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Abstract. With the increasing importance of XML, LDAP
directories, and text-based information sources on the Inter-
net, there is an ever-greater need to evaluate queries involv-
ing (sub)string matching. In many cases, matches need to be
on multiple attributes/dimensions, with correlations between
the multiple dimensions. Effective query optimization in this
context requires good selectivity estimates. In this paper, we
use pruned count-suffix trees (PSTs) as the basic data struc-
ture for substring selectivity estimation. For the 1-D problem,
we present a novel technique called MO (Maximal Overlap).
We then develop and analyze two 1-D estimation algorithms,
MOC and MOLC, based on MO and a constraint-based char-
acterization of all possible completions of a given PST. For the
k-D problem, we first generalize PSTs to multiple dimensions
and develop a space- and time-efficient probabilistic algorithm
to construct k-D PSTs directly. We then show how to extend
MO to multiple dimensions. Finally, we demonstrate, both an-
alytically and experimentally, that MO is both practical and
substantially superior to competing algorithms.
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1 Introduction

One often wishes to obtain a quick estimate of the number
of times a particular substring occurs in a database. A tra-
ditional application is for optimizing SQL queries with the
like predicate (e.g., name like %jones%). Such predicates
are pervasive in data warehouse queries, because of the pres-
ence of “unclean” data [HS95]. With the growing importance
of XML, LDAP directories, and other text-based information
stores on the Internet, substring queries are becoming increas-
ingly common.

Furthermore, in many situations with these applications,
a query may specify substrings to be matched on multiple al-
phanumeric attributes or dimensions. The query [(name like
%jones%) AND (tel like 973360%) AND (mail like
%research.att.com)] is one example. Often the attri-
butes mentioned in these kinds of multi-dimensional queries

may be correlated. For the above example, because of the ge-
ographical location of the research labs, people that satisfy
the query (mail like %research.att.com) may have an
unexpectedly high probability to satisfy the query (tel like
973360%). For such situations, assuming attribute indepen-
dence and estimating the selectivity of the query as a product
of the selectivity of each individual dimension can lead to
gross inaccuracy.

1.1 The data structure

A natural question that arises is which data structure does
one use for substring selectivity estimation. Histograms have
long been used for selectivity estimation in databases (see,
e.g.,[SAC+79,MD88,LN90,Ioa93,IP95,PIHS96,JKM+98]).
They have been designed to work well for numeric attribute
value domains. For the string domain, one could continue
to use such “value-range” histograms by sorting substrings
based on the lexicographic order and computing the appro-
priate counts. However, in this case, a histogram bucket that
includes a range of consecutive lexicographic values is not
likely to produce a good approximation, since the number of
times a string occurs as a substring is likely to be very differ-
ent for lexicographically successive substrings. As a result, we
look for a different solution, one that is suitable for the string
domain.

A commonly used data structure for indexing substrings
in a database is the suffix tree [Wei73,McC76], which is a
trie that satisfies the following property: whenever a string α
is stored in the trie, then all suffixes of α are stored in the
trie as well. Given a substring query, one can locate all the
desired matches using the suffix tree. Krishnan et al. [KVI96]
proposed an interesting variation of the suffix tree: the pruned
count-suffix tree (PST), which maintains a count,Cα, for each
substringα in the tree and retains only those substringsα (and
their counts) for which Cα exceeds some pruning threshold.
In this paper, following [KVI96], we use PSTs as the basic
summary data structure for substring selectivity estimation.

To estimate substring selectivity in multiple dimensions,
we need to generalize the PST to multiple dimensions. Here,
only those k-D substrings (α1, . . . , αk) for which the count
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exceeds the pruning threshold are maintained in the tree (along
with their counts).

1.2 The problem

The substring selectivity estimation problem can be formally
stated as follows:

Given a pruned count-suffix tree T , and a (1-D or k-D)
substring query q, estimate the fraction Cq/N , where
N is the count associated with the root of T .

The 1-D version of the above problem considers the situ-
ation when the pruned tree T is created for a single attribute
(e.g., name). The k-D version of the problem considers the
case when T is set up for multiple attributes (e.g., name and
tel).

What we gain in space by pruning a count-suffix tree, we
lose in accuracy in the estimation of the selectivities of those
strings that are not completely retained in the pruned tree. Our
main challenge, then, is: given a pruned tree, to try to estimate
as accurately as possible the selectivity of such strings.

1.3 Our contributions

We begin by describing the 1-D problem and its solution first
(in Sects. 4–6), and then go on to generalize our results to
multiple dimensions (in Sects. 7–10). Specifically, we make
the following contributions:

– In Sect. 4, for the 1-D problem, we present a novel se-
lectivity estimation algorithm MO (Maximal Overlap),
which estimates the selectivity of the query string σ, based
on all maximal substrings, βi, of σ in the 1-D PST. We
demonstrate that MO is provably better than KVI, the
independence-based estimation technique developed in
[KVI96], using a greedy parsing of σ, under the natural as-
sumption that strings exhibit the so-called short memory
property. We also experimentally show that MO is sub-
stantially superior to KVI in the quality of the estimate,
using a real AT&T data set.

– In Sects. 5 and 6, we develop constraint-based character-
izations of all count-suffix trees that are possible com-
pletions of a given PST. Based on a sound approxima-
tion of this constraint-based characterization, we develop
and analyze two selectivity estimation algorithms, MOC
(Maximal Overlap with Constraints) and MOLC (Maxi-
mal Overlap on Lattice with Constraints). In Sect. 6.4, we
show that KVI, MO, MOC and MOLC illustrate an inter-
esting tradeoff between estimation accuracy and compu-
tational efficiency.

– Turning from the 1-D to the k-D problem, in Sect. 7, we
propose a novel k-D generalization of 1-D PSTs, as the ba-
sic data structure for solving the k-D problem. Given the
enormous sizes of count-suffix trees for large databases,
and especially for multiple dimensions, it is essential to
obtain PSTs within given memory restrictions. In Sect. 8,
we develop a space- and time-efficient probabilistic algo-
rithm to construct a PST without first having to construct
the full count-suffix tree.

– In Sect. 9, we develop and analyze two algorithms for
multi-dimensional substring selectivity estimation. The
first algorithm, called GNO (Greedy Non-Overlap), uses
greedy parsing of the k-D query string and generalizes
algorithm KVI for the 1-D problem. The second algo-
rithm generalizes algorithm MO from 1-D to k-D and uses
all maximal k-D substrings of the query for estimation to
take advantage of correlations that may exist between the
strings in multiple dimensions.

– In Sect. 10, we compare the accuracy of our two algo-
rithms, GNO and MO and additionally compare them with
the default assumption of attribute independence, using a
real AT&T 2-D data set. Our results again show the prac-
ticality and the superior accuracy of MO, demonstrating
that it is possible to obtain freedom from the independence
assumption for correlated string dimensions.

2 Related work

Histograms have long been used for selectivity estimation
in databases (see, e.g., [SAC+79,MD88,LN90,Ioa93,IP95,
PIHS96,JKM+98]), and one can obtain good solutions to the
histogram construction problem using known techniques (see,
e.g., [PIHS96,JKM+98]). However, as mentioned earlier, con-
ventional histograms have been designed to work well for nu-
meric attribute value domains and do not yield good results
for the string domain.

End-biased histograms [IP95] are more closely related to
PSTs. The high-frequency values in the end-biased histogram
correspond to nodes that are retained in the PST. The low-
frequency values correspond to nodes pruned away. With this
approach of estimating the selectivity of substring queries, if
α1 has been pruned, the same (default) value is returned for
α1 and α1α2, irrespective of the length of α2. As expected,
this yields poor estimates for substring selectivity.

In spite of the vast literature on histograms, there is very
little discussion of histograms in multiple dimensions. A no-
table exception is the study in [PI97]. But for the reasons given
earlier, this study is not directly applicable to the problem of
substring selectivity estimation in multiple dimensions.

The 1-D suffix tree [Wei73,McC76] is a commonly used
structure for indexing substrings in a database. One natural
generalization of strings is a multi-dimensional matrix of char-
acters. The pattern matching community has developed data
structures, also referred to as suffix trees, for indexing sub-
matrices in a database of such matrices (see, e.g., [Gia95,
GG96]). The problem of indexing submatrices is clearly a dif-
ferent problem than indexing substrings in multiple correlated
dimensions, and the suffix tree developed for the submatrix
matching problem does not seem applicable to our problem.

Our problem, despite its importance, appears to have re-
ceived much less attention in the literature. Notable exceptions
are a study of 1-D substring selectivity estimation, presented in
[KVI96], and a study of k-D substring selectivity estimation,
given in [WVI97]. There are some similarities and several key
differences between the study of 1-D and k-D substring selec-
tivity estimation presented in [KVI96,WVI97] and the work
presented here:

– First, at a data-structure level, both the 1-D substring se-
lectivity estimation in [KVI96] and our work are based on
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PSTs; in fact, 1-D PSTs were proposed in [KVI96]. How-
ever, the k-D substring selectivity estimation in [WVI97]
is based on k separate 1-D PSTs and a multi-dimensional
array. In our case, the estimation is based on a k-D PST,
proposed in this paper.

– Second, for constructing pruned data structures without
constructing the complete count-suffix trees, only ad hoc
heuristics were considered in [KVI96,WVI97], i.e., no
quality guarantees were provided. Our approach of direct
construction of 1-D and k-D PSTs builds upon the con-
cise sampling technique proposed in [GM98], provides
probabilistic guarantees on the number of false positives
and false negatives, and gives accurate counts for the sub-
strings in the PST.

– Third, for 1-D selectivity estimation, experimental eval-
uation of various independence-based, child-based and
depth-based strategies is provided in [KVI96]. Among
those, a specific version of the independence-based strate-
gies, referred to here as the KVI algorithm, is shown to be
one of the most accurate; no formal analysis is given in
[KVI96].
For k-D selectivity estimation, a generalization of the KVI
algorithm, as well as child-based and depth-based strate-
gies, has been developed in [WVI97]. That generalization
does greedy parsing independently in each of the k dimen-
sions, using 1-D PSTs, and computes an estimate for the
k-D substring selectivity based on the information in the
multi-dimensional array. This technique can be considered
as a simple version of the GNO algorithm proposed in this
paper. As will be shown later, the MO algorithm proposed
here is superior to the GNO algorithm for multiple dimen-
sions.

Finally, parts of this paper have appeared in [JNS99] and
in [JKNS99].

3 Background and notation

Throughout this paper, we use A to denote the alphabet; a, b,
possibly with subscripts, to denote single characters in A; and
Greek lower-case symbolsα, β, γ, σ, possibly with subscripts,
to denote strings of arbitrary (finite) length in A∗. For simplic-
ity, we do not distinguish between a character in A, and a string
of length 1.

3.1 Suffix trees

A suffix tree [Wei73,McC76] is a trie that stores not only the
given database of strings D = {γ1, . . . , γn}, but also all suf-
fixes of each γi. A count-suffix tree is a variant of the suffix
tree which does not store pointers to occurrences of the sub-
strings α of the γi’s, but just keeps a count Cα at the node
corresponding to α in the tree.

The count Cα can have (at least) two useful meanings in
the count-suffix tree. First, it can denote the number of strings
in the database D containing α as a substring. Second, it can
denote the number of occurrences of α as a substring in the
database D. Suppose D contains only the string banana.
With the first interpretation, Cana would be 1, but with the
second interpretation, Cana would be 2. Both interpretations
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Fig. 1. Example PST

are obviously useful in different applications. We differentiate
between count-suffix trees, depending on the interpretation of
Cα, as follows:

Definition 1 (p- and o-suffix trees) A p-suffix tree is a
count-suffix tree, where non-negative integer Cα denotes the
number of strings in the database D containing α as a sub-
string.

An o-suffix tree is a count-suffix tree, where non-negative
integer Cα denotes the number of occurrences of α as a sub-
string in the database D. ��

Krishnan et al. [KVI96] considered only p-suffix trees, due
to their utility for query selectivity estimation. In this paper,
we consider both p- and o-suffix trees. Where the distinction
does not matter, we simply refer to them as count-suffix trees.

In the following, we useN to denote the count associated
with the root of a count-suffix tree. Specifically, for the p-suffix
tree, N denotes the number of strings in D, whereas for the
o-suffix tree,N denotes the total number of suffixes of strings
in D.

The storage requirement of a full count-suffix tree can be
prohibitive. When one wishes to obtain only a quick estimate
of the counts, it suffices to store a PST [KVI96]. We use T to
denote both pruned p- and o-suffix trees. Pruning is done based
on some pruning rule. For instance, one could choose to retain
only the top k levels of the count-suffix tree. A more adaptive
rule is to prune away every node α that has a count Cα ≤ p,
where p is the pruning threshold. We say that a pruning rule
is well formulated if it prunes every descendant of α when it
prunes α. Both pruning rules described above are well formu-
lated. We use the threshold-based pruning rule in this paper
for consistency with [KVI96], even though our results apply
to other well-formulated pruning rules, such as the level-based
pruning rule, with appropriate obvious modifications.

We illustrate an example PST, with pruning threshold p =
5, in Fig. 1. Labels are presented for substrings related to the
database string jones, with countsCα shown in parentheses
for some of the nodes in the PST.

Definition 2 (Completion of a PST) We say that a count-
suffix tree is a completion of a PST T if T can be obtained by
pruning the count-suffix tree.

