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Abstract 

Recently, it has been found that the technique of search- 
ing for similar patterns among time series data is very 
important in a wide range of scientific and business ap- 
plications. In this paper, we first propose a definition 
of similarity based on scaling and shifting transforma- 
tions. Sequence A is defined to be similar to sequence 
B if suitable scaling and shifting transformations can 
be found to transform A to B. Then, we present a geo- 
metrical view of the problem so that the scaling factor 
and the shifting offset can be determined. Moreover, 
sequence searching based on tree-based indexing struc- 
ture can be performed. Finally, some technical aspects 
are discussed and some experiments are performed on 
real data (stock price movement) to measure the per- 
formance of our algorithm. 

1 Introduction 

Recently, it has been found that the technique of 
searching for similar patterns among time series 
data is very important in a wide range of scientific 
and business applications [l, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 141. A time series Q is a sequence of 
real number (q1 , . . . . qn) collected regularly in time, 
where each number represents a value at a point of 
time. For example, stock and weather data are in 
the form of sequences and so they are time series 
data. 

In general, most of the current work on time 
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Figure 1: Examples of scaling and shifting trans- 
formation 

series searching consider the problem below: Given 
a query sequence Q = (ql, . . . . q,J and a set of data 
sequences S = {Sr, . . . . SI} stored in a database, 
they want to search for data subsequences S’ that 
-are similar to Q, where S’ are subsequences of S; 
(1 < i 5 1). The distance functions of L, metric 
are usually used to measure the dissimilarity of two 
sequences. Given two sequences X = (51, . . . . 5,) 
and Y = (yr, . . . ,yn), their distance D,(X, Y) is 
calculated by 

l&(X, Y) = p 2 IG - Y$ 

4 i=l 

In particular, [l, 21 consider the special case 
that p = 2, i.e., Euclidean Distance is the sole 
consideration for sequence similarity. However, in 
many applications, a weaker version of similarity 
which considers the effect of scaling and shifting 
is required. In the example below, we show how 
scaling and shifting affect the seqrience similarity. 
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Example: In Figure 1, three sequences are 
shown. They atre A = (5,10,6,12,4), B = 
(10,20,12,24,8), and C = (25,30,26,32,24). Al- 
though they are different time series, they are 
closely related. B can be obta,ined from A by scal- 
ing it up 2 times: and C can be obtained from A 
by shifting it up 20 units. Moreover, if B is scaled 
down by 0.5 and then shifted up by 20 units, it be- 
comes C. That means they are actually the same 
after applying suitable scaling and shifting trans- 
formations. 

As mentioned in [6, 151, for stock analysis, 
a.lthough the stock price of company C is higher 
than that of company A, if they have the same 
fluctuation (sequences C and A in Figure l), they 
should be considered to have the same trend of 
price. Even though the stock price of company B 
is always two tim,es larger than that of company 
A (sequences B and A in Figure l), if their 
fluctuation is proportional to their price, the trend 
of their price should also be regarded as the same. 

In [4], the authors suggest a general idea that 
sequence A is simi.lar to B if A can be transformed 
to B by a series of pre-defined transformations. 
In particular, the authors in [5] consider moving 
average and time wrapping as the pre-defined 
transformations. They define the dissimilarity 
between sequences A and B as the minimum 
possible distance after A and B are transformed 
by a series of pre-defined transformations. In 
this paper, we will also use a similar approach 
to define dissimilarity. However, we consider the 
transformations of scaling and shifting. Consider 
Figure 1 again, if A is the query sequence, then 
our algorithm will report B and C with their 
corresponding scaling factors and shifting offsets 
that transform A to B and C. 

Notice that the searching algorithm should avoid 
brute-force checking for the scaling factors and 
the shifting offsets. It is because real applications 
usually involve a large amount of da,ta and the 
brute-force checking will significantly degrade the 
performance. Thus, in this paper, we will present a 
geometri.cal view of the problem so that the scaling 
factor and the shifting offset can be determined 
without brute-force checking. Moreover, sequence 
searching based on tree-based indexing structure 
can be performed efficiently. 

The rest of the paper is organized as follows. 

Section 2 provides a survey of related work. We 
will present our definition of sequence similarity in 
Section 3. In Section 4, the knowledge of vector 
geometry will be reviewed. Then, in Section 5, we 
will present the geometrical view of the problem. 
Based on the geometrical view, we will show our 
algorithm in Section 6. Finally, several concluding 
remarks are given in Section 7. 

2 Related Work 

Various methods have been proposed for time 
series searching. In [l], an indexing scheme called 
F-index is suggested to handle data sequences and 
query sequences of the same length. Firstly, each 
data sequence is transformed by n-point Discrete 
Fourier Transform. The first fc coefficients are 
kept and regarded as a f,-dimensional point. The 
feature points are then indexed by an R*-tre,e 
[16]. For a range query, the query sequence is 
first mapped to a point in the f,-dimensional 
space similarly. Then, the R*-tree is searched 
and all feature points that are within the error 
distance from the query sequence are retrie.ved. 
This method guarantees no false dismissal, but it 
may cause false alarms. Thus, the original Idata 
sequences corresponding to the points retrileved 
have to be checked against the query sequence. 

The results in [l] are further generalized in [2] 
and the ST-index is proposed to handle data se- 
quences of different lengths. A sliding window with 
length n is placed over the data sequences. The 
subsequence within each window is transformed 
by n-point Discrete Fourier Transform. After all 
data subsequences are transformed, a trail will b,e 
formed. The trail is divided into sub-trails, which 
are then represented by minimum bounding rect- 
angles(MBR) f o an R*-tree. For ,range query, al.1 
MBR that intersect the query region will be re- 
trieved. This method also guarantees no false dis- 
missal, yet false alarms are still possible, and so the 
original data sequences have to be checked against 
the query sequence, too. The methods proposed 
in [l, 21 are very elegant. However, they use Eu- 
clidean Distance for sequence similarity without 
considering any transformation. As shown by the 
example in Section 1, it is better to consider se- 

quence similarity with scaling and shifting in some 
applications such as stock analysis. 

238 



The definition of similarity used in this paper is 
similar to those proposed in [4]. In [4], the authors 
develop a general framework for similarity queries. 
The framework consists of a transformation rule 
language T. An object A is said to be similar to an 
object B if A can be transformed to B by a series of 
transformations defined in T. Each transformation 
applied has a cost and the total cost is used to 
measure the distance between A and B. 

In [5], the authors consider the case that T con- 
tains the transformation of moving average and 
time wrapping. They first show that the defini- 
tion of sequence similarity with moving average 
and time wrapping has a wide range of real ap- 
plications. Then, they illustrate by real stock data 
that the transformations help to identify similar 
runs of stock price. They also propose a first in- 
dexing method that can handle moving average 
and time warping. An index I is constructed as 
in [l, 21 first. For each query, a transformation in 
T is given. Then a new index I’ is built in real 
time based on the given transformation T and the 
search is performed on the new index I’. Our def- 
inition of sequence similarity is similar to that of 
this paper. However, we consider the case that T 
contains the scaling and shifting transformations. 

In [3], another definition of similarity which also 
considers scaling and shifting is proposed. The 
similarity definition of two sequences of the same 
length n is presented as follows. Given a tolerance 
E, two sequences Sr, Sz of the same length are 
said to be similar or lie within an envelope of a 
specified width if after their offsets are adjusted 
appropriately and their amplitudes are scaled by a 
suitable amount, they become Si and Si such that 
for all 1 5 i 5 n, ]Si[;] - Sl,[;]( 5 E. The similarity 
definition of two sequences with different length is 
also given. For a maximum gap size of y, a window 
size of w and a tolerance of e, two sequences Tl, 
T2 with different lengths are said to be similar if 
after some non-matching regions(length < 7) are 
ignored, the sum of the lengths of all similar pairs 
of subsequences(length = w) is greater than c times 
the sum of the length of Tl and T2. Informally, 
two sequences are considered to be similar if they 
have enough non-overlapping similar subsequences. 
In [3], spatial similarity join [17] is used to find 
all similar pairs of gap-free subsequences of the 
same length w. The spatial similarity join works as 

follows. Each subsequence of size w is first mapped 
into a point in a multi-dimensional space. The 
feature points are then indexed by a R+-tree [18]. 
The dimensionality of this space is typically high 
for a reasonable window size w. The problem of 
finding all similar pairs of subsequences is reduced 
to finding points which are within E distance from 
each other in the index, i.e. spatial join. 

In [ll, 121, the transformation of shifting is 
considered. Each data subsequence is projected 
into a hyper-plane and a signature is created. 
Then, the searching is performed among those 
signatures. The projection transforms the data 
subsequences such that the searching with shifting 
can be easily performed. 

In [13], a definition of sequence similarity based 
on the slope of sequence segments is discussed. 
The definition can be extended to handle sequence 
matching with linear scaling in both amplitude 
and time dimensions. Moreover, a fast sequence 
searching algorithm based on extendable hashing 
is proposed. The algorithm can match all linearly 
scaled sequences and guarantee that no qualified 
data subsequence is falsely rejected. 

In [15, 191, they also argue that the definition 
of sequence simiIarity with scaling and shifting is 
better. They propose an efficient algorithm to 
determine whether two given sequences are similar 
or not. However, they do not propose any indexing 
method. 

Dimension reduction techniques play a signif- 
icant role in time-series indexing. Besides the 
method suggested in [l], recently, two novel meth- 
ods have been proposed. In [20], the authors pro- 
pose a novel algorithm with singular value decom- 
position to dynamically reduce the dimension of a 
data set. In [l4], an efficient technique of search- 
ing for and reducing dimension of time-series data 
based on wavelet transform is proposed. 

Other research work about time series searching 
include [7, 8, 9, 10, 6, 13, 141. They focus on 
different definitions of similarity under different 
criteria. Since the space is limited, we cannot 
discuss them here. 

3 Problem Statement 

A time sequence is a sequence of real numbers 
which can be regarded as a multi-dimensional point 
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in P. In Vector Analysis [21], a point can also be 
represented by a position vector in ‘?JP. Therefore, 
in the following discussion, we will regard time 
sequences, points and vectors as the same. 

If a sequence Q = (ql, . .., qn) is scaled by a real 
factor a, it will become (aql, . . . . aq,). Thus, if 
we treat a sequence as a vector, we can regard 
a sequence scaling operation as a scalar-vector 
multiplication. That means: if a vector (sequence) 
0 is scaled by factor a, it becomes aQ’. Similarly, 
if a sequence Q is shifted vertically by a real offset 
b, it will become (q1 + b, . . . . qn + b). Thus, we 
ca.n regard a vertical shift operation as a vector 
addition. Let the vectors (l,O,O ,..., 0), (O,l,O ,..., 0), 
. . . . (O,O,O ,..., 1) in %Y be the standard basis of 
‘P, denoted by ~1, . . . . e %. The shifting vector of 
?I? is defined to be i(n) = Crzl e:. Then, a 
shifting operation on the vector (sequence) 0 can 
be regarded_%: Cj + bj?(n), where b E !I?. In the 
following, N will be used instead of G(n) when n 
is understood. 

In the following, we propose a definition of 
similarity which considers the transformation of 
scaling and shifting. 

Definition 1 If sequences u’ and v’ have the same 
dimension n and there exists a scale-sh.ift transfor- 
mation .F&b(Z) = a2 + b@, where a, 13 E %, such 
that &(F(u’),iT) 15 C, th en sequence ii is said to be 
similar to sequence v’ with error bound E, denoted 
by u’ NE 5. 

Based on Definition 1, we can state the prob- 
lem forrnally: Given a set of data sequences S = 

{S 1, . . . ..‘?I}. a query sequence Q, and an error 
bound E, we want to search for the set of data sub- 
sequences (5” : S’ is a subsequence of S; and 5’; E 
S such t,hat Q ~~ S’}, and find the corresponding 
scaling factor a and shifting offset b for each subse- 
quence. The ranges of a and 6 can be regarded as 
the cost of the scaling and shifting transformations 
and the maximum cost allowed can be specified by 
the user as a part of the dissimilarity measures. 

Notice that the retrieval scheme of this problem 
should satisfy the three requirements below: 

1. Efficient data structure should be used to index 
the data sequences in order to achieve good 
sea,rching performance, since the size of the 

2. 

3. 

time sequence database is very large in real 
applications. 

The indexing structure should also be dyniamic 
in order to cope with frequent and regular data 
insertion as the time series data are collected 
regularly. 

The scheme should avoid brute-force checking 
of the scaling factors and the shifting offsets 
because this will lead to a long searching Cme. 
They should be determined efficiently durin,s 
the search. 

Well-known data structures such as R-tree [22], I?- 
tree [16] and X-tree [23] are suitable for traditional 
spatial indexing problems because given a set of 
multi-dimensional data points, they can index and 
search for the data efficiently. However, they 
cannot be applied to our problem directly because 
they cannot determine the scaling factors ancd 
shifting offsets dynamically during the search.. In 
the following, we will give a geometrical view of 
our problem and present a tree-based algoriithrn 
that satisfies all requirements above. 

4 Preliminaries 

Since our proposed method is based on vector ge- 
ometry, we first review the properties about vector 
manipulations. Let vectors C = (~1, ~2, . . . . UJ and 
v’= (q,w2 ,...) w,). The following results are well 
known in Vector Analysis [21, 241: 

1. 

2. 

3. 

4. 

The scalar product, u’ . 5, is defined to be 
u1q + mv2 + ..- + u,‘u, and it is also equal 
to ~~C~~~~~~~ cos6, where 6 is the angle between 2 
and 5. 

The length of u’, IlCll, is defined to be fiz. 

The projection of u’ along C,. denoted CII~, is 

MC and the projection of u’ perpendiculiar t#o 
17, denoted Gl;, is u’l,t = u’- C’llc. 

In Vector Analysis [21], the position vector 
of a point is the vector extending from the 
origin to the point. For example, in s3, ei := 
(1, 0, 0), e> = (0, 1,O) and e: = (0, 0, l), the 
position vector of the point (x, y, z) is the vector 
xei + ye; + ze<. The distance between two 
points pointed by C and v’ is equal to llii -- till. 
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5. 

6. 

In ?I?, a line L = {Z(t) : E(t) = fi + to?} 
is defined to be the set of all position vectors 
pointing to the points on the line, where p< is 
a position vector pointing to a point on L, a?+is 
a vector parallel to L and t is a real variable. 
When t = t’, ,?(t’) is a position vector p% + t’dy 

Moreover, a plane P = {P : (P - pj) . c-i= 0} in 
P’ is defined as the set of all position vectors 
pointing to the points on the plane, where p< is 
a position vector pointing to a point on P and 
$is the normal vector of P, i.e. iis orthogonal 
to P. 

In the following, we introduce two functions for 
the discussion in later sections. First, PLD(& L) 
is defined to be the shortest 02 distance between 
the point Fand the line L. Secondly, LLD(L1, Lz) 
is defined to be the shortest Dz distance between 
the two lines Ll and La. The lemmas below show 
how PLD() and LLD() can be computed. 

Lemma 1 Given a point f and a line L = {z : 
i=j?+tci) inF, 

Proof: [Omitted] 

Lemma 2 Given two lines Ll = {Ll : fl = 
pi + tl$l} and L2 = (IT2 : 62 = p: + tz&} in ZJF 
and let dil be the projection of d; perpendicular to 
JI, LLD(L1, L2) = PLD(Fl, Lz), if C$ is parallel 
to $2; Otherwise, LLD(LI, Lz) = 

Proof: [Omitted] 

5 Geometrical View of the Problem 

Given a vector ri = (~1, ,.., u,), after it is scaled 
by a factor a, it becomes ad = (aur, . . ..a~.). 
Geometrically, the set of all possible scalings of TZ 
can be represented by a line Line,,,,- = {L,,,a(a) : 

La,&) = au’, a E ?I?}. This line, Line,+, is called 
the scaling line of TZ. It is the locus of 6 when C 
is scaled by the value a E ?I?. Similarly, given a 
vector v’= (or, . . . . ‘u,), after it is shifted vertically 

by an offset b, it becomes (~1 + b, . . . . v, + b). 
Geometrically, the set of all possible shiftings of v’ 
can be represented by a line J%ne,h,$ = {Lsh,Jb) : 
e,h,;(b) = v’+ b$, b E $2). This line, Line,h,c, is 
called the shifting line of 5. It is the locus of v’ 
when v’is shifted by the offset b E 8. 

In other words, a scaling transformation apply- 
ing on a vector u’ with a scaling factor a can be 
regarded as a movement of au’ on Line,,,c and the 
resulting vector is equal to the point z,,,-(a) on 
Line,,,,-. Similarly, a shifting transformation ap- 
plying on a vector v’ with a shifting offset b can be 
regarded as a movement of (C+ b) on LineShaG and 
the resulting vector is equal to the point iih,g(b) 
On Line&;. 

In the following lemma, we show that the 
dissimilarity between the sequences u’ and 6’ after a 
scale-shift transformation is closely related to the 
Euclidean distance between the point ~?,,,-(a) on 

Line,,,,- and the point ,?s&-b) on Line,h,i. ’ 

b : 

f 

Line sa,u 
a I 

U I I 
I 

Figure 2: The geometrical meaning of Lemma 3 

Lemma 3 Given ii, v’ E ‘?I?, ]]Fa,b(C) - Cj] = 

lI~sa,da) - h,;(-VII. 

Proof: [Omitted] 
The geometrical meaning of Lemma 3 is shown 

in Figure 2. From Lemma 3, we notice that if there 
are two points on the lines Line,,,q and Line&,; 

241 



respectively such that their distance is less than 
or equal to e, then there always exists a scaling 
factor a and shifting factor b such that the distance 
between the sequences Fa,b(Z:) and v’ is less than 
or equal to E. Thus, we have the following main 
theorem in this paper. 

Proof: [if part] If u’ No i?, then by Definition 1, 
3n,b E X such that ]]Fa,b(Z) - r7]] 5 E. By 
Lemma, 3, IIZ,,,,(a) - Z,h,;(-b)]] < E. Since 
LLD(Line,,,,z, Li;wh,d I IlL,d4 - ~sh,&b)ll 
for all n,b E ?I?:, LLD(Line,,,a, Line,),,,,) 5 E. [only 
if part] If LLD(Line,,,;, Line,h,~) 5 E, 3a, b E $2 
such that I/~,,,,-(U) - z,,,;(b)]] 5 E. By Lemma 3, 
]]Fa,-b(c) - a]] 5 c. Then, by Definition 1, c--, 5. 

I 

According to Theorem 1, the similarity between 
u’ and v’ can be calculated easily by computing the 
shortest distance between Line,,,c and Line,h,;. 
Moreover, we can have the following corollary 
directly from the result of Theorem 1. 

Corollary 1 IfLLD(Line,,,,-, Lineah,,-) = E, then 
there is no E’ < E such that ii ~~1 5. 

Hence, the minimum distance between sequences 
u’ and 6’ is LLD(Line,,,,-, Line,h,;). Moreover, 
Corollary 1 implies that among a set of sequences 

si , “‘, $1 E Z&Y, the nearest neighbor of a sequence u’ 
is s< whose shifting line has the shortest Euclidean 
distance to the scaling line of u’. Because of the 
limited space, we will not discuss nearest neighbor 
search in this paper. 

5.1 Scale-Shift Transformation 

By Theorem 1 and Lemma 2, we can compute the 
shortest distance between Line,,,,- and Line,,+ 
and then determine whether c No v’. Next, we 
want to derive an efficient indexing scheme to facil- 
itate sequence searching with scaling and shifting. 
The indexing structures such as the R-tree [22], 
fl*-tree [16] and X-tree [23] are designed to index 
a set of static vectors (points) while the sequence 
similarity we consider is determined by the shortest 
distance between two lines. That means we can- 
not apply the above indexing structures directly. 

In order to solve this problem, we define a trans.- 
formation which transforms every shifting line to a 
point on a hyper-plane. 

Definition 2 A transformation T,, : W -+ !JF i:; 
defined to be 

where ~7 is a position vector in !Rn. 

This transformation T,, is called Shift-Eliminated 
Transformation (or SE-Transformation). Geornet- 
rically, this transformation projects the point ,p’to 
the plane (p - 0’) * 3 = 0 along the direction of 
i?. This plane which passes through the origin fi 
and has its normal vector in the direction of iv is 
called Shift-Eliminated Plane (or SE-Plane). We 
have four properties about the SETransformation 
and the SE-Plane: 

1. 

2. 

3. 

4. 

The SE-Transformation T,, is a linear trunsfor- 
mation [24] because T,,(C+C) = T,,(C) +T,,(C) 
and Tse(t3) = tT,, (ii) for all vectors u’,v’ E !I?” 
and scalars t E 8. 

A shifting line Line&$ will be transformed 
to a point on the SEplane by T,,. Formally 
speaking, for all v’ + tfl E Line,h,J, T,,(Iv’ $- 
tti) = Tse(G) + tT,,(ti) = T,,(C). Thus, the 
set {Tse(g : f E L ine,h,$) Contains only one 
point Tse(C). 

A scaling line Line,,,2 will be transformexd to 
a line lying on the SE-Plane by T,,. The set 
{Tse(o : 1 E Linega,c} is a line because for 
all tii E Line,,,;, Tse(tC) = tTse(C). This 
line is called the SE-line of u’ and denoted by 

Linesa,TSe(c). 

The dimension of the SE-Plane {T,,(ji) : 
for all 3 E 8”) is n-l. The reason is as 
follows: For all p’ E ?I? and a scalar t C: %, 

Tse(l)‘) * tsf = Fe tfi - ,,fl,,2 J@(i? . tfi) = 0. Thus, 

the SEPlane is the orthgonul complement tco 
the space spanned by fi. Then, by the theorem 
in [24], the dimension of the SE-Plane plus the 
dimension of the Subspace spanned by .G is 
equal to n. It is obvious that the dimensio:n 
of the subspace spanned by @ is 1. Thus, the 
result follows. 

242 



The SE-Transformation can transform the scal- 
ing line Line,,,,- and the shifting line Line,h,c to 
the line Use(Z) and the point T&(G) on the SE 
Plane respectively. A natural question arise: Is 
there any relation between tTse($ and T&ii> such 
that we can use it to determine whether u’ wE v’ ? 
This is exactly what we derive in Lemma 4. 

Lemma 4 Given a scaling line Line,,,,- = { 

Zsn,~(t) : .Zsa,a(t) = tii} and a shifting line 

L1:ned,.,,t, PLD(~sa,,,t(a), Line,h,v’) = llaT,, - 
Ts,(ql)l for t E sn. 

Proof: [Omitted] 
The geometric meaning of Lemma 4 is that 

the distance between the point i,,,;(a) and the 
shifting line Linesh,g in the original vector space 
is equal to the distance betyeen the point UT,,(G) 
(the SETransformation of L,,,z(a)) and the point 
Tse(iY) (the SET ransformation of the shifting line 
Line,,,,c) in the vector space of the SEPlane. 
Lemma 4 builds up a relation between the original 
vector space and the vector space of SE-Plane such 
that we can prove the following theorem. 

Theorem 2 Let I? and v’ be two vectors in ?P 
and Line,,,TSe(z) be the SE-line of u’, u’ -e v’ iff 

PLD(Tse(c), Lines,,~se(;)) 5 6. 

Proof: Suppose PLD(Z,,,;(t), Line,h,;) is mini- 
mum when the scaling factor t = a. Observe that 
for such a scaling factor a, l’LD(~?,,,a(u), Line,h,;) 
= LLD(Line,,,a, Line,h,;). Then, by Lemma 4, 
the length ]]uTse(Z) - Tse(~]] is also minimum and 
it is equal to LLD(Line,,,a, Line,h,;). 

By Theorem 1, we have u’ wE v’iff LLD(Line,,,,-, 
Line,h,;) < c. Thus, u’ wt v’ iff ]]aTse(ii> - 

Tse(qll L 6. Observe that ]]uTse(Z) - Tse(r7)]] = 
PLD(T,,(C), Lines,,Tse(q) and the result follows. 

I 

Theorem 2 means that we can check the simi- 
larity of the vectors ri and v’ in the vector space 
of the SEPlane by computing the shortest dis- 
tance between the SEline Line,,,TSe(q and the 
point T,,(G). Moreover, in the proof, the scaling 
factor a such that llaT,, - T,e(~)]] is minimum 
is the scaling factor we want to determine. 

Figure 3: Determine the scaling factor. 

5.2 Determine Scaling Factor and 
Shifting Offset 

We want to determine the scaling factor a such 
that llaTse($ - Tse(~)ll is minimum. By referring 
to Figure 3, we can compute it in the vector space 
of SE-Plane: 

scaling factor a = lIT.w(‘U3~~ll 
IITse(ci>ll 

= Tse(c) * Tse(q 

llTsem12 
After the scaling factor a is known, by referring 

to Figure 2, the shifting offset b can be computed 
in the original vector space of dimension n: 

shifting offset b = 
(c-d) 4 

llfll12 
In the following section, we will present a tree- 

based indexing and searching method in the vector 
space of the SE-Plane such that all qualified data 
subsequences can be retrieved efficiently and the 
corresponding scaling factors and shifting offsets 
can be determined by the formulae above. 

6 Algorithm 

By Theorem 2, for a query sequence & and an error 
bound e, & is similar to a data subsequence S’ if 
PLD(T,,(S’), Line,,,T,,(Q)) 5 E. Therefore, our 
algorithm should search for all S’ such that the 
shortest distance between Tse(S’) and Line,,,T,,(Q) 
is less than or equal to c. Consider that the 
transformed data subsequences (the set of T&(S’)) 
are indexed by a tree-based data structure such 
as R-tree [22, 161. A bounding volume will not 
contain potential candidates unless the bounding 
volume is “near” to the line Lines,,TSetbl. Based 
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on this idea, our searching algorithm determines 
which child nodes will contain such qualified S’ and 
then continues to traverse those child nodes only. 
The general idea of our algorithm can apply to any 
tree-based structure with any shape of bounding 
volume. In the following, we illustra.te the idea 
by using R-tree which uses hyper-rectangles as its 
bounding volume. R-tree is chosen because it is 
widely used and its behavior is well understood in 
the data.base community. 

R-tree is a height-balanced tree for spatial 
indexing. Each node (leaf or non-leaf) must 
contain at least ~1% entries and at most M entries. 
In our implementation, each non-leaf node (or 
ca,lled internal node) contains entries of the form 
< PTR;, MBR; > (m 5 i < M), where PTR; is the 
pointer pointing to the ith child node and MBR; 
is the minimum bounding hyper-rectangle of the 
ith child node. A leaf node contains entries of the 
form < ID;, Si :* (m 5 i < M), where Si is the 
ith data subsequlence stored in the leaf node and 
ID; is the identity number of 5’:. 

6.1 MBR F’enetration 

Each MBR is defined by the two endpoints, L and 
H, of its major diagonal, where L = (II, 12, . . . . In) 
and H := (111, h2, . . . . h,J and Zi < IX; for 1 5 i 5 n. 
An MBR defined by L = (Zl,Zz, . . . . In) and H = 

(h, hz, “‘I hn) is said to contain an MBR’defined 
by L’ := (Ii, Ei, . . . . II) and H’ = (hi, hk, . . . . h;) 
if li < 1: and hi 5 h; for 1 5 i < n. In 
addition, an MBR defined by L = (Zl,Zz, . . ..ZJ 
and H = (hl, ha, . . . . hn) is said to contain a point 

p= (Pl,PZ,... , p,,) if I; 5 p; 5 h;. In an R-tree, the 
MBR of every non-leaf node contains all the MBR 
of its child nodes. The MBR of every leaf node 
contains all the subsequences stored in the node. 

Given a, node with its MBR defined by L = 

(h, z2r “‘, q and H = (hl, h2, . . . . h,), we define the 
e-enlargement of the MBR, denoted by C-MBR, to 
be an MBR defined by L = (11 - E, 22 - t, . . . . I, - E) 
and H = (hl + C, h2 + C, . . . . h, + E). Moreover, an 
MBR is, said to be penetrat$ by a line i(t) = @+ti 
if there exists t’ such that L(t’) is contained by the 
MBR. Then, we have the following theorem. 

Theorem 3 If the C-MBR of an MBR is not 
penetrated by the SE-Line of fi, then there does not 
exist u point T&(G) contained in the MBR such that 
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Proof: Suppose an MBR is defined by 1; == 
(II, Z2, . . . . Zn) and H = (hl, hz, . . . . h,). If its GMBR 
is not penetrated by the SE-Line of C, then there 
does not exist a t E 8 such that t’Tase(il) is con- 
tained in the E-MBR. That means, there does not 
exist a t E ?R such that I; - c 2 tT,,(G); < h.i + e 
for a11 1 < i 5 n, where tT,,(C); is the ith ele.- 
ment of vector tTse(C). Thus, Vt E ?J?, 3i E 111, n] 
such that tT,,(C)i >_ h; + c or tT,,(ii); 5 2; - C. 
However, for all Tse(v’) contained in the E-MBA!, 
Zi - e 5 Tse(t7)i 5 h; + E for all 1 5 i << n. 
Thus, Vt E %,3i E [l,n] such that (tTSe(ir)i -- 
Ts&i);)2 > e2. Since lltTse(ii) - Tse(G)‘)1j2 := 

Cj(tTse(f4i)j - Tse(‘u3j)2, which is greater thabn or 
equal to (tTJG); - T,,(T?);)~. As a result, Vt E 
?R, /tTse(G) - Tse(8)II > E. Then, by Theorem 2, u’ 
is not similar to v’. I 

Thus, by Theorem 3, we only need to traverse 
those child nodes whose E-MBR are penetrated 
by the line Line,,,T,,(Q). The whole searching 
algorithm is divided into three steps. They are pre- 
processing, searching and post-processing ste:ps. 
Pre-processing: Suppose a set of data sequences 

s = {Sl, ,.., Sl} with different length are given to 
be indexed in a database. A window of length n 
is placed and slid over each data sequence S; E S. 
Thus, a set of data subsequences of length n will1 
be extracted from S. Then, these subsequences wiill 
be transformed by the SETransformation and the 
subsequences resulted are inserted into an R-tree. 
Searching: For each query Q and an error 
bound 6, the .algorithm starts from the root of 
the R-tree. At each level, only those child nodes 
whose GMBR are penetrated by Line,,,T,,(Q) are 
traversed. When a leaf-node is reached, for each 
transformed subsequence Tse(S’) stored in the leaf, 
PLD(T,,(S’), Line,,,TS,(g)) will be computed and 
by Theorem 2, the original sequences of those 
transformed subsequences that are within E fromm 
Line,,,T,,(Q) will be retrieved. 
Pro-processing: For each subsequence found in 
the searching step, its scaling factor and sh.ifti:ng 
offset are computed. If the user has specifie,d the 
cost of the scaling and shifting transforma,tions, 
check whether the cost of transforming the su.b- 
sequence is less than the cost specified. If the cost 



is less than the cost specified, report the subse- 
quence to the user with the corresponding scaling 
factor and shifting offset. 

7 Concluding Remarks 

This algorithm can search for all similar data 
subsequences when the dimension of the query 
sequence is equal to the length of the extracting 
window, n. In [2], a general method is proposed 
for query sequences whose dimensions are larger 
than ~2. The query is Iirst partitioned into several 
smaller sub-queries and then each sub-query is 
searched independently. Our algorithm can work 
with this method and it can be proved that no 
qualified similar subsequence will be missed. 

As mentioned in Section 5.1, the dimension of 
the SE-Plane is n-l. That means, if the length of 
the extracting window is n, the dimension of the 
R-tree used is at least n-l. In [23], it is found that 
the sea,rching time increases as the overlap of the 
R-tree increases. Moreover, the overlap increases 
significantly when the dimension of the R-tree is 
larger than 10. Thus, in our implementation, we 
use a technique which is also used in [l, 2, 5, 61 to 
reduce the dimension of the sequence data. 

Our algorithm depends on the penetration check- 
ing of MBR. Two methods, called Entering/.&iting 
Points and Bounding Spheres respectively, can be 
used for this task. They are techniques of ray 
tracing in computer graphics [25]. Enter/Exiting 
Points method can determine whether a line pen- 
etrate through a rectangle. It can be easily gen- 
eralized to the case of hyper-rectangle. However, 
in computer graphics, a heuristic method is always 
used to improve the performance of the penetration 
checking. Two bounding spheres can be introduced 
such that the inner sphere is tightly bounded by the 
E-MBR and the E-MBR is in turn tightly bounded 
by the outer sphere. Note that if the outer sphere 
is not penetrated by the SELine, the c-MBR will 
not be penetrated by the SE-Line, too. On the 
contrary, if the inner sphere is penetrated by the 
SE-Line, the E-MBR will also be penetrated by 
the SE-Line. The previous entering/exiting points 
method will be used only if the outer sphere is pen- 
etrated, but the inner sphere is not penetrated by 
the SE-line. 

We have implemented our algorithm and the 

methods for penetration checking. The results 
show that our algorithm improves the searching 
performance significantly. The experiments are 
performed on a Sun SPARCcenter2000 workstation 
running Solaris 2.5.1 with 512MBytes of main 
memory. In the experiments, R*-tree [16] is used 
to index the data subsequences and the dimension 
reduction technique is also used. According to 
the work in [2], three Fourier coefficients are 
sufficient to index time series data efficiently. Since 
each Fourier coefficient requires 2 numbers, the 
dimension of our R*-tree is set to 6. The page 
size is 4KBytes and each page stores one internal 
node only. The number of maximum entries, M, of 
each internal node is 20. The other settings of the 
R*-tree are set as suggested in [16]. For example, 
the minimum number of entries of each internal 
node, m, is set to 40% of M, i.e. 8. The re-insert 
parameter p is set to 30% of M, i.e. 6. 

Experiments are performed on real stock data. 
The stock prices of one thousand companies in 
Hong Kong are collected from July 1995 to October 
1996. Over six hundred and fifty thousand values 
are obtained. In each experiment, 100 queries are 
performed. The average CPU time used and the 
average number of page accesses are collected to 
evaluate the algorithm. 

Because the space is limited, only three sets of 
experiments are discussed. In set 1, we study the 
performance of sequential search method. The 
time series data are read sequentially and the 
distance from the query sequence is computed by 
Lemma 2. We investigate our proposed tree-based 
algorithm in set 2 and set 3. In particular, set 
2 uses only the Entering/Exiting Points method 
to check the penetration of the c-MBR. Set 3 
includes the heuristic inner and outer spheres. 

First, we evaluate the average CPU time of 
the three sets by varying E. The result is 
shown in Figure 4. It can be observed that our 
proposed tree-based indexing method outperforms 
the sequential search method. Since the sequential 
search method has to compare all data values for 
each query, it has a constant cpu time usage over 
the whole range of the error bound. For our 
proposed method, the cpu time increases as the 
error bound increases because more subsequences 
are qualified and so more branches of the R*-tree 
are needed to be traversed. 
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Figure 4: CPU Time vs Error Value of the 3 sets 
of experiments 

Figure 5: Number of Page Accesses vs Error Value 
of the 3 sets of experiments 

However, what surprising here is that the per- 
formance of the searching method using bounlding 
spheres is worse than that of the one without us- 
ing it. We believe it can be explained by the work 
in [26]. The authors in [26] find that the bound- 
ing rectangles of R*-tree usually have long diago- 
nal, but small volume. That means the length of 
one of the dimensions of the bounding rectangles 
is usually much longer than the length of other di- 
mensions. Thus, the outer sphere will be so large 
that the probabihty that a SELine penetrates the 
outer sphere but not penetrates the bounding rect- 
angle is high. Moreover, the inner sphere will be 
so small that the probability that a SELine pene- 
trates the bounding rectangles but not penetrates 
the inner sphere is also high. As a result, a lot 
of cpu time spent on computing the penetration 
of the bounding spheres cannot help to speed up 
the algorithm. Though the bounding spheres are 
good heuristic method for ray tracing in computer 
graphics, they cannot be applied to our probl,em. 

In another experiment, we study the disk acces#s 
behavior of the searching methods. By varyi:ng t:, 
we measure the average number of page acc,esses 
and plot it in Figure 5. For the sequential search 
method, the number of page accesses is constantly 
equal to (0.65M x 8Bytes)/4KBytes (% 1300) 
pages because it has to access all pages for every 
query. From Figure 5, we notice that the nu:mber 
of page accesses of our proposed method is’ less 
than that of the sequential search method over 
the whole range of the error bound. When c: = 0 
(exact search), the number of page accesses of the 
sequential search method is one thousand times 
larger than that of our method. 
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