only asymptotically superior and their bene�ts have not
been studied in practice yet�

� There is no known method to extend SVD to higher�dimensional matrices� Therefore�
we are forced to use divide�and�conquer to deal with cubes of more than � dimensions�
Given the running time of the application of SVD for each plane of the cube� the overall
running time to model the cube may be prohibitive in real life cases�

� There is no way of taking advantage of spareness in SVD� Even if a cell is �� it will
have to participate in the computation� This is a serious drawback� since� as we saw in
the linear regression case a better performance can be achieved if the modeling does not
have to be performed including cells that have � as their values� �Of course� cells with
zero value can be marked as such using a bitmap� as we did for linear regression� thus
eliminating the need to estimate them� but the whole plane of cells will be used to �nd
the eigenvalues��

� Besides having to use zero�valued cells in the computation� the estimated values obtained
in sparse matrices are worse than those obtained for dense matrices �as we will show in
the experiments section��

��� Implementing Quasi�Cubes

The previous subsections described several algorithms for reconstructing cubes from incom�
plete descriptions� In this section� we outline the implementation details of Quasi�Cubes�

We assume that the cell values need to be computed from the fact table� We aim for a
construction technique that requires one pass over this relation� On that pass� the entries that
would cause the greatest errors when applying Algorithm REG are selected to be part of the
speci�cation� We assume in this section that we are using the regression technique to model
regions of the cube� Notice that� when using regression� unlike the independence approach�

��

retaining an entry does not change the errors incurred on the estimation of the entries left
unspeci�ed� The selection procedure is as follows�

�� Select the size of the regions to be modeled�

�� For each region�

�a� Compute the cell values in the region by aggregating tuples in the fact table�

�b� Compute the regression parameters� assuming no items are retained� �I�e�� all non�
zero cells in the column enter in the regression calculation�� Compute the sign vectors
as well�

�c� Estimate all the cells in the region by using regression�

�d� Compute the errors incurred by the procedure as the modulo of the di�erence between
the estimated value and the known value for the entry� For each entry� try adding and
subtracting the value stdev�j�� and keep the smaller of the two errors� also recording
the sign �if the addition results in the smaller error� the sign is positive� otherwise it
is negative� in sign�i� j��

�e� For each cell� if the error is bigger than or equal to a prede�ned threshold value�
store the cell value�

A lot of the work of building a Quasi�Cube and a conventional cube is the same� In both
we need to calculate of the aggregates �cell values� from the underlying facts table �rst� After
that� there is a tradeo� between conventional cubes and Quasi�Cubes� In Quasi�Cubes we
increase the CPU overhead by computing the regression parameters �or the parameters of
whatever model we are using�� but we store only a fraction of the cell values� In the case of a
conventional cube� all the cell values will be stored� We will report the overhead incurred by
the construction of the Quasi�Cube in the experiments section�

Temporary space is also a concern when building a Quasi�Cube� We need enough space in
main memory to hold the cells of the region we are currently processing� In practice� since
cubes are sparse� this requirement is not very strict� All we need to store temporarily is the
non�zero cells and their position in the region� The position can be stored as an array of
integers that correspond to a predetermined way of traversing the cube� I�e�� the integer x
could be translated to a set of cube coordinates by the successive application of the algorithm
shown in Equation 	� where coord�i� is the position in the ith coordinate and dim�i� the
cardinality of that dimension�

coord�i� �
x

Qi��
j
� dim�j�

if i �� � ���

x if i � �

x � x �
i��Y

j
�

dim�j�

For instance in a three dimensional cube with cardinalities �� � and � respectively� the cell
��� �� �� would occupy the position x � � � � � � � � � � � � � ��� Transforming x into
coordinates would result in the following operations�

��

coord��� �
��

�
� � �	�

x � �� � � � �

coord��� �
�

�
� �

x � � � � � �

coord��� � �

We take advantage of the fact table being sorted according to one of the dimensions �this
is a common occurrence� for instance� if time is one of the dimensions� the table is naturally
sorted on the time values�� Then we select the regions to be modeled as be subsets �not
necessarily proper subsets� of the regions described by each value in the domain of the sorted
dimension � a range of values works equally well�� We bring all the tuples corresponding to
that value to memory and perform the aggregations there� Notice that the regions can be
de�ned as the cubettes formed by the particular value �or values� of the sorted dimension or
as subsets of those cubettes� if further restrictions on the other dimensions are imposed� If the
regions are proper sub�cubettes �i�e�� proper subsets of the cubettes�� then the tuples of the
fact table corresponding to the value�s� of the sorted dimension stay in main memory until
all the sub�cubettes corresponding to this value�s� have been processed� The sub�cubettes are
built following an algorithm similar to the one presented in ����� We make a pass through the
set of tuples in memory� For each tuple of them we compute the coordinates of the cell that the
tuple contributes to� If the coordinates do not fall inside of the sub�cubette being processed�
the next tuple is selected� Otherwise� if there is a counter already allocated for this cell �i�e�
these coordinates�� we increment it using the value of the aggregate attribute for that tuple�
�The presence of a counter for this cell means that a previous processed tuple corresponded
to the same cell�� If not� then we create a new counter and initialize it with the value of the
aggregate attribute for that tuple� Notice that the �nal number of counter corresponds exactly
to the number of non�zero cells in the sub�cubette� Along with the counters we keep an array
of positions that identify the cell that each counter represents� This algorithm performs very
well for sparse cubes� since the number of counters per sub�cubette will be small�

Notice that we also need the temporary space in main memory to store the tuples of the
fact table that are going to be modeled next� Either the number of tuples that correspond to
the region �t in main memory� or we bring them in blocks of tuples that do �t in memory�
Since we only execute one pass over the set of tuples� in the later case we can discard a block
of tuples as soon as it is processed and bring the next one to memory�

Once the description of the Quasi�Cube is completed� we need to store it in a compact
form� The regression parameters and row marginals are stored contiguously� They are few
enough that they can be cached in main memory at run time� The speci�ed entries may be
too large to cache� however� so a more careful organization is needed� We group them into
variable�sized segments� each segment containing selected points for a region of the cube� An
index of regions is built indicating where in the disk the regions are stored� Like the regression
parameters the index can �t in main memory at run time� Alternatively� we could simply use
a global index that stores each retained cell using its coordinates in the cube� There have
been many proposals to index cube data ranging from the usage of standard R�trees and
bit�mapped indices ������ to specialized structures �������

��

As for the sign data� it can be stored as a bitmap� similar to the one used to indicate
whether cells are zero or non�zero� Both bitmaps can be heavily compressed to reduce their
storage requirements�

��� Space Savings

This subsection deals with the gains in space achieved by Quasi�Cubes� The space taking by
a Quasi�Cube can be broken into the following items�

� Space for the retained cells� This can vary according to the way retained cells are stored�
A simple structure �such as the one explained in Section ���� would require two values
per cell� one for the actual entry and one for the o�set� A more elaborate structure may
include an index �such a B�tree� which will add space overhead to the space needed for
the cells alone� Let us call this space Sr�

� Space for the model parameters� In the case of regression that space amounts to the
marginal sums �or distributions� plus the estimated parameters of the regression model�
For SVD� we need to store k columns of the matrices U and V � plus k eigenvalues� Let
us call this space Sp�

� Space taken by bitmaps� The bitmap needed to deal with the sparseness will occupy
some space �although this space will not be very signi�cant compared with the other
requirements�� Also� in the case of regression� the sign vectors can be encoded with a
bitmap whose space overhead will be roughly the same taken by the sparse bitmap�

��� Incremental Updates

Since the data in a warehouse is bound to change incrementally� we need to discuss how to
re
ect those changes in the Quasi�Cube� without having to rebuild it entirely�

We discuss how to do this when using the regression method� For SVD it is not clear how to
incrementally update the model� The �rst� and easiest possibility is that the cells that we use
in the regression procedure are immutable� For instance� if one is using the divide�an�conquer
approach and the row marginals are kept for a dimension such as time� we do not need to
worry about the entry points ever changing� �E�g�� sales of a given product for a given store
at a given day in the past will never change�� However� new rows will be incrementally added
to the cube �e�g�� the next day of sales aggregates�� In order to deal with these new values�
one can proceed by estimating the new points using the regression parameters computed for
the original column� One of two things can happen� the error is acceptable and then we can
simply discard the point� or the error is too high and we keep the point as a selected one�

For cases in which the old aggregates themselves can change� we can follow a similar pro�
cedure� compute the estimate of the changed point and compare it with the new value� If the
error incurred is bigger than the level of error that one wants to support the new cell needs
to be retained �if it was not retained before�� Otherwise� the cell will be correspondingly esti�
mated when needed� This� may� in the long run� cause deterioration of the model parameters
�as new points are incorporated� the old parameters may not be able to properly model the
column anymore�� causing the system to retain� perhaps unnecessarily� many cells� So� an
eventual recomputation of the a�ected models is advisable� The updating of the model can
be achieved by using techniques similar to those described in ��� to update polynomial models

��

for selectivity estimation� The techniques use a method called recursive least�square�error ����
to avoid a lot of expensive recomputation�

��	 Query processing

Once the Quasi�Cube is constructed� we can use it to answer queries� Any query will request
a chunk of the matrix entries which spans one or more of our regions� For each cell in the
query� we use the index to decide if the entry is in the list of retained points or not� �For some
recent work in how to index cubes see ���� ����� If it is not� we use the model parameters to
compute it� The I�O required to fetch the retained values dominates the performance of the
query� Obviously� the performance is going to be heavily a�ected by the match between the
choice of region dimension and the query workload�

� Evaluation

In this section� we present the results of a series of experiments in which we partially speci�ed
matrices and used the estimation algorithm to reconstruct them� We will measure the accuracy
of the estimation along with the space savings achieved by the method� Before presenting the
experiments themselves� however� we �rst describe the metrics used to compare the estimated
matrix to the original one�

��� Comparison Metrics

In what follows� g�i is the original entry in the original cube� �i is the vector of coordinates
that de�nes the cell position� total �

P
e�i is the sum of all the cell values in the cube� p�i

is the corresponding value in the original probability matrix �i�e�� p�i �
e�i

total
�� and e�i is the

estimated cell probability value� �Notice that for retained entries� e�i � p�i�� Finally� N is the
number of non�zero cells in the cube�

The �rst comparison metric is the normalized average absolute error� To de�ne this metric
we �rst de�ne the average absolute error as�

AV GERR �

P
jtotal � �e�i � p�i�j

N
����

AV GERR is then the expected value of the absolute di�erences between the entries in the two
matrices� To make the value of the average absolute error comparable across di�erent matrix
sizes� we normalize it by dividing it by the average entry value in the aggregates matrix ave�
given by�

ave �

P
g�i

N
����

��

The value ave� of course� depends on the distribution of values� Dividing AVGERR by ave

we obtain a metric which we call A�

 A �
AVGERR

ave
����

We are also interested in the cumulative error� which is de�ned as

CUMERR �
X

je�i � p�ij ����

The value CUMERR has two useful interpretations� First is the total error incurred by
the estimation process� if this value is low we know the estimation is a good one� The second
interpretation can be found if we multiply and divide the term inside the sum of Equation ��
by p�i� That is�

CUMERR �
X

�
je�i � p�ij

p�i
�p�i ����

The term �
je�i � p�ij

p�i
� is simply a random variable that corresponds to the fractional error�

That is� the error incurred as a fraction of the probability entry p�i� Multiplying that term by
the corresponding probability and adding over all the values� we get the expected value of the
fractional error� Then� CUMERR can be also interpreted as the expected fractional error�

Finally� we are also interested in the normalized maximum error that can be incurred� given
by the following equation�

 M �
maxi�j�jtotal � �e�i � p�i�j�

ave
����

��� Experiments

The experiments presented in this section were conducted on a Sun UltraSparc � machine
with ��� Mbytes of RAM� running SunOS ����� �Solaris��

����� Error Metrics

We wanted to evaluate the errors incurred by our method using both synthetic data and real
data� Synthetic datasets allowed us to experiment with a variety of data distributions and see

�

Uniform �������
Normal �mean ���� std dev ���
Normal �mean ���� std dev ���
Normal �mean ���� std dev ��

Correlated Row�Col �� �X � Y �
��
Bimodal
Zipf�������
Zipf��������

Table �
 Distribution of the entries in our test matrices

how they a�ect our method� The real dataset allowed us to check our method for real�world
data�

For the synthetic data cubes� the aggregate values in the cube were drawn from one of
the �ve di�erent data distributions listed in Table �� The �rst four are standard probability
distributions in which each cell is calculated independently from its neighbors� Note that our
technique performs better when there is more structure to the data� so Uniform Distribution
is the worst case� The three Normal Distributions di�er only in the standard deviation�
The correlated distribution gives a matrix in which the aggregate value is roughly a linear
combination of the row and column values� The �nal distribution is a bimodal one� composed
of two normal distributions of means ��� and �� respectively� with standard deviations of �
for each of them� Ten percent of the points are generated with the distribution of mean ��
and the remaining 	� � of the points obey the other distribution� The overall mean �as in
the other distributions� is ���� The last two are Zipf distributions� In both� ��� of the time�
a number from a given set is generated� of the remaining ���� ��� of the time� a number
from a second set is generated� and so on� The �rst set in the �rst Zipf distribution contains
a single number N � the second contains the number N � �� and so on� In the second Zipf
distribution� the �rst set contains �� numbers� N�N ��� ���� N �	� the second set another ���
N � ��� N � ��� ���� N � �	� and so on� In both distributions N is chosen so that the mean of
the distribution is ����

Figures ����� and �� show the results for our three metrics� Each graph gives the accuracy
metric on the Y axis� The X axis in each case is the fraction of the original cube retained� For
each data point� we generated six di�erent cubes �using di�erent seeds for the data generators�
and computed the mean value� In all cases� the standard deviation over the six runs was much
less than �� of the mean� First� we tested the results over two�dimensional cubes of dimension
���� ���� ���� ����� and ������� The results were indistinguishable for di�erent matrix sizes
�remember our metrics are scaleless�� so we present only the ������x������ results in the
�gures� We also tested our results for a three dimensional matrix of size ��� � ��� � ����
using the multiregression method� The results are indistinguishable from those obtained
for two dimensional matrices� We also performed experiments using the divide�and�conquer
approach on cubes with several dimensions� In each case� the results were indistinguishable
from the previous ones� The biggest cube we experimented with had �� dimensions� � of
them with a domain of � values and � of them with a domain of ����� values �the complete
cube would have �	�� ��� � ��� points and occupy ���� Terabytes of storage�� Finally� we
perform again all the tests for cubes where only ��the cells were non�zero� For all the sizes
and dimensions mentioned above� the results remain unchanged� �Of course� the X�axis in

�	

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
ea

n
er

ro
r

Fraction of Cube Retained

Uniform distribution (0-200)
Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Retailers dataset (RDAT)

Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)
Zipf(0.8,1)

Zipf(0.8,10)

Figure ��� Mean Error for Estimated Cube Entries � �A�� using regression� The X axis gives the
fraction of the matrix that is speci	ed in the Quasi
Cube� The Y axis is the error in the entry
value as a percentage of the mean entry value�

those cases represents the percentage of retained points with respect to number of non�zero
cells��

The graphs of the regression Quasi�Cubes each have roughly the same shape� The mean
error� maximum error and total error probability decrease as the data becomes less random
and as more of the matrix is speci�ed in the Quasi�Cube�

For the normal and correlated matrices� the cube is easily characterized by the regression
algorithm and the Quasi�Cube performs well� The normal with the smallest deviation has
a mean error of about �� which� not surprisingly� does not decrease much as more of the
matrix is speci�ed� For the input matrices with larger standard deviation� the mean error
decreases linearly as more of the matrix is speci�ed� For the normal with standard deviation
of twenty� the mean error varies between about 	� and ��� Even in our worst case� the
Uniform Distribution� the mean error never goes beyond about ���� As more of the matrix
is speci�ed� the mean error drops to about ��� when half of the matrix is speci�ed and ��
when ��� is speci�ed� For the correlated matrix� the correlation is predicted exactly by the
linear regression and the �� noise we added to each point in the matrix determines the mean
error� In all cases� the maximum error is roughly twice as much as the mean error in each of
these cases� hence it drops more quickly as more of the matrix is speci�ed� We see that in the
Bimodal distribution� the maximum error drops signi�cantly when going from ��� to ��� of
the matrix being speci�ed� In this case� the second part of the distribution �mean �� with
��� of the points� drags the regression coe�cients� causing some of the points in the �rst
part of the distribution �mean ���� 	�� of the points� to be wrongly estimated� After roughly
��� of the entries have been speci�ed� most of the points obeying the smallest distribution
are already retained� but the e�ect of them on the regression coe�cients lingers� making the

��

0

5

10

15

20

25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
ax

im
um

 e
rr

or

Fraction of Cube Retained

Uniform distribution (0-200)
Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Retailers dataset (RDAT)

Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)
Zipf(0.8,1)

Zipf(0.8,10)

Figure ��� Maximum Error for Estimated Cube Entries � �M�� using regression� The X axis gives
the Fraction of the matrix that is speci	ed in the Quasi
Cube� The Y axis is the maximum
error in the entry value as a percentage of the mean entry value�

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pe
rc

en
ta

ge
 e

rr
or

Fraction of Cube Retained

Uniform distribution (0-200)
Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Retailers dataset (RDAT)

Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)
Zipf(0.8,1)

Zipf(0.8,10)

Figure ��� Cumulative Error �CUMERROR�� using regression� The X axis gives the fraction of
the matrix that is speci	ed in the Quasi
Cube� The Y axis is the cumulative error in the entry
values of the probability matrix corresponding to the Quasi
Cube�

��

drop of the error less pronounced than in the other curves� Nevertheless� even with this badly
behaved distribution our method performs extremely well� the mean error never exceeds ��
�� The curves corresponding to the Zipf distribution show the method does extremely well�
the maximum error for Zipf������� and Zipf�������� are �� and �the fact that most of the
numbers generated by this distributions are clustered in a small region� making the linear
regression model �t the data very well� Although the distributions have a long tail� the values
in the tail are not many and can be easily retained�

The curve�s� labeled RDATA in Figures ����� and �� corresponds to a real data set which
contains data from a survey of retailers� From each tuple of the dataset seven attributes were
used �the rest of the data in the tuple is textual�� The �rst six are dimension attributes �such
as product� store� and the seventh one is the attribute aggregate attribute �i�e�� sale amount��
The corresponding cardinalities of the attributes are �	�� ��� 	��� ����� �� �	� The size of
each tuple is ��� bytes and the dataset had a total of ����		� tuples �i�e�� �����	���� bytes��
The complete cube for this data set would have ����	������������� cells� but since the data is
sparse only ������� cells are non�zero� Quasi�cubes of various error levels were built for this
dataset in a manner that will be described in Section ������ We modeled �	� cubettes �one per
each value of the �rst attribute� of size ���	�����������	 each one� using multiregression
on the �ve dimensions� Here we wanted to report the error levels vs� the fraction of points
in the cube that were retained� to compare that performance with that of the synthetic data�
As can be seen in the �gures� the errors obtained with this dataset are small �considerably
less than the worse case represented by the uniform distribution��

Unlike regression� SVD gives di�erent error results for di�erent matrix sizes and shapes�
In Figures ����� and �� we show the results of using SVD to model planes of size ����� ���
in the cubes� �I�e�� we tried cubes of several dimensions in which two of the dimensions had
cardinalities ���� and ��� respectively�� Figures ��� �� and �	 show the results obtained when
modeling planes of size ���� ��� in the cubes� All these results were obtained by generating
cubes using the distributions shown in Table �� in the same way we did for the regression
experiments� For each cube� we use the divide�and�conquer approach� modeling planes of the
cube� In each case the number of eigenvalues used is �� � of the number of rows in the matrix�
Square matrices always perform worse than rectangular ones for SVD� �It is also true that for
rectangular ones we obtain a better space reduction� since we only need N � k � k � k �M

parameters for the estimation� and M � N ��
As we can see in the �gures� the percentage of points needed to be retained to achieve the

same level of errors we got with the regression approach is smaller� Although the errors for
the other distributions are very encouraging� we should point out that� given the increased
running time of SVD when compared with regression �we will show the �gures later on in this
section�� we were not able to try SVD in cubes as big as we used for the regression approach�
We tried di�erent cubes from two dimensional ones �of sizes ���� ���� and ����� ����� to
cubes with many dimensions� obtaining similar results in every case� We also tried sparse
cubes �in which the fraction of non�zero cells was ��� of the total number of cells� obtaining
similar results� �The biggest cube we tried had � dimensions � of them with � values� one
with ��� values and one with ����� values� for a total of ���� million cells�� Finally� Figure ��
reveals a serious drawback of the SVD approach� The curves show the maximum error as a
function of the percentage of points retained for three planes of size ���� ��� with spareness
��� ��� and 	�� respectively� The measurements show that as the matrices become more
sparse� the results are worse� I�e� the percentage of points needed to retain the same level of

��

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
ea

n
er

ro
r

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure ��� Mean Error for Estimated Cube Entries using SVD in cubes with planes of size
����� ���� �A�� The X axis gives the fraction of the matrix that is speci	ed in the Quasi
Cube�
The Y axis is the error in the entry value as a percentage of the mean entry value�

error increases drastically� In other words� SVD� does not deal very well with sparse cubes�
We did not conduct tests over RDATA using SVD for the following reasons�

�� We would have had to model the cube plane by plane� Due to the spareness of the
dataset� each plane has very few non�zero cells �usually � or ��� SVD is ine�ective in
that case� since the estimation of the cells gives high errors and the algorithm ends up
retaining most of the cell values�

�� The overhead imposed by using SVD is considerably higher than that caused by regres�
sion� This along with the need of modeling the cube by planes� would have resulted in
an extremely large time to build the Quasi�Cube for RDATA�

When Quasi�Cubes are constructed using the independence assumption� the mean error is
slightly worse than in the regression approach� However� the maximum error is signi�cantly
worse �see Figure ���� Also� for some of the distributions� the behavior is erratic �bimodal�
correlated�� the error can go up as more points are speci�ed� This is due to the property
that we mentioned in Section �� when using the independence approach� retaining a cell has a
impact on the errors incurred in estimating the others� The worst part about the independence
Quasi�Cube is that the more �interesting� the data in the underlying database� the worse the
Quasi�Cube will behave� The graphs of Figure �� were obtained using the heuristic described
in Section ����

����� Space Savings

Figure �� shows how much storage is saved by Quasi�Cubes using the regression approach� In
this graph� the X axis shows the maximum acceptable error� The Y axis shows what percent

��

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
ax

im
um

 e
rr

or

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure ��� Maximum Error for Estimated Cube Entries� using SVD in cubes with planes of size
����� ��� � �M� The X axis gives the Fraction of the matrix that is speci	ed in the Quasi
Cube�
The Y axis is the maximum error in the entry value as a percentage of the mean entry value�

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 e

rr
or

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure �
� Cumulative Error using SVD in cubes with planes of size ����� ��� �CUMERROR��
The X axis gives the fraction of the matrix that is speci	ed in the Quasi
Cube� The Y axis is the
cumulative error in the entry values of the probability matrix corresponding to the Quasi
Cube�

��

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
ea

n
er

ro
r

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure ��� Mean Error for Estimated Cube Entries using SVD in cubes with planes of size
��� � ���� �A�� The X axis gives the fraction of the matrix that is speci	ed in the Quasi
Cube�
The Y axis is the error in the entry value as a percentage of the mean entry value�

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
ax

im
um

 e
rr

or

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure ��� Maximum Error for Estimated Cube Entries� using SVD in cubes with planes of size
���� ��� � �M� The X axis gives the Fraction of the matrix that is speci	ed in the Quasi
Cube�
The Y axis is the maximum error in the entry value as a percentage of the mean entry value�

��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 e

rr
or

Fraction of Cube Retained

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Zipf(0.8,10)

Figure ��� Cumulative Error using SVD in cubes with planes of size ���� ��� �CUMERROR��
The X axis gives the fraction of the matrix that is speci	ed in the Quasi
Cube� The Y axis is the
cumulative error in the entry values of the probability matrix corresponding to the Quasi
Cube�

0

2

4

6

8

10

12

14

16

18

20

22

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

im
um

 e
rr

or

Fraction of Cube Retained

dense cube
50 % sparse
90 % sparse

Figure ��� Maximum Error for Estimated Cube Entries� using SVD in cubes with planes of
size ���� ��� � �M� for three di�erent levels of spareness�The term x� sparse means that x out
of each ��� cells are zero� The X axis gives the Fraction of the matrix that is speci	ed in the
Quasi
Cube� The Y axis is the maximum error in the entry value as a percentage of the mean
entry value�

��

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
ax

im
um

 E
rr

or
 a

s
P

ct
 o

f M
ea

n
E

nt
ry

Fraction of Cube Specified

Uniform distribution (0-200)
Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)

Linear Combination (slope 2 plus/minus 5)
Normal distribution (mean=100,sd=2)

Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

Figure ��� Maximum Error under the Independence Assumption� The X axis gives the fraction
of the aggregate matrix that is speci	ed in the Quasi
Cube� The Y axis is the maximum error
for any entry� In these experiments we used the independence assumption to select speci	ed
points and to estimate the unspeci	ed ones

of the storage required by a full cube one saves using the Quasi�Cube� When the maximum
acceptable error is �� and the input matrix is normally distributed �mean ���� sd ��� the
space savings is ����� Thus� a Quasi�Cube for this data will use ��� of the storage required
by a full data cube�

Figure �� shows the space savings obtained when using SVD on cubes with planes of dimen�
sion ����� ���� Notice that the gains observed in terms of fraction of retained points needed
for a given error �Figure ��� are somewhat o�set by the need of keeping more parameters than
in the regression approach� Nevertheless� the overall space savings for SVD are greater than
those obtained by the regression approach�

����� Building Quasi
Cubes

To measure the overhead imposed by modeling sections of the cube in the total time of building
the Quasi�Cube� we implemented a prototype that follows the description of Section ���� The
system can build regions of the data cube in memory by aggregating the appropriate tuples
from a fact table� Regions are computed by computing the aggregate values for each cell
in the region� using the tuples in the fact table in the manner explained in Section ���� To
improve performance� regions are characterized as containing all the tuples for one �or more�
values of the �rst dimension attribute� Since the fact table is ordered by the values of the
�rst dimension� it is possible to load at once all the tuples that contain an speci�c value�s�
for that attribute and proceed to compute the aggregates in memory� Once the region is
computed� the modeling process over that region takes place� Those cells whose errors are
larger than a prespeci�ed error are retained� For the rest of the cells� the errors are evaluated

��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

sa
vi

ng
s

maximum error

Uniform distribution (0-200)
Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope 2 plus/minus 5)
Bimodal Distribution (mean1=105,sd1=2,mean2=55,sd2=2)

RDATA

Figure ��� Space Savings �fs� using the regression approach� The X axis gives the maximum
error� The Y axis is the space savings obtained by the Quasi
Cube as a fraction of the total
space taken by the cube�

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40

sp
ac

e
sa

vi
ng

s

max error

Normal distribution (mean=100,sd=20)
Normal distribution (mean=100,sd=10)
Normal distribution (mean=100,sd=2)

Linear Combination (slope plus/minus 10)
Bimodal Distribution (mean1=105,sd1=,mean=55,sd=2)

Figure ��� Space Savings �fs� using SVD� for a cube with planes of dimension ����� ���� The
X axis gives the maximum error� The Y axis is the space savings obtained by the Quasi
Cube
as a fraction of the total space taken by the cube�

�

Dimensions Time to build the Quasi�Cube Time to build the conventional Cube

��� ��� �		� ��	�� �� 	� ��
�� sec ����� sec
�� ��� �		� ��	�� �� 	� 	�� sec� ��� sec�

Table �
 Time to build Quasi�Cubes and cubes

and the metrics are updated accordingly� This process continues until all the regions have
been modeled� Alternatively� to allow comparison with regular cubes� the system allows the
building of entire cubes� i�e�� computing aggregates to �gure out every cell in each region but
not modeling the region�

We used this software for building Quasi�Cubes for the RDATA dataset using regression as
the modeling tool �with the error results reported in the previous section�� Table � shows the
performance of this system� The second column lists the time it takes to build a Quasi�Cube�
while the third column list the time to build the whole cube �without modeling regions�� The
�rst row in the table corresponds to the experiment we ran using RDATA� For the second
row� we took only a subset of RDATA� corresponding to the �rst value of attribute � and
built a smaller Quasi�Cube �and cube� of the dimensions shown in the table� The overhead
imposed by the regression method� although considerable ������ is manageable� a Quasi�Cube
of the larger size ��	�� ��� 	��� ����� �� �	� takes approximately ��� hours to be built
in its entirety� We also see that the time to build Quasi�Cubes scales well with the size and
dimensions of the dataset� The time to build the small Quasi�Cube is not exactly �

���
of the

time needed to build the larger one� simply because the region we chose contains less than the
average number of non�zero cells of regions in the larger cube ���� non�zero cells were present
in the smaller cube� while the average per region in the larger cube is �������� The process
of building Quasi�Cubes is CPU bound� Only ����� seconds were spent waiting for I�O when
building the large Quasi�Cube� The system does not require anymore I�O than the necessary
to bring the relation �in steps� to memory� As stated previously� we did not conduct the tests
over RDATA using SVD�

We also conducted an experiment to compare the running time of the regression and SVD
techniques� The results are shown in Table �� The running times shown are to model planes of
the size indicated in each column� once the whole matrix was in memory� �They were obtained
by measuring the time needed to model ����� planes and dividing that time by ������� The
spareness of the matrix is shown in the second column of the table �e�g�� a value of 	�� means
that ninety percent of the cells of the matrix were ��� Two things are made clear by this table�
First� the running times of SVD are clearly several orders of magnitude greater than those of
the regression technique� Secondly� unlike regression� where the running time decreases with
the spareness of the matrix� SVD running time is independent of how sparse the matrix is�

����� Queries

We wanted to understand the behavior of queries on the proposed method� In order to do
that� we indexed the retained values using a B�tree� As the key of the B�tree we used the
concatenated coordinate values that de�ne the position of the retained cell in the cube� �I�e��
in a tridimensional cube� the cell i� j� k will have the concatenated key ijk�� Then we ran a
series of queries and measure their response time� Each query�s response time was measured
for a number of di�erent error thresholds �recall that the error threshold selected determines

�	

Algorithm size spareness ��� running time �msec��
Regression ���� ��� ��� ���

���� ���
�� ���
���� ��� ��� ��

���� ��� ��� ���
���� ���
��
�
���� ��� ��� ��

���
�� ��� ���

���
��
�� �
�

���
�� ��� ���

��� �� ��� �

��� ��
��

��� �� ��� �

��� �� ��� �

��� ��
�� 	

��� �� ��� �

SVD ���� ��� ��� ��
��
���� ���
�� ��
��
���� ��� ��� ��
��
���� ��� ��� ���
��
���� ���
�� ���
��
���� ��� ��� ���
��

���
�� ��� �������

���
��
�� �������

���
�� ��� �������

��� �� ��� ���

��� ��
�� ���

��� �� ��� ���

��� �� ���
��

��� ��
��
��

��� �� ���
��

Table �
 Comparison of running times for building models using regression and SVD

��

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ex
ec

ut
io

n
tim

e

maximum error as pct of mean entry

1x1x10

Figure ��� Response time for a query of size � � � � �� over a Quasi
Cube of dimensions
����� ����� ��� The Y axis gives the response time in seconds �this value is the average of ���
queries�� The X axis is the maximum error in the entry value as a percentage of the mean entry
value�

the points that need to be retained�� The results are shown in Figures ��� �� and �� which
correspond to queries of sizes � � � � ��� � � ���� � � and ��� � ��� � � performed over a
Quasi�Cube of size ����� ����� ��� �For a given query size� we generated di�erent queries
by moving the cubettes de�ned by the query around the cube� We averaged the results of
��� di�erent queries in each case�� In each case we can appreciate the tradeo� between errors
and response time� tolerance for errors translates into drastically better performance� For
instance� in the largest query ���� � ��� � ��� the di�erence between the perfect�s answer
performance ��� sec� and the performance obtained with �� � of error is almost an order of
magnitude� These measurements suggest that our technique is a very good way of supporting
�Online Aggregation� ����� by providing quick� approximate answers to queries and re�ning
the answers as the user looks at them� It would be enough to order the retained points
according to the level of error they incur when estimated� and successively substitute the
estimations by the real values �going to the disk�� We plan to address this issue in future
research�

� Other Bene�ts of Modeling

Beside achieving space compression and helping support multiresolution queries and on�line
aggregation� modeling parts of the cube gives a lot of useful information that helps to under�
stand patterns in the data and to answer analytical questions�

For instance� the parameters in a regression model tell us to which dimensions the aggre�
gates are more sensitive to� Consider� for instance a regression model built for sales data on

��

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ex
ec

ut
io

n
tim

e

maximum error as pct of mean entry

1x1000x1

Figure ��� Response time for a query of size � � ���� � � over a Quasi
Cube of dimensions
����� ����� ��� The Y axis gives the response time in seconds �this value is the average of ���
queries�� The X axis is the maximum error in the entry value as a percentage of the mean entry
value�

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ex
ec

ut
io

n
tim

e

maximum error as pct of mean entry

500x500x5

Figure �
� Response time for a query of size
�� �
�� �
 over a Quasi
Cube of dimensions
����� ����� ��� The Y axis gives the response time in seconds �this value is the average of ���
queries�� The X axis is the maximum error in the entry value as a percentage of the mean entry
value�

��

three dimensions� date� average temperature on that day and dollars invested in publicity�
Assume one of such models has been created for each region in the country� The resulting
model has the form shown in Equation ���

Sr � �rD � 	rT �
rPr ����

where each parameter has been indexed using the region that corresponds to the model� A
model that results in
r �� 	r
r �� �r is indicating right away that publicity has a
deeper e�ect in sales than any of the other factors involved� Moreover� comparing models
for di�erent regions� one can see how the corresponding parameters fare� perhaps making
meaningful conclusions along the way� �E�g�� publicity has a more direct e�ect in sales in the
Northeast than in the Midwest��

Regression models are not by any means the only ones that o�er interesting information�
Using SVD� for instance one may uncover hidden correlations among the di�erent dimensions
of the problem� Using the previous example� one could perform SVD in planes of date vs�
publicity �keeping the rest of the dimensions �xed� and discover for which days publicity has
the most signi�cant e�ect� This can be achieved easily by considering the approximation
shown in Equation ��� after selecting the k largest eigenvalues in Equation �� substituting X
by S �sales�� U by D �date� and V by P �publicity��

Sk � Dk �
�

k

�Pk ����

The rows of P T
k �
V

k above represent the publicity described by the dates in which it has the
most e�ect on sales�

Finally� the outliers are valuable pieces of information� They tell the analyst that this cells
do not quite conform to the model that describes the rest of the cells well� An outlier can
show� for instance� an exceptionally large sales value for a combination of dimension values
that is worth looking into to understand what event brought the unexpected increase in sales�

Thus� modeling parts of the data cube can be also regarded as a �rst approach to mine
information from the data warehouse�

� Related Work

Multidimensional data bases are a central concept in the �eld commonly known as On�Line
Analytical Processing �OLAP�� OLAP systems are typically implemented either directly on
top of relational systems or as a combination of a relational system and a proprietary multi�
dimensional database �MDDB� ���� In both approaches the underlying database is stored in
a relational system� In a fully relational implementation �ROLAP�� data cube queries are
transparently converted into queries on the underlying relational database� Clever indexing
schemes and careful query optimization are used to improve the performance of these queries�
In the MDDB approach� the cube data is extracted from the database� converted into multi�
dimensional arrays� and clustered so that common cube queries require minimal I�O� There
are products in both the relational arena ���� and the MDDB world �Sinper�s Spreadsheet
Connector� that materialize only parts of the data cube� However� ours is the �rst approach
that uses approximate cubes to save storage�

The Stanford University Data Warehousing Project studies methods to achieve e�cient
implementations of complete data cubes� A summary of research problems is presented in

��

����� Harinarayan� Rajaraman and Ullman ���� describe a near optimal algorithm to decide
which parts of the cube should be materialized to obtain best performance and lowest space
utilization�

The problem of completing partially speci�ed tables given constraints on the sum by
columns and rows has been studied in the domain of statistics and linear algebra ����� S�
Abad ��� uses three methods� mutual independence� maximum correlation and minimum cor�
relation to combine statistical tables� The three estimates provide bounds for the answers�
However� our experiments show that providing just the column and row sums does not give
su�cient accuracy for moderate and large matrices� Also� we have observed that the errors
incurred by using the mutual independence approach are bigger than those incurred by our
regression method�

� Conclusions

The data warehousing community has found data cubes to be a useful way to present sum�
mary descriptions of large databases to users� In this paper� we have shown a technique for
presenting essentially the same information as a standard data cube but with signi�cantly
reduced storage cost� The Quasi�Cube structure uses a concise data representation consist�
ing of a fraction of the standard cube entries and a set of model parameters� Queries of
the Quasi�Cube estimate the missing entries with a reasonable level of accuracy using linear
regression�

Our experiments have shown that Quasi�Cubes based on linear regression work better than
ones based on the independence model or SVD� While the mean error is roughly the same for
both methods� linear regression does a better job in keeping the maximum error down� We also
should point out that the major disadvantage of the independence method is that the optimal
selection of speci�ed points is a di�cult task� Our results hold over several di�erent kinds of
data distributions� including some that are badly behaved� such as the bimodal distribution�
The results are also independent on the size of the matrix� Although SVD achieves better error
rates than regression for dense cubes� the main problems with this method are its overhead�
the fact that the method cannot take advantage of spareness and performs poorly with very
sparse cubes and the need to always model the cubes plane by plane�

Altogether� we believe that our approach is a very practical way of reducing the space
needed to store cubes and that Quasi�Cubes are a viable alternative to the methods used
currently in practice to do OLAP� We have shown that our results are robust over a variety
of data distributions and sizes of the cube� holding even for cubes with a large number of
dimensions and points ��� dimensions and over �	� billion entries��

Although the building of a Quasi�Cube imposes an overhead in running time over the
building of a traditional cube �mainly due to the need of computing regression parameters��
we have seen that this overhead is manageable� It is also a fact that in building Quasi�Cubes
instead of cubes� we are trading I�O time �in queries� and disk space for CPU time �in building
the Quasi�Cube�� This is a reasonable trade since CPU speeds tend to grow faster than I�O
speeds� Moreover� the regression and estimation of errors is a highly parallelizable operation�
opening the door for more speedups�

Sometimes� one of the points of doing OLAP is to �nd extraordinary numbers� e�g�� very
high sales of a product� For this applications� it would be convenient to retain the entries that
satisfy the criterion of �extraordinary�� This can be simply incorporated into our proposal by

��

making sure that every point is tested for quali�cation� If a point quali�es� it is not discarded
�but rather� retained�� regardless of the error incurred by its estimate� By doing so� however�
one pays the price of an increased number of retained points in the Quasi�Cube� therefore
reducing the storage gains�

Even if the application cannot tolerate the smallest errors our method provides a systematic
way of ordering cube cells according to the error they incur when estimated� Cells can be
classi�ed in bins each one corresponding to an error level� Cells belonging to the same bin can
be cluster together in the disk� When a query is posed� a quick� approximate answer can be
given by fetching the cells needed for the answer that correspond to the highest error level�
while estimating the rest of the cells in the answer� This answer can be re�ned by bringing
cells from the next level and substituting their estimated values by the real ones� Successive
levels can be brought from the disk until either the user is satis�ed with the answers accuracy
or the answer contains no error� This process is similar to that presented in ����� with one
exception� while their technique is based in sampling the fact table� our technique is based
in pre�classifying the cells according to the model used for the Quasi�Cube construction� We
plan to experiment with this technique in the future and evaluate its performance and merits�

Two additional uses of our technique are worth noticing� First� our methods can serve
as the basis to implement Online aggregation ����� a method by which quick� approximate
answers to queries are initially given to the user� while the system keeps re�ning them in an
online fashion� We are currently implementing a system that uses Quasi�Cubes to support
Online aggregation� Secondly� the models utilized to characterize parts of the cube o�er a rich
set of parameters that are very useful to the analyst� as we discussed in Section ��

Furthermore� there are other modeling techniques that need to be studied in the context
of compressing data cubes� Among these we want to study in the future wavelets ��� ��� and
loglinear models ��� �specially suited for categorical data� i�e� data whose sale consists of a
series of categories�� A preliminary study of the characteristics of modeling techniques can be
found in ����

In practice� some data distributions may arise for which our methods will not perform
as well as shown here� Perhaps Quasi�Cubes based on models more complex than linear
regression can be used in those cases� However� even if Quasi�Cubes cannot replace normal
data cubes in all instances� it is still a useful technique for data warehouse designers�

References

��� S� Abad�Mota� Approximate Query Processing with Summary Tables in Statistical
Databases� In Proceedings of the �rd Int�l Conference on Extending Database Technology�
Vienna� Austria� March �		��

��� A� Agresti� An Introduction to Categorical Data Analysis� John Wiley� New York� �		��

��� D� Barbar!a� W� DuMouchel� C� Faloutsos� P�J� Haas� J�M� Hellerstein� Y� Ioannidis�
H�V� Jagadish� T� Johnson� R� Ng� V� Poosala� K�A� Ross� and K�G� Sevcik� The New
Jersey Data Reduction Report� Bulletin of the Technial Committee on Data Engineering�
�������"��� December �		��

��� C�M� Chen and N� Roussopoulos� Adaptive Selectivity Estimation Using Query Feedback�
In Proceedings of the ACM�SIGMOD International Conference on Management of Data�
Minneapolis� Minnesota� May �		��

��

��� G� Colliat� OLAP� Relational and Multidimensional Database Systems� SIGMOD Record�
������ September �		��

��� I� Daubechies� Orthonormal Bases of Compactly Supported Wavelets� Communications
on Pure and Applied Mathematics� ���	�	"		�� �	���

��� R�O� Duda and P�E� Hart� Pattern Classi�cation and Scene Analysis� Wiley� New York�
NY� �	���

��� S� Dumais� Latent semantic indexing �LSI� and trec��� In Proceedings of the Second Text
Retrieval Conference� Gaithersburg� Maryland� March �		��

�	� C� Dyreson� Information Retrieval from an Incomplete Data Cube� In Proceedings of
the ��nd International Conference on Very Large Data Bases� Bombay� India� September
�		��

���� E�L� Glaser� P� DesJardins� D� Caldwell� and E�D� Glaser� Bit string compressor with
boolean operation processing capability� U�S� Patent # �������� July �		��

���� J� Gray� A� Bosworth� A� Layman� and H� Pirahesh� Data Cube� A Relational Aggrega�
tion Operator Generalizing Group�By� Cross�Tab� and Sub�Totals� In Proceedings of the
International Conference on Data Engineering� New Orleans� �		��

���� V� Harinarayan� A� Rajaraman� and J�D� Ullman� Implementing Data Cubes E�ciently�
In Proceedings of the ACM�SIGMOD Conference� Montreal� Canada� �		��

���� J�M� Hellerstein� P�J� Haas� and H�J� Wang� Online Aggregation� In Proceedings of the
ACM SIGMOD International Conference on Management of Data� Tucson� Arizona� May
�		��

���� T� Johnson and D� Shasha� Some Approaches to Index Design for Cube Forests� Bulletin
of the Technical Committee on Data Engineering� March �		��

���� I�T� Jolli�e� Principal Component Analysis� Springer Verlag� �	���

���� R� Kimball� The Data Warehouse Toolkit� How to Design Dimensional Data Warehouses�
John Wiley� New York� �		��

���� F� Korn� H�V� Jagadish� and C� Faloutsos� E�ciently Supporting Ad Hoc Queries in
Large Datasets of Time� In Proceedings of the ACM SIGMOD International Conference
on Management of Data� Tucson� Arizona� May �		��

���� S� Mallat� A Theory for Multiresolution Signal Decomposition� the Wavelet Representa�
tion� IEEE Transactions on Pattern Analysis and Machine Intelligence� ���������"�	��
July �	�	�

��	� C�H� Papadimitriou� P� Raghavan� H� Tamaki� and S� Vempala� Latent Semantic Indexing�
A Probabilistic Analysis� In Proocedings of the ACM Conference on Principles of Database
Systems 	PODS
� Seattle 	to appear
� �		��

���� W�H� Press� S�A� Teukolsky� W�T� Vetterling� and B�P� Flannery� Numerical Recipes in
C� The Art of Scienti�c Computing� Cambridge University Press� Cambridge� MA� �		��

��

���� S� Sarawagi� Indexing OLAP data� Bulletin of the Technical Committee on Data Engi�
neering� March �		��

���� E� Seneta� Non�negative matrices and Markov Chains� Springer�Verlag� New York� �	���

���� D� Srivastava and K� Ross� Fast Computations of Sparse Cubes� In PRoceedings of the
��rd International Conference on Very Large Data Bases� Athens� Greece� August �		��

���� Inc� Stanford Technology Group� Designing the DataWarehouse on Relational Databases�
White Paper�

���� G� Strang� Linear Algebra and its Applications� Academic Press� �	���

���� J� Widom� Research problems in data warehousing� In Proceedings of the �th Int�l
Conference on Information and Knowledge Management 	CIKM
� November �		��

���� R�J� Wonnacott and T�H� Wonnacott� Introductory Statistics� John Wiley� New York�
�	���

���� P� Young� Recursive estimation and time�series analysis� Springer�Verlag� New York�
�	���

��

