
Fast Time-Series Searching
with Scaling and Shifting

Kelvin Kam Wing Chu Man Hon Wong *
-Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, China
Email: {kwchu, mhwong)@cse.cuhk.edu.hk

URL: http://www.cse.cuhk.edu.hk/N(kwchu, mhwong}

Abstract

Recently, it has been found that the technique of search-
ing for similar patterns among time series data is very
important in a wide range of scientific and business ap-
plications. In this paper, we first propose a definition
of similarity based on scaling and shifting transforma-
tions. Sequence A is defined to be similar to sequence
B if suitable scaling and shifting transformations can
be found to transform A to B. Then, we present a geo-
metrical view of the problem so that the scaling factor
and the shifting offset can be determined. Moreover,
sequence searching based on tree-based indexing struc-
ture can be performed. Finally, some technical aspects
are discussed and some experiments are performed on
real data (stock price movement) to measure the per-
formance of our algorithm.

1 Introduction

Recently, it has been found that the technique of
searching for similar patterns among time series
data is very important in a wide range of scientific
and business applications [l, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 141. A time series Q is a sequence of
real number (q1 , qn) collected regularly in time,
where each number represents a value at a point of
time. For example, stock and weather data are in
the form of sequences and so they are time series
data.

In general, most of the current work on time

The authors are partially supported by RGC Earmarked
Grant CUHK4166/973 and CUHK Direct Grant 2050198.

Permission to make digital or hard copies of all or part ofthis work fat
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on servers or to redisuibute to lists.
reyuircs prior specific permission and/or a fee.

PODS ‘99 Philadelphia PA
Copyright ACM 1999 I-58113-062-7/99/05...$5.00

Figure 1: Examples of scaling and shifting trans-
formation

series searching consider the problem below: Given
a query sequence Q = (ql, q,J and a set of data
sequences S = {Sr, SI} stored in a database,
they want to search for data subsequences S’ that
-are similar to Q, where S’ are subsequences of S;
(1 < i 5 1). The distance functions of L, metric
are usually used to measure the dissimilarity of two
sequences. Given two sequences X = (51, 5,)
and Y = (yr, . . . ,yn), their distance D,(X, Y) is
calculated by

l&(X, Y) = p 2 IG - Y$

4 i=l

In particular, [l, 21 consider the special case
that p = 2, i.e., Euclidean Distance is the sole
consideration for sequence similarity. However, in
many applications, a weaker version of similarity
which considers the effect of scaling and shifting
is required. In the example below, we show how
scaling and shifting affect the seqrience similarity.

237

Example: In Figure 1, three sequences are
shown. They atre A = (5,10,6,12,4), B =
(10,20,12,24,8), and C = (25,30,26,32,24). Al-
though they are different time series, they are
closely related. B can be obta,ined from A by scal-
ing it up 2 times: and C can be obtained from A
by shifting it up 20 units. Moreover, if B is scaled
down by 0.5 and then shifted up by 20 units, it be-
comes C. That means they are actually the same
after applying suitable scaling and shifting trans-
formations.

As mentioned in [6, 151, for stock analysis,
a.lthough the stock price of company C is higher
than that of company A, if they have the same
fluctuation (sequences C and A in Figure l), they
should be considered to have the same trend of
price. Even though the stock price of company B
is always two tim,es larger than that of company
A (sequences B and A in Figure l), if their
fluctuation is proportional to their price, the trend
of their price should also be regarded as the same.

In [4], the authors suggest a general idea that
sequence A is simi.lar to B if A can be transformed
to B by a series of pre-defined transformations.
In particular, the authors in [5] consider moving
average and time wrapping as the pre-defined
transformations. They define the dissimilarity
between sequences A and B as the minimum
possible distance after A and B are transformed
by a series of pre-defined transformations. In
this paper, we will also use a similar approach
to define dissimilarity. However, we consider the
transformations of scaling and shifting. Consider
Figure 1 again, if A is the query sequence, then
our algorithm will report B and C with their
corresponding scaling factors and shifting offsets
that transform A to B and C.

Notice that the searching algorithm should avoid
brute-force checking for the scaling factors and
the shifting offsets. It is because real applications
usually involve a large amount of da,ta and the
brute-force checking will significantly degrade the
performance. Thus, in this paper, we will present a
geometri.cal view of the problem so that the scaling
factor and the shifting offset can be determined
without brute-force checking. Moreover, sequence
searching based on tree-based indexing structure
can be performed efficiently.

The rest of the paper is organized as follows.

Section 2 provides a survey of related work. We
will present our definition of sequence similarity in
Section 3. In Section 4, the knowledge of vector
geometry will be reviewed. Then, in Section 5, we
will present the geometrical view of the problem.
Based on the geometrical view, we will show our
algorithm in Section 6. Finally, several concluding
remarks are given in Section 7.

2 Related Work

Various methods have been proposed for time
series searching. In [l], an indexing scheme called
F-index is suggested to handle data sequences and
query sequences of the same length. Firstly, each
data sequence is transformed by n-point Discrete
Fourier Transform. The first fc coefficients are
kept and regarded as a f,-dimensional point. The
feature points are then indexed by an R*-tre,e
[16]. For a range query, the query sequence is
first mapped to a point in the f,-dimensional
space similarly. Then, the R*-tree is searched
and all feature points that are within the error
distance from the query sequence are retrie.ved.
This method guarantees no false dismissal, but it
may cause false alarms. Thus, the original Idata
sequences corresponding to the points retrileved
have to be checked against the query sequence.

