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Abstract

We focus on the problem of finding patterns across two large, multidimensional datasets. For example, given

feature vectors of healthy and of non-healthy patients, we want to answer the following questions: Are the two

clouds of points separable? What is the smallest/largest pair-wise distance across the two datasets? Which of the

two clouds does a new point (feature vector) come from?

We propose a new tool, thetri-plot, and its generalization, thepq-plot, which help us answer the above

questions. We provide a set of rules on how to interpret a tri-plot, and we apply these rules on synthetic and

real datasets. We also show how to use our tool for classification, when traditional methods (nearest neighbor,

classification trees) may fail.

1 Introduction and motivation

The automatic discovery of meaningful patterns and relationships hidden in vast repositories of raw information

has become an issue of great importance. Multimedia systems for satellite images, medical data and banking

information are some examples of prolific data sources. Many of these data are inherently multi-dimensional. It

is often difficult to summarize a large number of attributes by extracting a few essential features. Moreover, many

methods proposed in the literature suffer from thedimensionality curseand are impractical to apply directly. Thus,

dealing efficiently with high-dimensional data is a challenge for researchers in the database field [WSB98, BBK98].

Things become worse when more than one datasets are involved.

We propose a method for exploring the relationship between two multidimensional datasets, by summarizing

the information about their relative position. Our method requires only a single pass on the data and scaleslinearly

with the number of dimensions.

Problem definition: Given two large multidimensional datasets, find rules about their relative placement in space:

Q1 Do the datasets come from the same distribution?
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Q2 Do they repel each other?

Q3 Are they close or far away?

Q4 Are they separable?

Q5 For a given, unlabelled point, which of the two sets does it come from (if any)?

In the following section, we will briefly discuss the related work on data mining techniques and describe the

datasets we used in our experiments. We then introduce the cross-cloud plots and explain their properties. Based

on these, we present a set of practical rules which allow us to analyze two clouds of points. Finally, we describe the

algorithm for generating the plots.

2 Related work

There has been a tremendous amount of work on data mining during the past years. Many techniques have been

developed that have allowed the discovery of various trends, relations and characteristics with large amounts of

data [JAG99, Cha98]. Detailed surveys can be found in [CHY96] and [GGR99]. Also, [Fay98] contains an in-

sightful discussion of the overall process of knowledge discovery in databases (KDD) as well as a comprehensive

overview of methods, problems, and their inherent characteristics.

In the field of spatial data mining [EKS99] much recent work has focused on clustering and the discovery of

local trends and characterizations. Scalable algorithms for extracting clusters from large collections of spatial data

are presented in [NH94] and [KN96]. The authors also combine this with the extraction of characteristics based on

non-spatial attributes by using both spatial dominant and non-spatial dominant approaches (depending on whether

the cluster discovery is performed initially or on subsets derived using non- spatial attributes). A general framework

for discovering trends and characterizations among neighborhoods of data-points is presented in [EFKS98]. This

framework is built on top of a spatial DBMS and utilizes neighborhood-relationship graphs which are traversed

to perform a number of operations. Additionally, scalable clustering algorithms are included [AGGR98, TZ96,

SCZ98, FRB98].

The work on fractals and box-counting plots is related: [BF95] used the correlation fractal dimension of a

dataset to estimate the selectivity of nearest-neighbor queries; [FSJT00] gave formulas for the selectivity of spatial

joins across two point-sets. [BBKK97] analyze the performance of nearest-neighbor queries, eventually using the

fractal dimension. More remote work on fractals includes [PKF00], [JTWF00], [BC00]. Almost all of these papers

use fast, linear (orO(N logN)) algorithms, based on thebox-countingmethod. We also use a similar approach for

our tri-plots.

Visualization techniques for large amounts of multidimensional data have also been developed. The work

described in [KK94] presents a visualization method which utilizes views of the data around reference points and

effectively reduces the amount of information to be displayed in a way that affects various characteristics of the

data (eg. shape and location of clusters, etc.) in a controlled manner.
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Dataset Description

Synthetic datasets
Line Points along a line segment, randomly chosen.
Circumference Points along a circle, randomly chosen.
Sierpinsky Randomly generated points from a Sierpinsky triangle (see fig. 8b).
Square Points on a 2D manifold, randomly generated.
Cube Points in a 3D manifold, randomly generated.
Super-cluster 256 uniformly distributed clusters, each with 7x7 points in a 2D manifold.

Real datasets
California Four two-dimensional sets of points (obtained from UCI) that refer to geographical coor-

dinates in California [oC89]. Each set corresponds to a feature: ‘streets’ (62,933 points),
‘railways’ (31,059 points), ‘political’ borders (46,850 points), and natural ‘water’ systems
(72,066 points).

Iris Three sets describing properties of the flower species of genus Iris. The points are 4-
dimensional (sepal length, sepal width, petal length, petal width); the species are ‘virginica’,
‘versicolor’ and ‘setosa’ (50 points each). This is a well-known dataset in the machine learn-
ing literature.

Galaxy Datasets from the SLOAN telescope:(x, y) coordinates, plus the class label. There are
82,277 in the ‘dev’ class (deVaucouleurs), and 70,405 in the ‘exp’ class (exponential).

LC Customer data from a large corporation (confidential). There were 20,000 records (belong-
ing to two classes with 1,716 and 18,284 members each), each with 19 numerical/boolean
attributes.

Votes Two 16-dimensional datasets from the 1984 United States Congressional Voting Records
Database: ‘democrat’ (267 entries) and ‘republican’ (168 entries).

Figure 1: Description of datasets used for exposition and testing of our method.

There has also been significant work on data mining in non-spatial, multidimensional databases. Recent work

on a general framework that incorporates a number of algorithms is presented in [iHLN99]. The authors introduce

a general query language and demonstrate its application on the discovery of a large variety of association rules

which satisfy the anti-monotonicity property.

However, none of the above methods can answer all the questions,Q1 to Q5, which we posed in the previous

section. The method proposed in this paper can answer such questions. To find a solution for the given problem, we

move away from association rules and focus on the spatial relationships between two multidimensional datasets.

2.1 Description of the data sets

We applied our method on several datasets, both synthetic and real. The former are used to build intuition, and the

latter to validate our techniques. The synthetic datasets are always normalized to a unit hypercube and they may be

translated, rotated and/or scaled in the experiments. The datasets are described in fig. 1.
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Symbol Definition

NA (orNB) Number of points in datasetA (orB)
Cross() CrossA,B(r, 1, 1) plot between datasetsA andB
Self A Self A(r, 1, 1) plot of datasetA
WA CrossA,B(r, 10, 1) cross-could plot weighted on datasetA

WB CrossA,B(r, 1, 10) cross-could plot weighted on datasetB

CA,i (CB,i) Count of typeA (B) points in thei-th cell
n Number of dimensions (embedding dimensionality)
D2 Correlation fractal dimension
r̂min Estimated minimum distance between two points
r̂max Estimated maximum distance between two points
cloud / point set n-dimensional dataset

Table 1: Symbols and definitions

3 Proposed method: cross-cloud plots

Our approach relies on a novel method that allows fast summarization of the distribution of distances between points

from two setsA andB. Table 1 presents the symbols used in this paper. Consider a grid with cells of sider and let

CA,i (CB,i) be the number of points from setA (B) in thei-th cell. The cell grid partitions the minimum bounding

box of both datasets. Thecross-functionCrossf A,B(r, p, q) is defined as follows:

Definition 1 Given two data setsA andB in the samen-dimensional space, we define the cross-function of order

(p, q) as

Crossf A,B(r, p, q) =
∑
i

CpA,i · C
q
B,i

Typically, we plot the cross-function in log-log scales, after some normalization. The normalization factor

scales the plot, maximizing the information presented:

Definition 2 Given two data setsA andB (withNA andNB points) in the samen-dimensional space, we define

the cross-cloud plot as the plot of

CrossA,B(r, p, q) =
log(NA ·NB)
log(Np

A ·N
q
B)
· log

(∑
i

CpA,iC
q
B,i

)
versuslog(r)

The cross-function has several desirable properties:

Property 1 For p = q = 1, the cross-function is proportional to the count ofA-B pairs within distancer. That is,

CrossA,B(r, 1, 1) ∝ (number of pairs of points within distance≤ r)

Proof Using Schuster’s lemma [Sch88].

This is an important property. Forp = q = 1, the cross-cloud plot gives the cumulative distribution function

of the pairwise distances between the two “clouds”A andB [FSJT00]. Because of its importance, we will use

4



p = q = 1 as the default values. We will also omit the subscriptsA, B from the cross-cloud plot when it is clear

which datasets are involved. That is,

Cross(r) ∆= CrossA,B(r) ∆= CrossA,B(r, 1, 1)

Property 2 The cross-function includes the correlation integral as a special case when we apply it to the same

dataset (i.e.,A ≡ B).

Proof From the definition of correlation integral [Sch91].

The correlation integral gives the correlation fractal dimensionD2 of a datasetA, if it is self-similar. Since the

above property is very important, we shall give the self cross-cloud plots a special name:

Definition 3 The self-plot of a given datasetA is the plot of

Self A(r) = log
(∑

iCA,i · (CA,i − 1)
2

)
versuslog(r)

In order to avoid artifacts that self-pairs generate, self-plots do not count self-pairs, by definition. Moreover, minor

pairs (〈p1, p2〉 and〈p2, p1〉) are counted only once.

Property 3 If A is self similar, then the self-plot ofA is linear and its slope is its intrinsic dimensionality (correla-

tion fractal dimension,D2).

Proof See [BF95].

We are now ready to define our two main tools, the tri-plot and thepq-plot.

Definition 4 The tri-plot of two datasets,A andB, is the graph which contains the cross-plotCross(r) and the

normalized self-plots for each dataset (Self A(r) + log(NA/NB) andSelf B(r) + log(NB/NA)).

Notice that the normalization factors,log(NA/NB) and log(NB/NA), perform only translation, preserving the

steepness of the graphs. In this paper, for every tri-plot we present the three graphs with the same color pattern: the

cross-plot is presented in blue lines with diamonds,Self A in green lines with crosses andSelf B in red lines with

squares. We also show the slope (orsteepness) of the fitted lines.

Definition 5 The pq-plot of two datasets,A and B, is the graph which contains the three cross-cloud plots:

CrossA,B(r), CrossA,B(r, 1, k), andCrossA,B(r, k, 1) for large values ofk (k � 1).

Fig. 2 shows the tri-plot andpq-plot for the Line and Sierpinsky datasets. Notice that, although theCross()

is almost always linear (fig. 2a), this is not necessarily true for theCross(r, 1, k) andCross(r, k, 1) (in fig. 2b,

k = 10).

Definition 6 The steepness of a plot is its slope, as determined by fitting a line with least-squares regression.
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Figure 2: Sierpinsky and Line datasets: (a) the tri-plot, (b) thepq-plot. The cross-plots are presented in blue with

diamonds, the self- and weighted-Sierpinsky plots in green with crosses, and the self- and weighted-Line in red

with squares.

The tri-plots allow us to determine the relationship between the two datasets. If they are self-similar (ie. both

their self-plots are linear for a meaningful range of radii), their slopes can be used in the comparisons that follow.

However, the proposed analysis can be applied even to datasets which are not self-similar (ie. do not have linear

self-plots). Thus, we will in use the termssteepnessandsimilarity (as defined above). Thepq-plot is used in a

further analysis step. Its use is more subtle and is discussed in section 4.3.

3.1 Anatomy of the proposed plots

This section shows how to “read” the cross-cloud plots and take advantage of the tri- andpq-plots, without any

extra calculations on the datasets.

3.1.1 Properties of the self-plots

Property 4 The first radius for which the count-of-pairs is not zero in the self-plot provides an accurate estimate,

r̂min , of the minimum distance between any two points.

Property 5 Similarly, the radius up to which the count-of-pair increases (being constant for larger radii) provides

an accurate estimate,̂rmax , of the maximum distance between any two points. We also refer to this distance as the

dataset diameter.

Fig. 3 illustrates the above properties. The lower row of fig. 3a shows a line with 15,000 points. Its self-plot is

linear. The slope, which isD2, is equal to 1, as expected (since this is the intrinsic dimensionality of a line). The

r̂min andr̂max estimates are also indicated.

Property 6 If the dataset consists of clusters, the self-plot has a plateau from radiusr̂min to r̂max (see fig. 3).
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Figure 3: Measurements obtained from self-plots: (a) Line, and (b) Super-cluster datasets.

Whenever the self-plot is piecewise linear, the dataset has characteristic scales. Plateaus are of particular interest;

these occur when the dataset is not homogeneous. From the endpoints of the plateau, we can accurately estimate

the maximum cluster diameter,̂rcdmax , and characteristic separation between clusters,r̂sepc . This occurs in the

self-plot of the Super-cluster dataset (fig. 3b).

3.1.2 Properties of the cross-cloud plot

Fig. 4 presents an example of a tri-plot, where datasetA is a randomly generated set of 6,000 points from a line

(y = x0/x, y ∈ [0, 1]), and datasetB is a Sierpinsky triangle with 6,561 points. These two datasets where chosen

to highlight some interesting plot properties. These are discussed in the following (see also fig. 4).

Property 7 The minimum distance between the datasets can be accurately estimated as the smallest radius which

has a non-zero value in the cross-cloud function.

Property 8 Similarly, the maximum distance between the datasets (or, the maximum surrounding diameter) can be

accurately estimated as the greatest radius before the plot turns flat.

Property 9 Whenever the cross-cloud plot has a flat part for very small radii, there are duplicate points across

both datasets.

All the previous estimates can be obtained with asingleprocessing pass over both datasets to count grid occupan-

cies,withoutexplicitly computing any distances.
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Figure 4: Example of a tri-plot indicating where to find meaningful information. The cross-plot is always in blue

with diamonds,Self A in green with crosses andSelf B in red with squares.

Property 10 The steepness of the cross-cloud plot is always greater than or equal to that of the steepest self-plot.

4 Practical usage – Cloud mining

Before presenting our main analysis process, we need to define some terms:

Definition 7 Theshapeof a dataset refers to its formation law (eg. “line,” “square,” “sierpinsky”).

Definition 8 Two datasets arecollocatedif they have (highly) overlapping minimum bounding boxes.

Definition 9 Theplacementof a dataset refers to its position and orientation.

We use these three terms when comparing two datasets. Two datasets can have the same shape but different place-

ment (eg. two non-collinear lines). Two datasets have the same shape but different placement, if the one can be

obtained from the other throughaffinetransformations. Also, two datasets with the same intrinsic dimensionality

can have different shapes (eg. a line and a circle – both haveD2 = 1).

4.1 Rules for tri-plot analysis

In this section we present rules (see table 2 for a summary) to analyze and classify the relationship between two

datasets. From the tri-plots we can get information about the intrinsic structure and the global relationship between

the datasets.
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Rule Situation Condition Example

A andB are similar (Self A andSelf B have
same steepness),and

1 DatasetsA andB are statistically
identical

Cross, Self A andSelf B have the same steep-
ness

Figure 5

2 Both datasets have the same intrin-
sic dimensionality

Cross has steepness comparable to that of
Self A andSelf B

Figure 6

3 The datasets are disjoint Cross is much steeper than bothSelf A and
Self B

Figure 7

A andB are not similar (Self A and Self B
have different steepness),and

4 The (less steep) dataset is a proper
subset of the other

Cross and Self A or Self B have the same
steepness

Figure 8

5 The datasets are collocated Cross has steepness comparable to that of
Self A andSelf B

Figure 9

3 Cross is much steeper than both
Self A andSelf B

The datasets are disjoint Figure 7

Table 2: Conditions and rules used in tri-plot analysis.

Rule 1 (identical) If both datasets are identical, then all plots of a tri-plot are similar (Self A ≈ Self B ≈ Cross).

In this case, the three graphs will be on top of each other. This means that the intrinsic dimensionality, shape as

well as placement of both datasets are the same. This may be because one dataset is a subset of the other, or both

are samples from a bigger one. Fig. 5 shows the tri-plots for (a) two lines with different number of objects, (b) two

Sierpinsky triangles, and (c) two coplanar squares in 3D. All datasets in fig. 5 are in a 2D manifold. In all these

examples, both datasets have the same shape and placement but different number of points.
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Figure 5: Rule 1: The two datasets have the same shape and placement: (a) Two superimposed lines (all plots
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superimposed squares (all plots have slopes≈ 2. All datasets are in 2D space, and the axes of all tri-plots are in

log-log scale.
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Figure 6: Rule 2: The two datasets have the same intrinsic dimensionality, but different placements: (a) Two

intersecting circumferences in 2D space, (b) A line crossing a circumference in 2D space, (c) Two piercing planes in

3D space. The upper row shows the tri-plots with the axes in log-log scale. The lower row shows the corresponding

datasets in their respective spaces.

Rule 2 (same shape, different placement) If both datasets have the same intrinsic dimensionality, but different

placement, then their steepness is similar (Self A ≈ Self B), butCross is only moderately steeper than both. Further

analysis using thepq-plot can indicate whether the datasets are separable or not and, if separable, to what extent.

Examples are intersecting lines, intersecting planes, or two Sierpinsky datasets with one rotated over the other (see

fig. 6a, 6b and 6c, respectively).

Rule 3 (disjoint datasets) If the datasets are disjoint, thenCross is much steeper than bothSelf A andSelf B
(does not matter whether the latter are similar or not). For two intersecting datasets, theCross steepness will not be

so far from the steepness of their self-plots. However, if theCross is much steeper than bothSelf A andSelf B, it

means that the minimum distance between points from the datasets is bigger than the average distance of the nearest

neighbors of points in both datasets, so the datasets are disjoint. In fact, this case leads to the conclusion that both

datasets are well-defined clusters, hence they should be separable by traditional clustering techniques. Examples of

this situation are non-intersecting lines, squares far apart, or a Sierpinsky triangle and a plane which is not coplanar

with the Sierpinsky’s supporting plane (see fig. 7a to 7c). All datasets are in 3D space. Notice that the self-plots

have the expected slopes, but the cross-plots have very high steepness (18, 13 and 26 respectively).

Rule 4 (sub-manifold) Without loss of generality, letSelf A be the steepest ofSelf A andSelf B. If datasetB

is a sub-manifold of datasetA, the self-plots do not have similar steepness (Self A 6≈ Self B) and theCross is
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Figure 7:Rule 3: The two datasets are disjoint: (a) two non-intersecting lines, (b) two non-intersecting squares, (c)

a square and a Sierpinsky triangle. The upper row shows the tri-plots with the axes in log-log scale. The lower row

shows the corresponding datasets in 3D space.

equal toSelf A. Remember that the steepness of theCross cannot be smaller than the steepness ofSelf A or Self B.

Therefore, if the steepness of theCross is similar to one of the self steepnesses (eg.Cross ≈ Self A), then the other

graph (in this caseSelf B) will be less steep thanCross. This means that the points in datasetB have a stronger

correlation than the points in datasetA. Rule 1 deals with the situation where both datasets are subsets of a larger

one, or one is a subset of another, but there is no rule to extract the subsets. Rule 4 deals with the same case of

occurrence of subsets, but here there are rules to choose points that pertain to the dataset with a smoother self-plot.

Examples of this case are a line embedded in a plane, a Sierpinsky dataset and its supporting plane, and a square

embedded in a volume (see fig. 8a, 8b and 8c, respectively).

Rule 5 (collocated) If both datasets have different shape, placement and intrinsic dimensionality, thenSelf A 6≈
Self B and theCross is only moderately steeper thanSelf A andSelf B. In this case, the datasets are not related to

each other. They are, however, collocated, or at least intersecting. This means that although part of the datasets may

be separable, this would not be true for the entire dataset, or for both datasets. Whenever this situation occurs, it

should be further analyzed, for example, using thepq-plot. These are the cases of a line with a Sierpinsky triangle,

a line piercing a square, and a Sierpinsky intersecting a square, as fig. 9 shows.

4.2 Application to real datasets

In the previous section we described the rules, using synthetic datasets to build intuition. Here we apply them to

real datasets (see fig. 10).
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Figure 8:Rule 4: One dataset is a proper subset of the other dataset: (a) a square overlapping a line in 2D space,

(b) a Sierpinsky triangle and its supporting plane in 2D space, (c) a volume travesed by a plane in 3D space. The

upper row shows the tri-plots in log-log scale. The lower row shows the datasets in their respective spaces.

Rule 1 (identical) There are four pairs of datasets which conform this rule: two different subsets of California-

political (fig. 10a), the two galaxy datasets (forlog r ∈ [−4, 4] – fig. 10b), Iris-versicolor and Iris-virginica (fig. 10c),

and two different subsets of California-water (fig. 10d).

Rule 3 (disjoint datasets) The Iris-Versicolor and Iris-Setosa pair (fig. 10e), and the Democrat and Republi-

can pair (fig. 10f) conform to this rule. Their cross-plot is much steeper than their self-plots. Versicolor and Setosa

species are indeed apart. Also, the Democrat and Republican parties have distinct behavior, which allows separation

of their members. Thus, we conclude that these dataset pairs can be separated and we can estimate the minimum

distance between them (see property 7).

Rule 4 (sub-manifold) Fig. 10g shows the tri-plot of California-water and California-political. Recall that

the dataset with smaller steepness is probably a proper sub-manifold of the one with larger steepness (or of the

superset from which both are samples). We thus conclude that California-political is a subset of California-water.

This makes sense, since many political divisions are along water paths.

Rule 5 (collocated) According to fig. 10h, California-railroad and California-political agree with Rule 5. This

is reasonable, since railroads are built with objectives irrelevant to political divisions. Also, the LC datasets agree

with Rule 5 and require further analysis. The flat parts in fig. 10i and in the political self-plot (fig. 10h) indicate that

these datasets possibly have duplicate (or near-duplicate) points. The Galaxy datasets (fig. 10b) demonstrate the
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Figure 9:Rule 5: The datasets come from different placements: (a) a line and a Sierpinsky triangle in 2D space,

(b) a line piercing a square in 3D space, (c) a plane and an intersecting Sierpinsky triangle in 3D space. The upper

row shows the tri-plots in log-log scale. The lower row shows the corresponding datasets in their respective space.

case of clusters, which are present at two characteristic distances. Also, the datasets repel each other for radii close

to the cluster diameter. After analyzing the relationship between two datasets using tri-plots, more information can

be obtained from thepq-plots.

4.3 Analysis of thepq-plot

The pq-plot allows us to further examine the relationship between two datasets, by weighting one dataset when

comparing its distance distribution with that of the other dataset. The analysis of thepq-plots is directed to specific

ranges of the cross-cloud plots, in contrast to the more global analysis of the tri-plots.

Even if aCrossA,B(r, p, q) plot with p 6= 1 6= q happens to be a line, its slope has no meaning; only its overall

shape has useful properties. Also, due to the normalization bylog(NA ·NB)/ log(Np
A ·N

p
B), both the leftmost and

rightmost points in allpq-plots coincide. According to equation 1, if a particularCA,i (or CB,i) in the calculation

of CrossA,B(r, p, q) is zero for a given radiusr in a given region of the space, the correspondingCB,i (or CA,i)

will not contribute to the total for this particular radius. The result will be a flat region in this part of the curve.

Otherwise, if there is a regular distribution of distances over a continuous part of the curve, the resulting curve will

exhibit a linear shape. Sudden rises in a plot indicate a large growth of counts starting at that radius. Hence, the two

shapes in the curves of the cross-cloud plots that are worth looking for are: the linear parts, and the regions where

the curves are flat.

The cross-cloud plots,CrossA,B(r, k, 1), andCrossAB(r, 1, k) with k � 1 (which we have namedWA and
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Figure 10: Tri-plots of real datasets and their classification as obtained from rules 1-5.

WB because they are ‘weighted’), can be generated for any value ofk. However, increasingk only increases the

distortions on the plot, without giving any extra information. Thus, we pickedk = 10. Each conclusion is valid for

the range of radii which presents specific behavior. Next, we discuss two representative situations, using pairs of

synthetic datasets and comparing the obtained tri-plots andpq-plots.

Fig. 11 compares two pairs of datasets: circumference-circumference and line-circumference. This illustrates

the situation stated by Rule 2: the two datasets are similar (Self A ≈ Self B andCross steepness is less or equal than

the steepness ofSelf A plus the steepness ofSelf B). By looking only at the tri-plots in fig. 11a and 11d, it is not

possible to say anything else about the datasets. However, in fig. 11b the three graphs are on top of each other. This

means that both datasets have the same behavior under weighted calculation (Cross(r, 1, 10) andCross(r, 10, 1)).

Thus, both datasets have the same shape. On the other hand, the behavior of thepq-plot in fig. 11e shows that the

datasets have different shapes, as well as how they are correlated within specific radii ranges (Region I and II on the

plots).

In this section we proposed the rules to analyze the tri-plots and thepq-plots using easily understandable syn-

thetic datasets in 2D and 3D spaces. However, the same conclusions should apply for real datasets in any multi-

dimensional space. In fact, for real datasets it is usually difficult to know how to describe the relationship between
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Figure 11:pq-plots for two pairs of datasets: (a) the tri-plot of two intersecting circumferences (as shown in (c)),

(b) thepq-plot of the two circumferences, (d) the tri-plot of a line intersecting a circumference (as shown in (f)),

and (e) thepq-plot of the line and the circumference.

the attributes and to know if they are correlated. Nonetheless, our proposed analysis can indicate not only the ex-

istence of correlations, but also how “tight” they are. This analysis can also provide evidence of how separable the

datasets are, as well as if it is possible to classify points as belonging to one or to the other dataset.

4.4 Usingpq-plots to analyze datasets

Due to space limitations, we presentpq-plots only for some of the real datasets(fig. 12). Fig. 12a shows thepq-

plot for the Galaxy datasets. For the highlighted range, there is a distinct separation between the datasets. Besides

confirming that the two galaxy types indeed repel each other, thepq-plots show that there are few clusters consisting

only of ‘exp’ galaxies (although there are clusters including points of both datasets also only with ‘dev’ points).

Outside the highlighted range, the sets are almost identical. As expected, fig. 12b confirms that the Democrat and

Republican datasets are separable, since the weighted plots have completely opposite behaviors.

Fig. 12c shows thepq-plot of the California-water and California-political datasets. In this plot, there are four

ranges with distinct behaviors. Range I corresponds to very small distances, so these distances are probably less

than the resolution of the measurements; therefore they are not meaningful. Ranges II and III are where the real

distances are meaningful. The sudden fall to the left of the wWater-plot in range II means that there are very few

points in the political dataset at distances below this range from points in the water dataset. This indicates a kind
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Figure 12:pq-plots for real datasets: (a) Galaxy, (b) Democrat and Republican, (c) California-water and California-

political. The upper row shows the tri-plots and the lower row the correspondingpq-plots. The axes are in log-log

scales.

of “repulsion” of points from both datasets for these small distances. In range III, both datasets have approximately

the same behavior. Range IV is almost flat for all plots, meaning that there are almost no more pairs within this

distance range. In fact, the “almost flat” part of the graph is due to a few outliers in the dataset.

4.5 Membership testing and classification

So far we have shown how to use the tri-plots to answer questionsQ1-Q5. In this section we illustrate the power

of cross-cloud plots in another setting: membership testing and classification (Q5). Fig. 13 illustrates the following

situation: We have two datasets,A (20 points along a line) andB (900 points in a ‘tight’ square). A new point

(indicated by ‘?’) arrives. Which set, if any, does it belong to?

Visually, the new point (‘?’) should belong to the Line20 set. However, nearest neighbors or decision-tree

classifiers would put it into the square: the new point has∼ 900 ‘Square’ neighbors, before even the first ‘Line20’

neighbor comes along!

We propose a method that exploits cross-cloud plots to correctly classify the new point (‘?’). The new point

is treated as a singleton dataset and its cross-plots are compared to the self-plots of each candidate set. In this

particular case, we compare the steepness ofCrossLine,Point andCrossSquare,Point to the steepness ofSelf Line and

Self Square and classify the new point accordingly. Notice that the plots in fig. 13b are more similar to each other

(almost equal steepness), while the plots in fig. 13c are clearly not similar. Thus, we conclude that the new point

(‘?’) belongs to the Line20 dataset, despite whatk-nearset neighbor classification would say!

16



0


2


4


6


8


10


12


14


-5
 -4
 -3
 -2
 -1
 0
 1
 2
 3


SelfLine(r) stp=1.0972

CrossLine, Point(r,1,1) stp=1.1513


0


1


2


3


4


5


6


7


8


9


10


0
 1
 2
 3
 4
 5


900 
�

points in a

rectangle


20 points 
alo

ng a 
lin

e


?
a)
 c)
�

0


2


4


6


8


10


12


14


-5
 -4
 -3
 -2
 -1
 0
 1


SelfSquare(r) stp=2.0777

CrossSquare,Point(r,1,1) stp=3.1925


b)

�

Figure 13: Classifying a point as either belonging to a sparse line or to a dense square, using the cross-cloud method:

(a) spatial placement of the incoming point and the datasets, (b)Self Line andCrossLine,Point plot, (c) Self Square

andCrossSquare,Point plot.

The full details of the classification method are the topic of ongoing research. This is yet another application of

the cross-cloud technique.

5 Implementation

To obtain the required tri-plots, we use the single-pass algorithm presented in appendix A. This is based on box-

counting and is an extension of [BF95, FSJT00].

What is important is that this algorithm scales up for arbitrarily large datasets, and arbitrarily high dimensions.

This is rarely true for other spatial data mining methods in the literature. The algorithm to generate thepq-plots is

very similar to the algorithm depicted in fig. 15, except we constructWA andWB (instead ofSelf A andSelf B)

plots.

5.1 Scalability

The algorithm is linear on the total number of points, ie.O(NA + NB). If we want l points in each cross-cloud

plot (ie. number of grid sizes), then the complexity of our algorithm isO((NB + NA) · l · n), wheren is the

embedding dimensionality. Fig. 14 shows the wall-clock time required to process datasets on a Pentium II machine

running NT4.0. The datasets on the left graph have varying numbers of points in 2, 8 and 16-dimensional spaces,

and we used 20 grids for each dataset. For the right graph, we used datasets with 100,000, 200,000 and 300,000

points and dimensions 2 to 40. The execution time is indeed linear on the total number of points, as well as on the

dimensionality of the datasets. The algorithm does not suffer from thedimensionality curse.

Notice that steps 1 and 2 of the algorithm read the datasets and maintain counts of each non-empty grid cell.

These counts can be kept in any data structure (hash tables, quadtrees, etc).
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Figure 14: Left: Wall-clock time (in seconds) needed to generate the tri-plots for varyingly sized datasets. The blue

graph represents the time for 2D datasets, the green graph for 8D datasets and the red graph for 16D datasets. Right:

Wall-clock time (in seconds) needed to generate the Tri-plots varying the dimensionality of the datasets. Three sizes

of the datasets are provided (100.000, 200.000 and 300.000).

6 Conclusions

We have proposed the cross-cloud plot, a new tool for spatial data mining across twon-dimensional datasets. We

have shown that our tool has all the necessary properties:

• It can spot whether two clouds are disjoint (separable), statistically identical, repelling, or in-between. That

is, it can answer questionsQ1 to Q4 from section 1.

• It can be used for classification and is capable of “learning” a shape/cloud, where traditional classifiers fail to

do so (ie. it can answer questionQ5).

• It is very fast and scalable: We use a box-counting algorithm, which requires a single pass over each dataset,

and the memory requirement is proportional to the number F of non-empty grid cells and to the numberl of

grid sizes requested (1 ≤ F ≤ NA +NB, and clearly not exploding exponentially).

• Tri-plots can be applied to high-dimensional datasets easily, because the algorithms scale linearly with the

number of dimensions.

The experiments on real datasets show that our tool finds patterns that no other known method can. We believe that

our cross-cloud plot is a powerful tool for spatial data mining and that we have just seen only the beginning of its

potential uses.

A Algorithm

Given two datasetsA andB (with cardinalitiesNA andNB) in an-dimensional space, we generate the tri-plot (ie.

CrossA,B, Self A andSelf B plots) – see fig. 15. The numberF of non-empty cells in each grid does not depend on
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Algorithm: Fast tri-plot
Inputs: Two datasets,A andB (withNA andNB points respectively) normalized

to the unit hyper-cube, and the numberl of desired points in each plot.
Output: Tri-plot

Begin
1 - For each pointa of datasetA

For each grid sizer = 1/2j , j = 1, 2, . . . , l;
Decide which grid cell it falls in (say, thei-th cell);
Increment the countCA,i;

2 - For each pointb of datasetB
For each grid sizer = 1/2j , j = 1, 2, . . . , l;

Decide which grid cell it falls in (say, thei-th cell);
Increment the countCB,i;

3 - Compute the sum of product occupancies for the functions:
Self A(r) = log

(
1
2

∑
iCA,i · (CA,i − 1)

)
,

Self B(r) = log
(

1
2

∑
iCB,i · (CB,i − 1)

)
,

CrossA,B(r) = log (
∑

iCA,i · CB,i)

4 - Print the tri-plot:
for r = 1/2j , j = 1, 2, . . . , l;

Print CrossA,B(r)
Print Self A normalized:Self A(r) + log(NB/NA)
Print Self B normalized:Self B(r) + log(NA/NB)

End

Figure 15: Algorithm

the dimensionalityn. In fact,1 ≤ F ≤ NA +NB.
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