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Abstract

We investigate the problem of searching similar multi-
attribute time sequences. Such sequences arise naturally
in a number of medical, financial, video, weather forecast,
and stock market databases where more than one attribute
is of interest at a time instant. We first solve the simple case
in which the distance is defined as the Euclidean distance.
Later, we extend it to shift and scale invariance. We for-
mulate a new symmetric scale and shift invariant notion of
distance for such sequences. We also propose a new index
structure that transforms the data sequences and clusters
them according to their shiftings and scalings. This clus-
tering improves the efficiency considerably. According to
our experiments with real and synthetic datasets, the index
structure's performance is 5 to 45 times better than compet-
ing techniques, the exact speedup based on other optimiza-
tions such as caching and replication.

1 Introduction

Time series or sequence data sets arise naturally in many
real world applications like stock market, weather fore-
casts, video databases, sensor-based controls, and medicine.
There is a frequent need to understand the information con-
tent of this data in order to respond better to common trends,
to provide corrective emergency steps, or to predict the
future evolution based on past records. Some examples
of queries on such datasets include finding the companies
which have similar profit/loss patterns, finding similar mo-
tion patterns in a video database, finding similar patterns in
medical sensor data in order to respond to patient health
problems, to predict infrastructure usage by comparison
with past trends, or to predict common genetic functionality
by study of gene expression patterns over time.

Time series data is said to haved attributes ifd values
are stored for each time point. Stock market data, which is
formed by storing the closing prices of a company is an ex-
ample of a 1-attribute sequence. If we include the P/E ratio
and the number of shares sold, this becomes a 3-attribute
sequence. The trajectory of an object moving on a plane is
a 2-attribute sequence, because two values (i.e.X andY
coordinates) are stored for each discrete time point. Med-
ical data is usually multi-attribute since a single sensor is
seldom sufficient to record the health of a patient: such a
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sequence can be obtained by using the blood pressure val-
ues, the heart beat rate, the amount of calcium, and other
parameters recorded periodically from a patient.

There are many ways to compare the similarity of two
time sequences. One approach is to define the distance
between two sequences to be the Euclidean distance, by
viewing a sequence as a point in an appropriate multi-
dimensional space [1, 4, 7, 11, 19].

Range searches and nearest neighbor searches forwhole
matching and subsequence matching [1] have been the
principal queries of interest for time series data.Whole
matching corresponds to the case when the query sequence
and the sequences in the database have the same length.
Agrawal et al. [1] developed one of the first solutions to
this problem. The authors transformed the time sequence
to the frequency domain by using DFT. Later, they reduced
the number of dimensions to a feasible size by storing the
first few frequency coefficients. Chan and Fu [4] used Haar
wavelet transform to reduce the number of dimensions and
compared this method to DFT. The authors found that Haar
wavelet transform performs better than DFT. However, the
performance of DFT could be improved using the symme-
try of Fourier Transforms [17]. In this case, both methods
gave similar results.

1.1 Adopting new metrics for distance

Non-Euclidean metrics have also been used to compute
the similarity for time sequences. Agrawal, Lin, Sawh-
ney, and Shim [2] useL1 as the distance metric. An-
other distance metric for multi-attribute time sequences is
Dnorm [13]. Although this metric has a high recall, it al-
lows false dismissals.

Defining the distance as some norm of the difference
between two time sequences may be insufficient if the se-
quences can be made closer by linear transformations. The
most important transformations are scaling and shifting.
Scaling is needed because of the need to compare time se-
quences recorded on devices with different calibrations or
different units.

One emerging area of applications for shift and scale in-
variant comparison of time sequences is data from genome
microarrays. By choosing cells from an organism under
different stages of development, or under different physi-
cal conditions, valuable information can be obtained about
the expression of genes, their relationship to one another,
and genetic pathways. Using the absolute values of the
measurements may be misleading because of variation in
the physical conditions like data quality and quantity, scan-
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ner quality, glass quality, hybridization conditions and post-
hybridization washing. In order to allow comparisons under
different experimental conditions, shift and scale invariant
comparisons of the resulting sequences can be useful.

Das, Gunopulos and Mannila [6] showed that the sim-
ilarity between two sequences after eliminating the out-
liers, and scaling and shifting can be determined in O(n6)
time usinglongest common subsequence (LCSS) technique,
wheren is the length of the strings. However, the LCSS can
be found in O((n+m)3�3) time [20] if only shift invariance
is involved, wherem andn are length of sequences and� is
the error.

Rafiei and Mendelzon [16] developed algorithms for an-
swering similarity queries under a set of user-specified lin-
ear transformations. When these transformations aresafe,
the queries can be answered efficiently by applying the
specified transformation to an index MBR. Multiple trans-
formations can also be applied collectively to the database
sequences [15]. The problem we study here is different in
that we consider all possible scalings and shiftings, not just
a set of user-specified transformations.

Goldin and Kanellakis [8] propose a technique based on
normalization for the comparison of the time sequences.
A normalized time sequence has a zero mean and a unit
standard deviation. Given a queryQ, the authors present a
search algorithm that finds all database sequencesS such
that thenormalized Euclidean distance1 DN (Q; aS+ b) �
� for somea > 0 and b. Chu and Wong [5] considered
the asymmetric formulationD2(aQ + b; S) � �. They
use a transformation to map the data sequences onto the
Shift Eliminated Plane. Both of these formulations of dis-
tance are inherently asymmetric in its treatment of query
and database sequences. We focus on the symmetric notion
of the distance in this paper. The restriction to only positive
scalings (a > 0) also appears artificial.

The Landmark model [14] stores the turning points of
the time sequences. The distance between time sequences
here is invariant with respect to 6 transformations: shifting,
uniform amplitude scaling, uniform time scaling, uniform
bi-scaling, time warping, and non uniform amplitude scal-
ing. However, the landmarks of different time sequences
may correspond to different time points.

1.2 Our contribution

In this paper, we consider the similarity search problem
for multi-attribute sequences. We first solve the simple case
in which the distance is basically defined as the Euclidean
distance. Later, we extend it to handle shift and scale in-
variance. We point out the problems with current meth-
ods for scale and shift invariant distance computations, and
propose a new symmetric notion of distance: the distance
between two time sequences is defined to be the smallest
Euclidean distance after scaling and shifting either one of
the sequences to be as close to the other. We define two

1This corresponds to an unbounded query in the authors' terminology.

models for comparing multi-attribute time sequences: in the
first model, the scalings and shiftings of the component se-
quences are dependent, and in the second model they are
independent.

We propose a novel index structure calledCS-Index
(Cone Slice) for shift and scale invariant comparison of time
sequences. As a part of this technique, the sequences in the
database are first mapped to the shift eliminated plane [5].
The transformed points are then clustered in hierarchical
cone slices. These slices are stored on disk according to
an in-order traversal, and a pointer to each slice along with
angle and spatial extent information is maintained in mem-
ory. Given any query, it is first mapped onto shift eliminated
plane. The shift and scale invariant distance between the
query and the slices are computed in memory to obtain a
set of candidate slices. The hierarchical construction of the
index structure allows early pruning. Finally, the candidate
slices are read from disk in a single seek, and false hits are
eliminated.

Experimental results show that the CS-Index structure
performs 50 to 100 times faster than the R*-tree index struc-
ture and 5 to 10 times faster than sequential scan. The ef-
ficiency of the index structure can be further improved by
selectively replicating or caching parts of the index struc-
ture.

The rest of the paper is organized as follows. We dis-
cuss the simple case in which the Euclidean distance is used
as the dissimilarity measure in Section 2. We define the
problem of shift and scale invariant search of multi-attribute
time sequences in Section 3. In Section 4, we propose the
CS-index structure for range queries and nearest neighbor
queries. We present experimental results on a number of
synthetic and real datasets in Section 5. We end with a brief
discussion in Section 6.

2 Multi-attribute time sequences
A d-attribute time sequence is formed by storingd val-

ues at each time point. Ifv is a d-attribute time sequence
of length l, then it can be represented as a vectorv =
(v1; v2; :::; vl), wherevi = (vi;1; vi;2; :::; vi;d) for 1 � i � l
(vi;j are scalars.). Figure 1(a) depicts a two-attribute se-
quence of length four.

The Euclidean distance,D2, betweend-attribute time se-
quencesu andv of lengthl is defined as

D2(u; v) =
qP

1�i�l

P
1�j�d(ui;j � vi;j)2.

2.1 Whole matching for multi-attribute sequences

If the length of the sequences in the database and the
length of the query sequence is equal, similarity searching
is calledwhole matching. Whole matching is a well stud-
ied problem for 1-attribute sequences (e.g. [1, 4, 7, 17]).
Whole matching problem for multi-attribute sequences can
be solved using any of the existing techniques after trans-
forming multi-attribute sequences to 1-attribute sequences.
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Figure 1. (a) Two-attribute sequence of length four. (b) One-

attribute representation of the same sequence.
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Figure 2. A sliding window of length four on a two-attribute

sequence.

This transformation is performed by appending the at-
tributes consecutively. This idea is depicted in Figure 1.
Figure 1(b) shows the 1-attribute representation of the 2-
attribute sequence given in Figure 1(a).

Once the multi-attribute time sequences are transformed
to 1-attribute sequences, they can be viewed as points in a
multi-dimensional space. For example, the sequence in Fig-
ure 1 is considered as a point in 8-dimensional space. The
dimensionality of this data can be reduced using any energy
preserving dimensionality reduction technique (e.g. DFT,
SVD, or wavelets). These points are then indexed using any
multi-dimensional index structure (e.g. R-tree [3, 9]). The
distance is defined as the Euclidean distance in this multi-
dimensional space.

2.2 Subsequence matching for multi-attribute se-
quences

Searching similar subsequences of database sequence
to query sequence is calledsubsequence matching. Sub-
sequence matching is more difficult than whole matching
since the similar subsequences can be located at any loca-
tion of the database sequences. Current subsequence match-
ing techniques use sliding window based schemes to con-
struct an index structure prior to search [7, 10, 11]. All of
these techniques consider 1-attribute sequences.

Multi-attribute sequences can be handled by sliding the
window over the multi-attribute sequence as in Figure 2.
Each of the subsequences in these windows is then trans-
formed into 1-attribute sequences as shown in Figure 1.
Hence, each window maps to a point in a multi-dimensional
space. For example, each window in Figure 2 maps to an 8-
dimensional point. Later, the dimensionality of these points
is reduced using a dimensionality reduction technique (e.g.
DFT). The points are then indexed using the MR index
structure [11].

3 Shift and scale invariant search

Simple Euclidean metric may not be sufficient for multi-
attribute time sequences. In this section, we discuss the
idea of shift and scale invariant distance metric. We be-
gin with 1-attribute time sequences and later generalize to
multi-attribute time sequences.

3.1 1-attribute time sequences

Consider the 1-attribute time sequencesv1 =
(2; 6; 4; 10) andv2 = (5; 7; 6; 9). Although the Euclidean
distance between these two sequences is large, they can be
made identical by scaling and shifting:v1 = 2 � v2 � 8 �N ,
whereN = (1; 1; 1; 1) is the normal vector. We begin by
considering the existing notion of distance [5, 8].

A time sequencex can be normalized (also calledz-
normalization) asx0 = (x � mean(x))=std(x) [8]. That
z-normalization does not minimize the Euclidean distance
under all scalings and shiftings can easily be seen from the
following example: Letu = (0; 0; 1; 1) andv = (3; 2; 1; 0),
thenD2(u

0; v0) = 1:94. On the other hand,D2(�0:5 � v +
1:25; u) = 0:5: is much less than the normalized distance.

Let v be a 1-attribute time sequence of lengthl, then
the set of all possible scalings ofv is defined asSC(v) =
fc � vjc 2 Rg. The set of all scalings ofv forms a line
in l-dimensional space that passes through origin andv.
Similarly, the set of all possible shiftings ofv is defined as
SH(v) = fv+ c �N jc 2 Rg. The set of all shiftings forms
a line in l-dimensional space which passes throughv and
which is parallel to the vectorN . The plane which passes
through the origin and is perpendicular to the normal vector
N is called theshift eliminated plane (SE-plane). The pro-
jection of a sequencev onto the SE-plane is a point repre-
sented byTSE(v). The minimum distanced(u; v) between
v and all scalings and shiftings ofu can be computed as the
distance between the projections ofSC(u) andSH(v) onto
the SE-plane. We establish the following lemma.

Lemma 1 Given two 1-attribute time sequences u and v of
the same length,

d(u; v) = jjTSE(v)jj2 �
q
1� ( TSE(v):TSE(u)

jjTSE(v)jj2�jjTSE(u)jj2
)2,

where u:v is the dot product of the vectors u and v, and
jjvjj2 is the second norm of v.

Though efficiently computable, the above distance for-
mulation by Chu and Wong [5] and Goldin and Kanel-
lakis [8] is not symmetric. Thatd(u; v) 6= d(v; u), for
someu, v, can be seen from the following example. Let
u = (0; 0; 1; 1) andv = (3; 2; 1; 0), then
d(u; v) = D2(�2 � u+ 2:5; v) = 1. On the other hand,
d(v; u) = D2(�0:5 � v + 1:25; u) = 0:5.

The scaling and shifting coefficients for this counter exam-
ple are computed as in [5]. The absence of symmetry in
the definition ofd(u; v) can lead to counter-intuitive re-
sults. For example, consider two sequencesu andv from
the database. It is possible thatu is in the result set when
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we perform a range query usingv as the query sequence, but
not vice-versa. It follows from Lemma 1 that the distance
functiond(u; v) is symmetric, i.e.d(u; v) = d(v; u), if and
only if jjTSE(u)jj2 = jjTSE(v)jj2. Since this condition
is quite restrictive, we modify the definition of distance in
order to make it symmetric.

Definition 1 Given two 1-attribute time sequences u and v
of the same length, the distance between these sequences is
defined as
dist(u; v) = minfd(u; v); d(v; u)g.

We could have used other functions such asmax, or av-
erage in the above definition, but it is themin function that
captures the notion of distance more adequately. We will
see later that our index structure works as well for other
functions.

3.2 Multi-attribute time sequences

The attributes of a multi-attribute time sequence can be
independent, i.e., allowing independent scalings and shift-
ings, ordependent.

LetNk;l be thek� l matrix which is composed of all 1's.
DefineIk to be the identity matrix ofk dimensions. Letv
be ak-attribute time sequence of lengthl.

Definition 2 If v is a k-attribute dependent time sequence
of length l, then the set of all possible scalings of v is defined
as
SC(v) = fc � vjc 2 Rg,

and the set of all possible shiftings of v is defined as
SH(v) = fv + c �Nk;ljc 2 Rg.