The results in [l] are further generalized in [2]
and the ST-index is proposed to handle data se-
quences of different lengths. A sliding window with
length n is placed over the data sequences. The
subsequence within each window is transformed
by n-point Discrete Fourier Transform. After all
data subsequences are transformed, a trail will b,e
formed. The trail is divided into sub-trails, which
are then represented by minimum bounding rect-
angles(MBR) f o an R*-tree. For ,range query, al.1
MBR that intersect the query region will be re-
trieved. This method also guarantees no false dis-
missal, yet false alarms are still possible, and so the
original data sequences have to be checked against
the query sequence, too. The methods proposed
in [l, 21 are very elegant. However, they use Eu-
clidean Distance for sequence similarity without
considering any transformation. As shown by the
example in Section 1, it is better to consider se-

quence similarity with scaling and shifting in some
applications such as stock analysis.

238

The definition of similarity used in this paper is
similar to those proposed in [4]. In [4], the authors
develop a general framework for similarity queries.
The framework consists of a transformation rule
language T. An object A is said to be similar to an
object B if A can be transformed to B by a series of
transformations defined in T. Each transformation
applied has a cost and the total cost is used to
measure the distance between A and B.

In [5], the authors consider the case that T con-
tains the transformation of moving average and
time wrapping. They first show that the defini-
tion of sequence similarity with moving average
and time wrapping has a wide range of real ap-
plications. Then, they illustrate by real stock data
that the transformations help to identify similar
runs of stock price. They also propose a first in-
dexing method that can handle moving average
and time warping. An index I is constructed as
in [l, 21 first. For each query, a transformation in
T is given. Then a new index I’ is built in real
time based on the given transformation T and the
search is performed on the new index I’. Our def-
inition of sequence similarity is similar to that of
this paper. However, we consider the case that T
contains the scaling and shifting transformations.

In [3], another definition of similarity which also
considers scaling and shifting is proposed. The
similarity definition of two sequences of the same
length n is presented as follows. Given a tolerance
E, two sequences Sr, Sz of the same length are
said to be similar or lie within an envelope of a
specified width if after their offsets are adjusted
appropriately and their amplitudes are scaled by a
suitable amount, they become Si and Si such that
for all 1 5 i 5 n,]Si[;] - Sl,[;](5 E. The similarity
definition of two sequences with different length is
also given. For a maximum gap size of y, a window
size of w and a tolerance of e, two sequences Tl,
T2 with different lengths are said to be similar if
after some non-matching regions(length < 7) are
ignored, the sum of the lengths of all similar pairs
of subsequences(length = w) is greater than c times
the sum of the length of Tl and T2. Informally,
two sequences are considered to be similar if they
have enough non-overlapping similar subsequences.
In [3], spatial similarity join [17] is used to find
all similar pairs of gap-free subsequences of the
same length w. The spatial similarity join works as

follows. Each subsequence of size w is first mapped
into a point in a multi-dimensional space. The
feature points are then indexed by a R+-tree [18].
The dimensionality of this space is typically high
for a reasonable window size w. The problem of
finding all similar pairs of subsequences is reduced
to finding points which are within E distance from
each other in the index, i.e. spatial join.

In [ll, 121, the transformation of shifting is
considered. Each data subsequence is projected
into a hyper-plane and a signature is created.
Then, the searching is performed among those
signatures. The projection transforms the data
subsequences such that the searching with shifting
can be easily performed.

In [13], a definition of sequence similarity based
on the slope of sequence segments is discussed.
The definition can be extended to handle sequence
matching with linear scaling in both amplitude
and time dimensions. Moreover, a fast sequence
searching algorithm based on extendable hashing
is proposed. The algorithm can match all linearly
scaled sequences and guarantee that no qualified
data subsequence is falsely rejected.

In [15, 191, they also argue that the definition
of sequence simiIarity with scaling and shifting is
better. They propose an efficient algorithm to
determine whether two given sequences are similar
or not. However, they do not propose any indexing
method.

Dimension reduction techniques play a signif-
icant role in time-series indexing. Besides the
method suggested in [l], recently, two novel meth-
ods have been proposed. In [20], the authors pro-
pose a novel algorithm with singular value decom-
position to dynamically reduce the dimension of a
data set. In [l4], an efficient technique of search-
ing for and reducing dimension of time-series data
based on wavelet transform is proposed.

Other research work about time series searching
include [7, 8, 9, 10, 6, 13, 141. They focus on
different definitions of similarity under different
criteria. Since the space is limited, we cannot
discuss them here.

3 Problem Statement

A time sequence is a sequence of real numbers
which can be regarded as a multi-dimensional point

239

in P. In Vector Analysis [21], a point can also be
represented by a position vector in ‘?JP. Therefore,
in the following discussion, we will regard time
sequences, points and vectors as the same.

If a sequence Q = (ql, . .., qn) is scaled by a real
factor a, it will become (aql, aq,). Thus, if
we treat a sequence as a vector, we can regard
a sequence scaling operation as a scalar-vector
multiplication. That means: if a vector (sequence)
0 is scaled by factor a, it becomes aQ’. Similarly,
if a sequence Q is shifted vertically by a real offset
b, it will become (q1 + b, qn + b). Thus, we
ca.n regard a vertical shift operation as a vector
addition. Let the vectors (l,O,O ,..., 0), (O,l,O ,..., 0),
. . . . (O,O,O ,..., 1) in %Y be the standard basis of
‘P, denoted by ~1, e %. The shifting vector of
?I? is defined to be i(n) = Crzl e:. Then, a
shifting operation on the vector (sequence) 0 can
be regarded_%: Cj + bj?(n), where b E !I?. In the
following, N will be used instead of G(n) when n
is understood.

In the following, we propose a definition of
similarity which considers the transformation of
scaling and shifting.

Definition 1 If sequences u’ and v’ have the same
dimension n and there exists a scale-sh.ift transfor-
mation .F&b(Z) = a2 + b@, where a, 13 E %, such
that &(F(u’),iT) 15 C, th en sequence ii is said to be
similar to sequence v’ with error bound E, denoted
by u’ NE 5.

Based on Definition 1, we can state the prob-
lem forrnally: Given a set of data sequences S =

{S 1,‘?I}. a query sequence Q, and an error
bound E, we want to search for the set of data sub-
sequences (5” : S’ is a subsequence of S; and 5’; E
S such t,hat Q ~~ S’}, and find the corresponding
scaling factor a and shifting offset b for each subse-
quence. The ranges of a and 6 can be regarded as
the cost of the scaling and shifting transformations
and the maximum cost allowed can be specified by
the user as a part of the dissimilarity measures.

Notice that the retrieval scheme of this problem
should satisfy the three requirements below:

1. Efficient data structure should be used to index
the data sequences in order to achieve good
sea,rching performance, since the size of the

2.

3.

time sequence database is very large in real
applications.

The indexing structure should also be dyniamic
in order to cope with frequent and regular data
insertion as the time series data are collected
regularly.

The scheme should avoid brute-force checking
of the scaling factors and the shifting offsets
because this will lead to a long searching Cme.
They should be determined efficiently durin,s
the search.

Well-known data structures such as R-tree [22], I?-
tree [16] and X-tree [23] are suitable for traditional
spatial indexing problems because given a set of
multi-dimensional data points, they can index and
search for the data efficiently. However, they
cannot be applied to our problem directly because
they cannot determine the scaling factors ancd
shifting offsets dynamically during the search.. In
the following, we will give a geometrical view of
our problem and present a tree-based algoriithrn
that satisfies all requirements above.

4 Preliminaries

Since our proposed method is based on vector ge-
ometry, we first review the properties about vector
manipulations. Let vectors C = (~1, ~2, UJ and
v’= (q,w2 ,...) w,). The following results are well
known in Vector Analysis [21, 241:

1.

2.

3.

4.

The scalar product, u’ . 5, is defined to be
u1q + mv2 + ..- + u,‘u, and it is also equal
to ~~C~~~~~~~ cos6, where 6 is the angle between 2
and 5.

The length of u’, IlCll, is defined to be fiz.

The projection of u’ along C,. denoted CII~, is

MC and the projection of u’ perpendiculiar t#o
17, denoted Gl;, is u’l,t = u’- C’llc.

In Vector Analysis [21], the position vector
of a point is the vector extending from the
origin to the point. For example, in s3, ei :=
(1, 0, 0), e> = (0, 1,O) and e: = (0, 0, l), the
position vector of the point (x, y, z) is the vector
xei + ye; + ze<. The distance between two
points pointed by C and v’ is equal to llii -- till.

240

5.

6.

In ?I?, a line L = {Z(t) : E(t) = fi + to?}
is defined to be the set of all position vectors
pointing to the points on the line, where p< is
a position vector pointing to a point on L, a?+is
a vector parallel to L and t is a real variable.
When t = t’, ,?(t’) is a position vector p% + t’dy

Moreover, a plane P = {P : (P - pj) . c-i= 0} in
P’ is defined as the set of all position vectors
pointing to the points on the plane, where p< is
a position vector pointing to a point on P and
$is the normal vector of P, i.e. iis orthogonal
to P.

In the following, we introduce two functions for
the discussion in later sections. First, PLD(& L)
is defined to be the shortest 02 distance between
the point Fand the line L. Secondly, LLD(L1, Lz)
is defined to be the shortest Dz distance between
the two lines Ll and La. The lemmas below show
how PLD() and LLD() can be computed.

Lemma 1 Given a point f and a line L = {z :
i=j?+tci) inF,

Proof: [Omitted]

Lemma 2 Given two lines Ll = {Ll : fl =
pi + tl$l} and L2 = (IT2 : 62 = p: + tz&} in ZJF
and let dil be the projection of d; perpendicular to
JI, LLD(L1, L2) = PLD(Fl, Lz), if C$ is parallel
to $2; Otherwise, LLD(LI, Lz) =

Proof: [Omitted]

5 Geometrical View of the Problem

Given a vector ri = (~1, ,.., u,), after it is scaled
by a factor a, it becomes ad = (aur,a~.).
Geometrically, the set of all possible scalings of TZ
can be represented by a line Line,,,,- = {L,,,a(a) :

La,&) = au’, a E ?I?}. This line, Line,+, is called
the scaling line of TZ. It is the locus of 6 when C
is scaled by the value a E ?I?. Similarly, given a
vector v’= (or, ‘u,), after it is shifted vertically

by an offset b, it becomes (~1 + b, v, + b).
Geometrically, the set of all possible shiftings of v’
can be represented by a line J%ne,h,$ = {Lsh,Jb) :
e,h,;(b) = v’+ b$, b E $2). This line, Line,h,c, is
called the shifting line of 5. It is the locus of v’
when v’is shifted by the offset b E 8.

In other words, a scaling transformation apply-
ing on a vector u’ with a scaling factor a can be
regarded as a movement of au’ on Line,,,c and the
resulting vector is equal to the point z,,,-(a) on
Line,,,,-. Similarly, a shifting transformation ap-
plying on a vector v’ with a shifting offset b can be
regarded as a movement of (C+ b) on LineShaG and
the resulting vector is equal to the point iih,g(b)
On Line&;.

In the following lemma, we show that the
dissimilarity between the sequences u’ and 6’ after a
scale-shift transformation is closely related to the
Euclidean distance between the point ~?,,,-(a) on

Line,,,,- and the point ,?s&-b) on Line,h,i. ’

b :

f

Line sa,u
a I

U I I
I

Figure 2: The geometrical meaning of Lemma 3

Lemma 3 Given ii, v’ E ‘?I?,]]Fa,b(C) - Cj] =

lI~sa,da) - h,;(-VII.

Proof: [Omitted]
The geometrical meaning of Lemma 3 is shown

in Figure 2. From Lemma 3, we notice that if there
are two points on the lines Line,,,q and Line&,;

241

respectively such that their distance is less than
or equal to e, then there always exists a scaling
factor a and shifting factor b such that the distance
between the sequences Fa,b(Z:) and v’ is less than
or equal to E. Thus, we have the following main
theorem in this paper.

Proof: [if part] If u’ No i?, then by Definition 1,
3n,b E X such that]]Fa,b(Z) - r7]] 5 E. By
Lemma, 3, IIZ,,,,(a) - Z,h,;(-b)]] < E. Since
LLD(Line,,,,z, Li;wh,d I IlL,d4 - ~sh,&b)ll
for all n,b E ?I?:, LLD(Line,,,a, Line,),,,,) 5 E. [only
if part] If LLD(Line,,,;, Line,h,~) 5 E, 3a, b E $2
such that I/~,,,,-(U) - z,,,;(b)]] 5 E. By Lemma 3,
]]Fa,-b(c) - a]] 5 c. Then, by Definition 1, c--, 5.

I

According to Theorem 1, the similarity between
u’ and v’ can be calculated easily by computing the
shortest distance between Line,,,c and Line,h,;.
Moreover, we can have the following corollary
directly from the result of Theorem 1.

Corollary 1 IfLLD(Line,,,,-, Lineah,,-) = E, then
there is no E’ < E such that ii ~~1 5.

Hence, the minimum distance between sequences
u’ and 6’ is LLD(Line,,,,-, Line,h,;). Moreover,
Corollary 1 implies that among a set of sequences

si , “‘, $1 E Z&Y, the nearest neighbor of a sequence u’
is s< whose shifting line has the shortest Euclidean
distance to the scaling line of u’. Because of the
limited space, we will not discuss nearest neighbor
search in this paper.

5.1 Scale-Shift Transformation

By Theorem 1 and Lemma 2, we can compute the
shortest distance between Line,,,,- and Line,,+
and then determine whether c No v’. Next, we
want to derive an efficient indexing scheme to facil-
itate sequence searching with scaling and shifting.
The indexing structures such as the R-tree [22],
fl*-tree [16] and X-tree [23] are designed to index
a set of static vectors (points) while the sequence
similarity we consider is determined by the shortest
distance between two lines. That means we can-
not apply the above indexing structures directly.

In order to solve this problem, we define a trans.-
formation which transforms every shifting line to a
point on a hyper-plane.

Definition 2 A transformation T,, : W -+ !JF i:;
defined to be

where ~7 is a position vector in !Rn.

This transformation T,, is called Shift-Eliminated
Transformation (or SE-Transformation). Geornet-
rically, this transformation projects the point ,p’to
the plane (p - 0’) * 3 = 0 along the direction of
i?. This plane which passes through the origin fi
and has its normal vector in the direction of iv is
called Shift-Eliminated Plane (or SE-Plane). We
have four properties about the SETransformation
and the SE-Plane:

1.

2.

3.

4.

The SE-Transformation T,, is a linear trunsfor-
mation [24] because T,,(C+C) = T,,(C) +T,,(C)
and Tse(t3) = tT,, (ii) for all vectors u’,v’ E !I?”
and scalars t E 8.

A shifting line Line&$ will be transformed
to a point on the SEplane by T,,. Formally
speaking, for all v’ + tfl E Line,h,J, T,,(Iv’ $-
tti) = Tse(G) + tT,,(ti) = T,,(C). Thus, the
set {Tse(g : f E L ine,h,$) Contains only one
point Tse(C).

A scaling line Line,,,2 will be transformexd to
a line lying on the SE-Plane by T,,. The set
{Tse(o : 1 E Linega,c} is a line because for
all tii E Line,,,;, Tse(tC) = tTse(C). This
line is called the SE-line of u’ and denoted by

Linesa,TSe(c).

The dimension of the SE-Plane {T,,(ji) :
for all 3 E 8”) is n-l. The reason is as
follows: For all p’ E ?I? and a scalar t C: %,

Tse(l)‘) * tsf = Fe tfi - ,,fl,,2 J@(i? . tfi) = 0. Thus,

the SEPlane is the orthgonul complement tco
the space spanned by fi. Then, by the theorem
in [24], the dimension of the SE-Plane plus the
dimension of the Subspace spanned by .G is
equal to n. It is obvious that the dimensio:n
of the subspace spanned by @ is 1. Thus, the
result follows.

242

The SE-Transformation can transform the scal-
ing line Line,,,,- and the shifting line Line,h,c to
the line Use(Z) and the point T&(G) on the SE
Plane respectively. A natural question arise: Is
there any relation between tTse($ and T&ii> such
that we can use it to determine whether u’ wE v’ ?
This is exactly what we derive in Lemma 4.

Lemma 4 Given a scaling line Line,,,,- = {

Zsn,~(t) : .Zsa,a(t) = tii} and a shifting line

L1:ned,.,,t, PLD(~sa,,,t(a), Line,h,v’) = llaT,, -
Ts,(ql)l for t E sn.

Proof: [Omitted]
The geometric meaning of Lemma 4 is that

the distance between the point i,,,;(a) and the
shifting line Linesh,g in the original vector space
is equal to the distance betyeen the point UT,,(G)
(the SETransformation of L,,,z(a)) and the point
Tse(iY) (the SET ransformation of the shifting line
Line,,,,c) in the vector space of the SEPlane.
Lemma 4 builds up a relation between the original
vector space and the vector space of SE-Plane such
that we can prove the following theorem.

Theorem 2 Let I? and v’ be two vectors in ?P
and Line,,,TSe(z) be the SE-line of u’, u’ -e v’ iff

PLD(Tse(c), Lines,,~se(;)) 5 6.

Proof: Suppose PLD(Z,,,;(t), Line,h,;) is mini-
mum when the scaling factor t = a. Observe that
for such a scaling factor a, l’LD(~?,,,a(u), Line,h,;)
= LLD(Line,,,a, Line,h,;). Then, by Lemma 4,
the length]]uTse(Z) - Tse(~]] is also minimum and
it is equal to LLD(Line,,,a, Line,h,;).

By Theorem 1, we have u’ wE v’iff LLD(Line,,,,-,
Line,h,;) < c. Thus, u’ wt v’ iff]]aTse(ii> -

Tse(qll L 6. Observe that]]uTse(Z) - Tse(r7)]] =
PLD(T,,(C), Lines,,Tse(q) and the result follows.

I

Theorem 2 means that we can check the simi-
larity of the vectors ri and v’ in the vector space
of the SEPlane by computing the shortest dis-
tance between the SEline Line,,,TSe(q and the
point T,,(G). Moreover, in the proof, the scaling
factor a such that llaT,, - T,e(~)]] is minimum
is the scaling factor we want to determine.

Figure 3: Determine the scaling factor.

5.2 Determine Scaling Factor and
Shifting Offset

We want to determine the scaling factor a such
that llaTse($ - Tse(~)ll is minimum. By referring
to Figure 3, we can compute it in the vector space
of SE-Plane:

scaling factor a = lIT.w(‘U3~~ll
IITse(ci>ll

= Tse(c) * Tse(q

llTsem12
After the scaling factor a is known, by referring

to Figure 2, the shifting offset b can be computed
in the original vector space of dimension n:

shifting offset b =
(c-d) 4

llfll12
In the following section, we will present a tree-

based indexing and searching method in the vector
space of the SE-Plane such that all qualified data
subsequences can be retrieved efficiently and the
corresponding scaling factors and shifting offsets
can be determined by the formulae above.

6 Algorithm

By Theorem 2, for a query sequence & and an error
bound e, & is similar to a data subsequence S’ if
PLD(T,,(S’), Line,,,T,,(Q)) 5 E. Therefore, our
algorithm should search for all S’ such that the
shortest distance between Tse(S’) and Line,,,T,,(Q)
is less than or equal to c. Consider that the
transformed data subsequences (the set of T&(S’))
are indexed by a tree-based data structure such
as R-tree [22, 161. A bounding volume will not
contain potential candidates unless the bounding
volume is “near” to the line Lines,,TSetbl. Based

243

on this idea, our searching algorithm determines
which child nodes will contain such qualified S’ and
then continues to traverse those child nodes only.
The general idea of our algorithm can apply to any
tree-based structure with any shape of bounding
volume. In the following, we illustra.te the idea
by using R-tree which uses hyper-rectangles as its
bounding volume. R-tree is chosen because it is
widely used and its behavior is well understood in
the data.base community.

R-tree is a height-balanced tree for spatial
indexing. Each node (leaf or non-leaf) must
contain at least ~1% entries and at most M entries.
In our implementation, each non-leaf node (or
ca,lled internal node) contains entries of the form
< PTR;, MBR; > (m 5 i < M), where PTR; is the
pointer pointing to the ith child node and MBR;
is the minimum bounding hyper-rectangle of the
ith child node. A leaf node contains entries of the
form < ID;, Si :* (m 5 i < M), where Si is the
ith data subsequlence stored in the leaf node and
ID; is the identity number of 5’:.

6.1 MBR F’enetration

Each MBR is defined by the two endpoints, L and
H, of its major diagonal, where L = (II, 12, In)
and H := (111, h2, h,J and Zi < IX; for 1 5 i 5 n.
An MBR defined by L = (Zl,Zz, In) and H =

(h, hz, “‘I hn) is said to contain an MBR’defined
by L’ := (Ii, Ei, II) and H’ = (hi, hk, h;)
if li < 1: and hi 5 h; for 1 5 i < n. In
addition, an MBR defined by L = (Zl,Zz,ZJ
and H = (hl, ha, hn) is said to contain a point

p= (Pl,PZ,... , p,,) if I; 5 p; 5 h;. In an R-tree, the
MBR of every non-leaf node contains all the MBR
of its child nodes. The MBR of every leaf node
contains all the subsequences stored in the node.

Given a, node with its MBR defined by L =

(h, z2r “‘, q and H = (hl, h2, h,), we define the
e-enlargement of the MBR, denoted by C-MBR, to
be an MBR defined by L = (11 - E, 22 - t, I, - E)
and H = (hl + C, h2 + C, h, + E). Moreover, an
MBR is, said to be penetrat$ by a line i(t) = @+ti
if there exists t’ such that L(t’) is contained by the
MBR. Then, we have the following theorem.

Theorem 3 If the C-MBR of an MBR is not
penetrated by the SE-Line of fi, then there does not
exist u point T&(G) contained in the MBR such that

244

ii-c 5.

Proof: Suppose an MBR is defined by 1; ==
(II, Z2, Zn) and H = (hl, hz, h,). If its GMBR
is not penetrated by the SE-Line of C, then there
does not exist a t E 8 such that t’Tase(il) is con-
tained in the E-MBR. That means, there does not
exist a t E ?R such that I; - c 2 tT,,(G); < h.i + e
for a11 1 < i 5 n, where tT,,(C); is the ith ele.-
ment of vector tTse(C). Thus, Vt E ?J?, 3i E 111, n]
such that tT,,(C)i >_ h; + c or tT,,(ii); 5 2; - C.
However, for all Tse(v’) contained in the E-MBA!,
Zi - e 5 Tse(t7)i 5 h; + E for all 1 5 i << n.
Thus, Vt E %,3i E [l,n] such that (tTSe(ir)i --
Ts&i);)2 > e2. Since lltTse(ii) - Tse(G)‘)1j2 :=

Cj(tTse(f4i)j - Tse(‘u3j)2, which is greater thabn or
equal to (tTJG); - T,,(T?);)~. As a result, Vt E
?R, /tTse(G) - Tse(8)II > E. Then, by Theorem 2, u’
is not similar to v’. I

Thus, by Theorem 3, we only need to traverse
those child nodes whose E-MBR are penetrated
by the line Line,,,T,,(Q). The whole searching
algorithm is divided into three steps. They are pre-
processing, searching and post-processing ste:ps.
Pre-processing: Suppose a set of data sequences

s = {Sl, ,.., Sl} with different length are given to
be indexed in a database. A window of length n
is placed and slid over each data sequence S; E S.
Thus, a set of data subsequences of length n will1
be extracted from S. Then, these subsequences wiill
be transformed by the SETransformation and the
subsequences resulted are inserted into an R-tree.
Searching: For each query Q and an error
bound 6, the .algorithm starts from the root of
the R-tree. At each level, only those child nodes
whose GMBR are penetrated by Line,,,T,,(Q) are
traversed. When a leaf-node is reached, for each
transformed subsequence Tse(S’) stored in the leaf,
PLD(T,,(S’), Line,,,TS,(g)) will be computed and
by Theorem 2, the original sequences of those
transformed subsequences that are within E fromm
Line,,,T,,(Q) will be retrieved.
Pro-processing: For each subsequence found in
the searching step, its scaling factor and sh.ifti:ng
offset are computed. If the user has specifie,d the
cost of the scaling and shifting transforma,tions,
check whether the cost of transforming the su.b-
sequence is less than the cost specified. If the cost

is less than the cost specified, report the subse-
quence to the user with the corresponding scaling
factor and shifting offset.

7 Concluding Remarks

This algorithm can search for all similar data
subsequences when the dimension of the query
sequence is equal to the length of the extracting
window, n. In [2], a general method is proposed
for query sequences whose dimensions are larger
than ~2. The query is Iirst partitioned into several
smaller sub-queries and then each sub-query is
searched independently. Our algorithm can work
with this method and it can be proved that no
qualified similar subsequence will be missed.

As mentioned in Section 5.1, the dimension of
the SE-Plane is n-l. That means, if the length of
the extracting window is n, the dimension of the
R-tree used is at least n-l. In [23], it is found that
the sea,rching time increases as the overlap of the
R-tree increases. Moreover, the overlap increases
significantly when the dimension of the R-tree is
larger than 10. Thus, in our implementation, we
use a technique which is also used in [l, 2, 5, 61 to
reduce the dimension of the sequence data.

Our algorithm depends on the penetration check-
ing of MBR. Two methods, called Entering/.&iting
Points and Bounding Spheres respectively, can be
used for this task. They are techniques of ray
tracing in computer graphics [25]. Enter/Exiting
Points method can determine whether a line pen-
etrate through a rectangle. It can be easily gen-
eralized to the case of hyper-rectangle. However,
in computer graphics, a heuristic method is always
used to improve the performance of the penetration
checking. Two bounding spheres can be introduced
such that the inner sphere is tightly bounded by the
E-MBR and the E-MBR is in turn tightly bounded
by the outer sphere. Note that if the outer sphere
is not penetrated by the SELine, the c-MBR will
not be penetrated by the SE-Line, too. On the
contrary, if the inner sphere is penetrated by the
SE-Line, the E-MBR will also be penetrated by
the SE-Line. The previous entering/exiting points
method will be used only if the outer sphere is pen-
etrated, but the inner sphere is not penetrated by
the SE-line.

We have implemented our algorithm and the

methods for penetration checking. The results
show that our algorithm improves the searching
performance significantly. The experiments are
performed on a Sun SPARCcenter2000 workstation
running Solaris 2.5.1 with 512MBytes of main
memory. In the experiments, R*-tree [16] is used
to index the data subsequences and the dimension
reduction technique is also used. According to
the work in [2], three Fourier coefficients are
sufficient to index time series data efficiently. Since
each Fourier coefficient requires 2 numbers, the
dimension of our R*-tree is set to 6. The page
size is 4KBytes and each page stores one internal
node only. The number of maximum entries, M, of
each internal node is 20. The other settings of the
R*-tree are set as suggested in [16]. For example,
the minimum number of entries of each internal
node, m, is set to 40% of M, i.e. 8. The re-insert
parameter p is set to 30% of M, i.e. 6.

Experiments are performed on real stock data.
The stock prices of one thousand companies in
Hong Kong are collected from July 1995 to October
1996. Over six hundred and fifty thousand values
are obtained. In each experiment, 100 queries are
performed. The average CPU time used and the
average number of page accesses are collected to
evaluate the algorithm.

Because the space is limited, only three sets of
experiments are discussed. In set 1, we study the
performance of sequential search method. The
time series data are read sequentially and the
distance from the query sequence is computed by
Lemma 2. We investigate our proposed tree-based
algorithm in set 2 and set 3. In particular, set
2 uses only the Entering/Exiting Points method
to check the penetration of the c-MBR. Set 3
includes the heuristic inner and outer spheres.

First, we evaluate the average CPU time of
the three sets by varying E. The result is
shown in Figure 4. It can be observed that our
proposed tree-based indexing method outperforms
the sequential search method. Since the sequential
search method has to compare all data values for
each query, it has a constant cpu time usage over
the whole range of the error bound. For our
proposed method, the cpu time increases as the
error bound increases because more subsequences
are qualified and so more branches of the R*-tree
are needed to be traversed.

245

~ __._..__ 0 _....__._ a .__..... 0 . . 0 . . D 0
o __._(___ e ____._._ a 0”-“.‘-

0 5
“t&e :fth. Em &mm,

15 20

Figure 4: CPU Time vs Error Value of the 3 sets
of experiments

Figure 5: Number of Page Accesses vs Error Value
of the 3 sets of experiments

However, what surprising here is that the per-
formance of the searching method using bounlding
spheres is worse than that of the one without us-
ing it. We believe it can be explained by the work
in [26]. The authors in [26] find that the bound-
ing rectangles of R*-tree usually have long diago-
nal, but small volume. That means the length of
one of the dimensions of the bounding rectangles
is usually much longer than the length of other di-
mensions. Thus, the outer sphere will be so large
that the probabihty that a SELine penetrates the
outer sphere but not penetrates the bounding rect-
angle is high. Moreover, the inner sphere will be
so small that the probability that a SELine pene-
trates the bounding rectangles but not penetrates
the inner sphere is also high. As a result, a lot
of cpu time spent on computing the penetration
of the bounding spheres cannot help to speed up
the algorithm. Though the bounding spheres are
good heuristic method for ray tracing in computer
graphics, they cannot be applied to our probl,em.

In another experiment, we study the disk acces#s
behavior of the searching methods. By varyi:ng t:,
we measure the average number of page acc,esses
and plot it in Figure 5. For the sequential search
method, the number of page accesses is constantly
equal to (0.65M x 8Bytes)/4KBytes (% 1300)
pages because it has to access all pages for every
query. From Figure 5, we notice that the nu:mber
of page accesses of our proposed method is’ less
than that of the sequential search method over
the whole range of the error bound. When c: = 0
(exact search), the number of page accesses of the
sequential search method is one thousand times
larger than that of our method.