Observe that it is possible for the samePST to be generated
by pruning many different count-suffix trees. We use C(T ) to
denote the set of all completions of PST T . ��
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3.2 Types of queries supported

Clearly, a PST can be used to estimate the selectivity of sub-
string queries. For example, the query (attr1 = ∗jone∗) is
matched by the node α = (jone) or even α = (jones). In
addition to substring queries, queries of the following forms
are also prevalent:

– attr1 beginning with jone (i.e., prefix match),
– attr1 ending with jone (i.e., suffix match), and
– attr1 matching jone (i.e., exact match).

Even though in the above example the node (jone) appears
to handle the prefix query “attr1 beginning with jone”, it
really does not. The reason is that if there is, for example, a
string cjone in the database then this string alone accounts
for one occurrence of jone, which is a suffix of cjone, in the
PST. In other words, the count associated with the node (jone)
includes not only strings with jone as the prefix, but indeed
all strings with jone as a substring.

It turns out that a simple trick is sufficient to make the
PST capable of handling all the variations mentioned above.
For each string, we add two special characters: # attached to
the beginning and $ appended to the end of the string. As
far as insertion into the PST is concerned, these two special
characters behave like any other “normal” character in the
alphabet. As far as querying is concerned, a prefix match to
the string “jone” can be specified as a substring match on
the (extended) string “#jone” to the PST. Similarly, suffix and
exact matches to string “jone” can be specified as substring
matches to the strings “jone$” and “#jone$”, respectively.

3.3 Strings

For a string α, we use α[j] to denote the character at the jth
position in α, and more generally α[i . . . j] to denote the sub-
string starting at the ith position and ending at the jth position
ofα inclusively. Ifα is obtained as the concatenation of strings
α1 and α2, we write α = α1α2; in other words, concatenation
is implicitly expressed in terms of adjacency. If α1 is a prefix
of β, then the expression β − α1 gives the suffix α2, where
β = α1α2.

Definition 3 (Maximal overlap) Given strings β1 = α1α2
and β2 = α2α3, where α2 is maximal, we define the maximal
overlap between a suffix of β1 and a prefix of β2, denoted by
β1 � β2, as α2. The expression β2 − (β1 � β2) gives α3. ��

4 KVI and MO: Selectivity estimation algorithms

We begin our study of the substring selectivity estimation prob-
lem with the 1-D version. In Sect. 7 and beyond, we will con-
sider the k-D version of the problem.

Employing a frequency interpretation of probability, we
use Pr(σ) to denote the selectivity of substring query σ, com-
puted using the PST. If σ is found in the PST, we simply
compute Pr(σ) = Cσ/N (where N is the root count). If σ is
not found in the PST, then we must estimate Pr(σ). This is
the essence of our substring selectivity estimation problem.

Let query σ = α1 . . . αw. Let Pr(α1 . . . αj |α1 . . . αj−1)
denote the probability of occurrence ofα1 . . . αj given that the

(prefix) string α1 . . . αj−1 has already been observed. Then,
Pr(σ) can be written as:

Pr(σ) = Pr(α1 . . . αw|α1 . . . αw−1) · Pr(α1 . . . αw−1)
= . . . (1)

= Pr(α1) · [Πw
j=2Pr(α1 . . . αj |α1 . . . αj−1)].

4.1 Algorithm KVI

We denote the independence-based strategy I ′
1 presented in

[KVI96] as the KVI algorithm. Krishnan et al. empirically
showed that this strategy is among their best strategies, and
hence we compare our approaches with this strategy. Our tech-
niques and results can be extended in a straightforward manner
for comparison with the other independence-based strategies
proposed in [KVI96].

The KVI algorithm takes advantage of the information
in the PST, and assumes complete conditional independence.
That is, it estimates each term in (1) as follows:

Pr(α1 . . . αj |α1 . . . αj−1) ≈ Pr(αj). (2)

A detailed description of the KVI algorithm is given in
Fig. 2. Given the substring queryσ, KVI performs the so-called
greedy parsing of σ. It finds a sequence of strings α1, . . . , αw

for some w such that (a) σ = α1 . . . αw and (b) for all j ≥ 1,
αj is the longest prefix of (σ − α1 − . . .− αj−1) that can be
found in the PST T .As shown in Fig. 2, there is also a boundary
case, when the longest prefix of (σ − α1 − . . . − αj−1) that
can be found in T is the null string. In this case, αj is set to
be the first character of (σ − α1 − . . .− αj−1).