Definition 3 If v is a k-attribute independent time sequence
of length l, then the set of all possible scalings of v is defined
as
SC(v) = fCkIkvjCk 2 Rkg,

and the set of all possible shiftings of v is defined as
SH(v) = fv + CkIkNk;ljCk 2 R

k
g.

Given the above definitions of scalings and shiftings of
multi-attribute time sequences, the distance function given
in Definition 1 can be used for both dependent and inde-
pendent multi-attribute time sequences. For example, let
u = ((0; 0); (1; 1)) andv = ((3; 2); (1; 0)) be two attribute
time sequences of length two. Ifu andv are dependent se-
quences, thendist(u; v) = 0.25 (scalev with -0.5, and shift
v by 1:25.). If u and v are independent sequences, then
dist(u; v) = 0 (scalev with 0, and shift the first attribute of
v by 0 and the second attribute ofv by 1.).

4 The CS-index structure

In this section, we propose a new index structure which
clusters the data sequences according to both their scaling
and shifting lines. We call this index structureCS-index

/*Let f be the fanout andp be the page capacity.*/
Algorithm CS-INDEX-BULKLOAD(S)
/*Let S be the set of time sequences in the database. */

1. For allv 2 S, v := TSE(v).

2. Choose a random sequencev.

3. Sort all sequences inS in ascending order of angular distance tov.
LetAS be this order.

4. Sort all sequences inS in ascending order of their distance to the
origin. LetDS be this order.

5. SPLIT(S;AS ;DS).

Figure 3. CS-index bulk-loading algorithm

(Cone Slice) for it resembles slices of hierarchically ordered
cones. The idea is to project both the scaling lines and
the shifting lines of the data sequences on to the SE-plane,
and cluster the sequences whose projected shifting lines are
close and for whom the angles between the projected scal-
ing lines are small. Consideration of both the shifting line
and the scaling line of data sequences is prompted by Def-
inition 1. If we consider only the shifting lines of the data
sequences, and use an R*-tree or any other similar index
structure merely based on spatial closure as in [5], then there
are several disadvantages: a)The angular distance between
scaling lines of the data sequences clustered within a disk
page may be larger than the angular distance between scal-
ing lines of the data sequences in different pages. This may
result in a large number of false hits. b) Disk I/O's for read-
ing the candidate sequences involve random seeks, resulting
in a high I/O overhead.

We will first describe the construction of theCS-index
structure for the 1-attribute time sequences. Later we will
extend the idea to the multi-attribute case.

4.1 CS-index for 1-attribute time sequences

Let q be a query sequence and letv be a time
sequence in the database. Let�q;u be the angle
between the vectorsTSE(q) and TSE(u). Using
Lemma 1 and Definition 1, we conclude thatdist(q; u) =
minfjjTSE(q)jj2; jjTSE(u)jj2g�sin�q;u. This means that
the distance between a query and a database sequence is
based on the lengths of the projections of the two sequences
on the SE-plane and the angle between the projections.
Therefore, a good index structure must cluster radially, i.e.,
based on the distance from the origin as well as the angular
distance.

The CS-index structure consists of a set of data pages
stored on disk, and summary information stored in memory
about the data pages. The data pages are organized in a tree
structure defined by two parameters: page capacity, denoted
p, and fanout, denotedf . The tree structure is virtual in
the sense that it is used only for clustering of data; there
are no physical index pages. The rationale for choosing the
appropriate fanout will be explained later.

The data sequences are bulk-loaded into the index struc-
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Algorithm SPLIT(S;AS; DS)

� if jSj > p /* The number of points are more than page capacity */

1. if jSj < p � f thenf :=
jSj

p
. /* Reduce fanout if there is not

sufficient points left for current fanout */

2. Using AS , partition the sorted setS into subsets
S1; S2; :::; Sf of sizejSj=f .

3. ObtainASi
andDSi

, for eachi, i = 1, ...,f , by restricting
AS andDS to Si.

4. for i:= 1 tof

(a) P := p sequences closest to the origin inSi.

(b) storeP as the next page.

(c) Si := Si � P .

(d) updateASi
andDSi

.

(e) SPLIT(Si; ASi
; DSi

).

5. end for

� end if

Figure 4. Split Algorithm. This algorithm recursively splits the

data points first according to the angles and then according to their

distances from the origin.