References

[l] R. Agrawal, C. Faloutsos, and A. Swami. Elf-
ficient Similarity Search in
Sequence Databases. In International Con-

ference on Foundations of Data Organization
and Algorithms, pages 69-84, 1993.

[2] C. Faloutsos, M. Ranganathan, and
Y. Manolopoulos. Fast Subsequence Match-
ing in Time-Series Databases. In Proc. of the
ACM SIGMOD Conference on Management

of Data, pages 419-429, 1994.

246

[3] R. Agrawal, K.-I. Lin, H. S. Sawhney, and
K. Shim. Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in
Time-Series Databases. In Proc. of the 2Ist
VLDB Conference, pages 490-501, 1995.

[4] H. V. Jagadish, A. 0. Mendelzon, and
T. Milo. Similarity-Based Queries. In Sym-
posium on Principles of Database Systems,
pages 36-45, 1995.

[5] D. Rafiei and A. Mendelzon. Similarity-Based
Queries for Time Series Data. In Proc. of the
ACM SIGh/IOD Conference on Management
of Data, pages 13-25, 1997.

[6] D. Q. Goldin and P. C. Kanellakis. On simi-
larity queries for time-series data: constraint
specification and implementation. In 1st Intl.
Conf. on the Principles and Practice of Con-
straint Programming, pages 137-153, 1995.

[7] I-I. Shatkay and S. B. Zdonik. Approximate
Queries and Representations for Large Data
Sequences. In International Conference on
Data Engineering, pages 536-545, 1996.

[8] C.-S. Li, P. S. Yu, and V. Castelli. Similarity
Search Algorithm for Databases of Long Se-
quences. In International Conference on Data
Engineering, pages 546-553, 1996.

[9] T. Bozkaya, N. Yazdani, and Z. M. Ozsoyoglu.
Matching and Indexing Sequences of Different
Lengths. In Proc. 1997 ACM CIKM, Sixth
International Conference on Information and
Knowledge Management, 1997.

[lo] B. Yi, H. V. Jagadish, and C. Faloutsos. Effi-
cient Retrieval of Similar Time Sequences Un-
der Time Warping. In International Conjer-
ence on Data Engineering, 1998.

[II] S. K. Lam and M. H. Wong. A Fast Sig-
nature Algorithm for Sequence Data Search-
ing. In The Third International Workshop
on Next Generation Information Technologies
and Systems, pages 1722181, 1997.

[12] S.K. Lam and M.H. Wong. A Fast Projec-
tion Algorithm for Sequence Data Searching.
Data and Knowledge Engineering, 28:321-
339, 1998.

[13] K.W. Chu, S.K. L am, and M.H. Wong. An
Efficient Hash-based Algorithm for Sequence
Data Searching. The Computer Journal,
41:402-415, 1998.

[14] K. P. Chan and W. C. FU. Efficient Time
Series Matching by Wavelets. In International
Conference on Data Engineering, 1999.

[15] B. Bollobas, G. Das, D. Gunopulos, and
H. Mannila. Time-Series Similarity Problems
and Well-Separated Geometric Sets. In 13th
Annual ACM Symposium on Computational
Geometry, pages 454-456, 1997.

[16] N. Beckmann, H.-P. Kriegel, R. Schneider,
and B. Seeger. The R*-tree: an efficient
and robust access method for points and
rectangles. In Proc. of the ACM SIGMOD
Conference on Management of Data, pages
322-331, 1990.

[17] K. Shim, R. Srikant, and R. Agrawal. A
Fast Algorithm for high-dimensional Similar-
ity Joins. Technical report, IBM Almaden Re-
search Center, 1996.

[18] T. Sellis, N. Roussopoulos, and C. Faloutsos.
The R+ tree: a dynamic index for multi-
dimensional objects. In Proc. of the 13th
VLDB Conference, 1987.

[19] G. Das, D. Gunopulos, and H. Mannila.
Finding similar time series. In 1st European
Symposium on Principles of Data Mining and
Knowledge Discovery, pages 88-100, 1997.

[20] K. V. R. Kanth, D. Agrawal, and A. K.
Singh. Dimensionality-Reduction for Similar-
ity Searching in Dynamic Databases. In Proc.
of the ACM SIGMOD Conference on Manage-
ment of Data, pages 166-176, 1998.

[21] H. F. Davis and A. D. Snider. Introduction to
Vector Analysis. Wm. C. Brown Publishers,
1995.

[22] A. Guttman. R-tree: a dynamic index
structure for spatial searching. In Proc. of the
ACM SIGMOD Conference on Management
of Data, pages 47-57, 1984.

247

[23] S. Berchtold, D. A. Keim, and H.-P. Kriegel.
The X-tree : An Index Structure for High-
Dimensional Data. In Proc. of the 22th VLDB
Conference, pages 28-39, 1996.

[24] J. Es. Fraleiglh and R. A. Beauregard. Linear
Algebra. Addlison Wesley, 1995.

[25] A. .Watt. 313 Computer Graphics. Addison
Wesley, 1993.

[26] N. Katayama and S. Satoh. The SR-tree:
An Index Structure For High-Dimensional
Nearest Neighbor Queries. In Proc. of the
ACM SIGMOD Conference on Management
of Data, pages 369-380, 1997.

248