ture as shown by algorithms in Figures 3 and 4. First, the
shifting lines of all the sequences are projected onto the SE-
plane (Step 1 of procedureCS-INDEX-BULKLOAD). Later,
these sequences are sorted based on angular distance to a
randomly chosen sequence (Step 3), and based on distance
to the origin (Step 4). After that, procedureSPLIT is in-
voked. This procedure carries out a clustering based on
angles and distances from origin. Using the angular dis-
tances, the set of sequences is partitioned intof subsets
S1; S2; : : : ; Sf (Step 2). Later, the angular and spatial or-
derings for these subsets are obtained by restricting the orig-
inal orderingsAS andDS (Step 3). In the second splitting
phase (Step 4), a piece of sizep (Steps 4.a, 4.b, and 4.c).
is chopped from each cone by intersecting it with a sphere
centered at the origin. Each of these pieces is called aslice.
Later, the angular and spatial orderings are updated for the
remainder of the subset (Step 4.d). Rest of the points are
then recursively split (Step 4.d). Steps 1, 2, 3, 4.a-4.d re-
quireO(n) time, wheren is the size of the input setS.
As a result, the time complexity,T (n) of theSPLIT algo-
rithm satisfies the recurrenceT (n) = fT (n=f) + O(n).
This leads to a time complexity ofO(nlogn) for theSPLIT
algorithm. Since the two sorting steps in theCS-INDEX-
BULKLOAD algorithm also haveO(nlogn) complexity, the
entire index construction requiresO(nlogn) time.

Figure 5 shows different steps of the index construction
algorithm on a sample dataset whenf = 2. The data points
are projected to the SE-plane. The dataset is partitioned into
f equal sized sets based on their angular distance in Fig-
ure 5(a) (Step 2 ofSPLIT). Later, a data page is determined
by clusteringp closest points in one of these sets, based on
Euclidean distance to the origin in Figure 5(b) (Step 4.a-4.b

of SPLIT). TheSPLIT algorithm is then invoked recursively
for the rest of the points in the reduced set. The reduced
set is again partitioned intof sets, based on angles in Fig-
ure 5(c). Figure 5(d) presents the final index structure.

Each slices can be viewed as the intersection of a cone
with a ring that is determined by two radii,rs andRs, where
rs is the minimum Euclidean distance between the origin
and a point on the slice andRs is the maximum Euclidean
distance between the origin and a point on the slice.

The index structure in Figure 5(d) has three levels. The
root level contains two slices 4, and 11. There is a total of
14 slices, each containing at mostp points. A slicesi is
said to be theancestor of a slicesj (and similarly, slicesj
is said to be adescendant of si) if the cone corresponding
to sj is contained entirely in the cone corresponding tosi.
For example, in Figure 5(d), slice 4 is the ancestor of slices
1, 2, 3, 5, 6 and 7.

The distance between a query sequenceq and a slice is
defined as the minimum scale and shift invariant distance
betweenq and any point on the slice. The formal definition
is as follows:

Definition 4 Let s be a slice in the CS-index and q be a
query sequence on the SE-plane. Let �q;s be the angle be-
tween q and a point in s for which sin�q;s is the minimum.
The distance between q and s is defined as:
dist(q; s) = minfjjqjj2; rsg � sin�q;s.

Using this definition, we have the following theorems:

Theorem 1 Let s be a slice in the CS-index, v be a data
sequence contained in s, and q be a query sequence on the
SE-plane, then
dist(q; s) � dist(q; v).

Theorem 2 Let s1 and s2 be two slices in the CS-index such
that s1 is the parent of s2. Let q be a query sequence on the
SE-plane, then
dist(q; s1) � dist(q; s2).

Some important observations about the CS-index are as
follows. 1) If the distance between a slice and a query se-
quence is greater than� (Theorem 1), then the distance be-
tween the query sequence and any data sequence contained
in that slice is greater than�. In other words, given a range
query, a slice may contain candidate sequences only if the
distance between the query sequence and that slice is less
than the search range. 2) If the distance between a slice and
a query sequence is greater than�, then the distance between
that query sequence and all children of that slice is greater
than� (Theorem 2). 3) If the distance between a slice and
a query sequence is less than�, then the distance between
that query sequence and all the ancestors of that slice is less
than� (Theorem 2).
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Figure 5. Construction of the CS-index when f = 2. The data points are transformed onto shift eliminated plane. (a) Angular partitioning, (b)

spatial partitioning, (c) recursive invocation of angular partitioning, (d) final index structure.

Algorithm RANGE-QUERY(q, �)

1. C := ; /* the set of candidate pages*/

2. S := ; /* stack for navigation*/

3. Push all the root slices s1, s2, ..., sf on to S.

4. While S 6= ;

(a) s := Pop(S)

(b) if dist(q; s) � �

i. C := C [ fsg

ii. Push all the children of s on to S

5. Read the candidate pages in set C and perform postprocessing to
eliminate false retrievals.

Figure 6. Range search algorithm

4.2 Similarity search on the CS-index structure

The range query algorithm on the CS-index is presented
in Figure 6. A range query is performed in two phases: an
in-memory candidate generating phase followed by a disk-
based post-processing step. In the in-memory phase, the
search starts from the root pages and proceeds downwards.
If the distance between the query sequence and a slice is less
than the query range (Step 4.b), then the method marks this
slice as a candidate and expands the query to all the children
of that slice. If the distance between the query sequence and
a slice is greater than the search range, then the algorithm
prunes that slice and all its children. Once the candidate
sets are determined, the disk-based processing step begins.
Using the disk placement information, a sequential scan is
used to read all the candidate pages. Data points that are not
in the range are pruned to ensure no false retrievals. Since
the set of pages read from disk during the post-processing
step is a subset of all the pages, our method performs no
worse than sequential scan. In fact, it performs much bet-
ter since clustering reduces the range of the sequential scan
considerably. As a consequence of Theorem 1 and Theo-
rem 2, we have the following corollary:

Corollary 1 The range query algorithm in Figure 6 does
not incur any false drops.
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Figure 7. Transformation of a 2-attribute dependent time se-

quence to the SE-plane.

We present a detailed discussion of the nearest neigh-
bor queries on the CS-index structure in the technical report
version of this paper [12].

4.3 Multi-attribute CS-index

The CS-index structure, so far defined for 1-attribute
sequences, can be extended easily to multi-attribute se-
quences. We consider the multi-attribute extension for de-
pendent and independent time sequences separately.

4.3.1 Case 1: dependent attributes
If the multi-attribute time sequences in the database are k-
attribute dependent time sequences of length l, then the
problem reduces to the 1-attribute case by simply trans-
forming the sequences into 1-attribute time sequences of
length k � l as in Figure 1. This is justified because all the
entries are scaled and shifted by the same amount. Figure 7
depicts how the dependent attributes are handled. These se-
quences are considered as points in a (k � l)-dimensional
space. The dimensionality of these points are then reduced
using a dimensionality reduction technique (e.g. DFT).
Later, the CS-index structure is constructed on these points
as explained in Figures 3, 4, and 5. Range queries are per-
formed as in Figure 6.

4.3.2 Case 2: independent attributes
If the database consists of k-attribute independent time se-
quences of length l, then all the attributes must be consid-
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Figure 8. Transformation of a 2-attribute independent time se-

quence to the SE-plane.

ered separately. This is because different attributes may be
scaled or shifted by different amounts. Figure 8 presents
how the CS-index structure handles independent attribute
sequences. We first split each time sequence into k 1-
attribute time sequences of length l. This is like split-
ting a k � l-dimensional space into k non-overlapping l-
dimensional spaces. As a result, each k-attribute time se-
quence corresponds to k points in l-dimensional subspaces.
We determine the SE-planes of these l-dimensional sub-
spaces. We project the 1-attribute time sequences onto their
corresponding SE-planes, and concatenate the vectors cor-
responding to these k projections to construct a 1-attribute
k � (l � 1)-dimensional point. We construct the CS-index
on these points as described in Section 4.1. Every slice
of the constructed index can be projected into k different
subspaces; these projections are called subslices. Another
choice would be to maintain k separate CS-index structures
for 1-attribute (l � 1)-dimensional points. However, this
would require additional post-processing.

For a given range query or a nearest neighbor query of k
attributes, we split the query into k 1-attribute subqueries,
one for each attribute. For each subquery, we obtain its dis-
tance to a slice by considering the subslice corresponding
to that attribute. The distance between a query and a slice is
defined to be the square root of the sum of squares of the k
different subquery subslice distances. Once these distances
are obtained, pruning and post-processing proceeds as in the
single-attribute case. Range queries are performed similar
to Figure 6. The only difference is that the distance function
is computed for each attribute separately, and the results are
accumulated to find the distance for the independent case.

4.4 Improving post-processing performance

The candidate slices for a range query or a NN-query are
determined using an in-memory search. The postprocessing
step uses one sequential scan to read the candidate slices.
The performance of the index structure is therefore deter-
mined by how closely clustered the candidate slices are on

disk 2. The number of non-candidate slices placed between
the first and the last candidate slice on disk should be mini-
mized. A clustering of candidate slices can be achieved by
three techniques: carrying out a more effective pruning in
the in-memory phase, optimizing the placement of pages on
disk, and caching/replication of disk pages. We elaborate on
these ideas next.

4.4.1 Fanout selection
We noted earlier that the fanout f is an independent param-
eter of the bulk-loading algorithm that is not affected by the
size of disk pages. For a given dataset, a large fanout leads
to thick slices that span a smaller angle, whereas a small
fanout leads to thin slices that span a larger angle. The suc-
cess of the pruning procedure depends on both the thickness
and the angular span of the slices: a thick or a wide slice is
less likely to be pruned. The right choice of fanout ensures
that slices are not too thick and not too wide. This can be
determined either experimentally or theoretically if the data
distribution is known. In our experiments, the optimal value
for fanout varied between 5 and 7.

4.4.2 Disk placement
The second parameter that improves the post-processing
performance is the placement of pages on disk. Note that
if the distance between a query sequence q and a slice s is
less than the given search range �, then the distance between
q and the parent of s is also less than �. Therefore, if a slice
s is in the candidate set, then all its ancestors are also in
the candidate set. For example, if slice 3 of the CS-index in
Figure 5 is a candidate, then slices 2 and 4 are also guaran-
teed to be in the candidate set. In order to reduce I/O cost,
slices 1, 2, and 4 should be stored contiguously on disk.
In general, the slices should be placed on disk in a manner
that minimizes the distance between a slice and all its de-
scendants. This means that the slices belonging to a subtree
should be stored contiguously; it does not help to interleave
a subtree with slices from a sibling subtree. The second
condition that minimizes the parent-child distance is that a
root node should be linearized in the middle of its subtree.
These two conditions imply an in-order placement: a tree
with 2k subtrees is linearized by an in-order traversal of its
first k subtrees, placement of the root slice, and an in-order
traversal of the remaining k subtrees. This linearization is
used to place the slices on the disk.

4.4.3 Replication and caching of pages
The final parameter that improves the post-processing per-
formance is the degree of caching and replication of disk
pages. Both caching and replication can reduce the number
of redundant pages that are read.

Replicating a page means that we maintain a copy of the
page with all its subtrees on disk. Replicating k levels of the
index structure means that we replicate the pages at the first
k levels of the CS-index at their children. The advantage of

2For simplicity we assume a 1-d disk model.
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Dataset Size R-tree Size CS-index Size

stock market dataset 2.5M 160K 25K
motion dataset 8M 393K 41K

Table 1. The size of the R-tree and the CS-index structure for

stock market dataset and motion dataset.

replication is that it can reduce the distance between a page
and its ancestors. Replication works best if the queries are
sufficiently narrow so that all candidate pages belong to a
subtree and its ancestors. Otherwise, it can lead to redun-
dant pages being read.

Caching k levels of the index structure means to keep the
pages at the first k levels of the CS-index in memory and to
place the in-order linearizations of the subtrees at level k
on disk. Unlike replication, caching can only improve the
performance of our index structure.

4.5 Extending the CS-index structure to other
symmetric distance functions

The CS-index structure can also be used when the dis-
tance function is obtained by using max or avg functions
instead of min function as follows:

Case 1. dist(q; u) = maxfd(q; u); d(u; q)g.
In this case, one can prove that

dist(q; u) = maxfjjTSE(q)jj2; jjTSE(u)jj2g�sin�q;u.
Similar to the min function, this distance function also uses
a Euclidean distance and an angular distance in its compu-
tation. The CS-index structure will work well for the max
function since it clusters time sequences based on the dis-
tance from the origin as well as the angular distance.

Case 2. dist(q; u) = avgfd(q; u); d(u; q)g.
dist(q; u) = (minfd(q;u);d(u;q)g+maxfd(q;u);d(u;q)g)

2
.

Hence, dist(q; u) = jjTSE(q)jj2+jjTSE(u)jj2
2

� sin�q;u. Sim-
ilar to min and max functions, avg function is also based on
the distance from the origin and the angular distance. As a
result of this, the CS-index structure will work well for the
avg function too.

5 Experimental results

We carried out several experiments to test the perfor-
mance of the CS-index structure. We used three different
datasets in our experiments:

1) The first dataset is a stock market dataset, obtained
again from chart.yahoo.com. The time sequences in this
dataset consist of 2 attributes. The first attribute is the clos-
ing price, and the second attribute is the volume. There are
20,000 time sequences of length 32 in this dataset.

2) The second dataset is obtained synthetically by con-
sidering four different kinds of object trails in a 2-attribute
sequence. The motions that we consider are: bouncing ball,
circular motion, billiard ball moving within the confines of
a rectangular table with perfect carom and elasticity, and a
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Figure 9. I/O overhead of CS-index versus R-Tree and sequen-

tial scan for the 2-attribute dependent stock market dataset.

periodic motion along a sine curve. This dataset contains
215 time sequences, distributed evenly among the four dif-
ferent motion types. The length of the time sequences is 32.

3) The third dataset is a multi-attribute dataset of 1, 2, 4,
and 8 attributes. The time sequences are obtained syntheti-
cally by adding four sine signals of random frequencies and
amplitudes and some amount of random noise. Correspond-
ing to each choice of attributes, we have 215 time sequences
of length 32.

We compressed the time sequences in these datasets to
4 dimensions using DFT, and then built the CS-index struc-
ture on the compressed data. Since both DFT and TSE are
distance preserving transformations, there are no false drops
in the resulting index structure. We also built R-Tree index
as proposed by Chu and Wong [5] for comparison. Since
the CS-index structure uses bulk loading, we used the VAM-
Split implementation of R-Trees [21]. Table 1 displays the
size of the CS-index structure and R-tree for the first two
datasets. The size of the CS-index structure is much smaller
than R-tree. This is because the CS-index structure disk
does not store pointers to individual time sequences in the
database since slices of the CS-index structure corresponds
to continuous pages on the disk. In our query model, we
considered range queries with 20 different values of � in the
range (0:001; 0:01). For every value of �, 1000 sequences
in the database were chosen at random for querying. We
assume that the page size is 4K in our experiments.

The first experiment considers the dependent attributes.
2-attribute stock market dataset. Figure 9 shows the I/O
overhead for sequential scan, R-tree, and the CS-index
structure. For the CS-index structure, we also present
results for replicating one level, replicating two levels,
caching one level, and caching two levels. The results
show that the R-Tree index structure accesses almost all
the pages. This can be explained as follows. The angular
distance between two points may be large even if the Eu-
clidean distance between them is small. Since R-Tree index
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Figure 10. I/O overhead of CS-index versus sequential scan

for the 2-attribute stock market dataset.
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Figure 11. I/O overhead of CS-index versus sequential scan

for the 2-attribute motion dataset.

structure clusters based on Euclidean distance, the resulting
boxes may span a large angular distance. This may lead to
a large number of candidate MBRs. Though R-tree index
and sequential scan access a similar number of pages, R-
tree index accesses pages randomly. Since a random read
can cost approximately 10 times a sequential read [18], the
performance of the R-tree index is about 10 times worse
than sequential scan. Therefore, we conclude that the R-
Tree index structure is not appropriate for scale and shift in-
variant searches. On the other hand, the CS-index structure
accesses less than 20% of all the pages. Since, the CS-index
structure performs a single sequential disk read, it incurs a
seek cost only once (like sequential scan). CS-index is 5
to 10 times faster than sequential scan. Replicating only
one one level of the CS-index structure almost doubles the
speedup. Replicating two or more levels degrades the per-
formance. If only one level of the CS-index is cached, then
the speedup is 15 to 35.

In remaining experiments, we assume that the time se-
quences in the dataset have independent attributes. We com-
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Figure 12. I/O overhead of CS-index versus sequential scan

for the sine curve dataset of an increasing number of attributes.
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Figure 13. I/O overhead of CS-index versus sequential scan

for the 2-attribute sine curve dataset for different fanout values.

pare the performance of our method to sequential scan. R-
Tree results are not presented, because its performance was
much worse than sequential scan. Figures 10 and 11 show
the experimental results for the stock market dataset and
the motion dataset compressed to 4 dimensions. We ob-
tained speedups up to 8 for CS-index with no replication
and caching. The speedup doubled when one level is repli-
cated. The speedup increased to 40 when 2 levels of our
index structure are cached.

The next experiment reports the scalability of the CS-
index structure for an increasing number of attributes. In
this experiment, we used the third dataset. Figure 12 plots
the number of disk reads for sequential scan and CS-index
structure. As the number of attributes increases, the size of
the dataset increases linearly. This is reflected in the number
of disk reads for sequential scan. The experimental results
show that the number of disk reads for the CS-index struc-
ture also increases linearly with the number of attributes.
Therefore, the speedup of the CS-index structure remains
invariant under an increasing number of attributes.
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Figure 13 plots the number of disk read for the CS-index
structure for different values of fanout for the stock market
data set compressed to 4 dimensions. The CS-index per-
forms the best when the fanout is 7 for this data set. We ob-
tained a similar U-shaped graph for the other datasets too.
The optimal fanout for other datasets varies between 5 and
7. Reason for this is explained in Section 4.4.1.

More comprehensive experimental results for additional
datasets and a discussion for subsequence searches are
available in the technical report version of this paper [12].

6 Discussion

We considered the problem of similarity search for
multi-attribute sequences. First, we considered the simple
Euclidean distance metric. Later, we considered more chal-
lenging metrics of shift and scale invariance. We formulated
a new notion of similarity that is symmetric in allowing
transformations on both query and data sequences. Further-
more, we do not impose any restriction on the shifting and
scaling constants. We considered both the cases of when
the scalings and the shiftings of the attributes are dependent
and when they are independent.

We proposed a new index structure called CS-index
that clusters time sequences according to their scalings and
shiftings. This index structure recursively splits the search
space into hierarchical cones and selects a slice of each
cone as a disk page. This index structure allows early prun-
ing in the search phase. Later, we considered techniques
to improve the performance of the index structure: in-
order based placement on disk, choice of right fanout, and
caching/replication. Finally, we showed that the method can
be extended to multi-attribute time sequences.

According to experimental results with both real and
synthetic datasets, our method performs 5 to 10 times faster
than sequential scan. We also evaluated the effects of
replicating higher levels of the index structure. Replicat-
ing only the root level of the CS-index almost doubled the
performance of our method. Further replication eventu-
ally degraded the performance. We also experimented with
caching. According to our experiments, if only the pages
at the root level are cached, our method performs 10 to 25
times faster than sequential scan. We obtained speedup up
to 45 when we cached one more level.

The techniques presented in this paper can be easily
extended to perform shift and scale invariant subsequence
searches. According to our experiments, our technique is 3
times faster than sequential scan for subsequence searches.

Multi-attribute time sequences are an important emerg-
ing class of applications. They arise ubiquitously and nat-
urally: in medical applications, in control applications, in
video and event sequences, and in history-based applica-
tions such as the stock market. The ability to query such
data under different distance metrics is necessary for under-
standing and analyzing the characteristics of such datasets.

The index structures presented in this paper are an impor-
tant first step toward this, and should be widely applicable.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search
in sequence databases. In FODO, Evanston, Illinois, October 1993.

[2] R. Agrawal, K. Lin, H.S. Sawhney, and K. Shim. Fast similarity
search in the presence of noise, scaling, and translation in time-series
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