Example 1 (KVI estimation) Consider the PST shown in
Fig. 1. The substring query σ = jones is parsed into jon
and es. Accordingly, KV I(jones) is given by:

Pr(jones) = Pr(jon) ∗ Pr(jones|jon)
≈ Pr(jon) ∗ Pr(es)
= (Cjon/N) ∗ (Ces/N)
= 1.25%. ��

4.2 Algorithm MO: Maximal overlap

Given a substring query σ, our MO algorithm computes all
maximal substrings β1, . . . , βu of σ that can be found in the
PST T . These maximal substrings β1, . . . , βu satisfy collec-
tively the condition: σ = β1[β2−(β1�β2)] . . . [βu−(βu−1�
βu)].

Example 2 (MO parsing) For the PST shown in Fig. 1, the
substring query σ = jones is parsed into β1 = jon, β2 =
one and β3 = nes. Accordingly, β1 � β2 and β2 � β3 are
the strings on and ne, respectively. ��

With respect to (1), the query string can be decomposed
into adjacent strings, αi, as follows: α1 = β1, and αj =
βj − (βj−1 �βj), j > 1. Then, MO estimates the conditional
probability of α1 . . . αj given the prefix string α1 . . . αj−1 as
follows:

Pr(α1 . . . αj |α1 . . . αj−1) ≈ Pr(βj |βj−1 � βj) (3)

= Pr(βj)/Pr(βj−1 � βj).
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Algorithm KVI
Input: a PST T with pruning threshold p, and

root count N ; a substring query σ
Output: the estimate KV I(σ)

{ 1. i = 1;
2. While (σ not equal null) {

2.1 γ = the longest prefix of σ in T ;
2.2 If (γ equal null) {
2.3 αi = σ[1];
2.4 Pr(αi) = p/N}

Else {
2.5 αi = γ;
2.6 Pr(αi) = Cαi/N}
2.7 σ = σ − αi;
2.8 i = i + 1}

3. KV I = Πi Pr(αi); return(KV I)
}

Fig. 2. The KVI estimation algorithm

Algorithm MO
Input: a PST T with pruning threshold p, and

root count N ; a substring query σ
Output: the estimate MO(σ)

{ 1. i = 1; β0 = null; k = 0;
2. While (σ not equal null) {

2.1 γ = σ[1 . . . j] = the longest prefix of σ in T ;
2.2 If (γ equal null) {
2.3 βi = σ[1];
2.4 Pr(βi) = p/N ;
2.5 k = 1; i = i + 1}
2.6 Else if (j > k) {
2.7 βi = γ;
2.8 Pr(βi) = Cβi/Cσ[1...k];
2.9 k = j; i = i + 1}
2.10 σ = σ − σ[1]; k = k − 1}

3. MO = Πi Pr(βi); return(MO)
}

Fig. 3. The MO estimation algorithm

That is, MO captures the conditional dependence of αj on the
immediately preceding (maximal overlap) substringβj−1�βj

of σ.
A more detailed description of the MO algorithm is given

in Fig. 3. The algorithm keeps track of the positions of maximal
substrings βi of σ found in the PST T , as well as the overlaps
between them, using the (integer) position variables j and k.
Once more, in the boundary case when some character in σ is
not in the PST T , the same solution is adopted as in KVI.

Example 3 (MO estimation) To continue with Example 2,
MO(jones) is computed as follows:

Pr(jones)
= Pr(jon) · Pr(jone|jon) · Pr(jones|jone)
≈ Pr(jon) · Pr(one|on) · Pr(nes|ne)
= (Cjon/N) · (Cone/Con) · (Cnes/Cne)
= 1%. ��

Positive queries Negative queries

(avg. relative error) (avg. standard error)

MO −28% 0.08

KVI +326% 0.15

Fig. 4. Estimation accuracy comparisons

4.3 MO versus KVI

Complex sequences typically exhibit the following statistical
property, called the short memory property: if we consider
the (empirical) probability distribution on the next symbol
a given the preceding subsequence α of some given length,
then there exists a length L (the memory length) such that
the conditional probability does not change substantially if
we condition it on preceding subsequences of length greater
thanL. Such an observation led Shannon, in his seminal paper
[Sha51], to suggest modeling such sequences using Markov
chains.

Recall that to estimate Pr(α1 . . . αj |α1 . . . αj−1), MO al-
lows partial conditional dependence and uses the estimate
Pr(βj |βj−1 � βj), whereas KVI assumes complete condi-
tional independence and uses the estimate Pr(αj). While it is
not universally true that Pr(βj |βj−1 �βj) is a better estimate
than Pr(αj) for all distributions, we can establish the follow-
ing result for strings that exhibit the short memory property:

Theorem 1 Suppose that the strings in the databaseD exhibit
the short memory property with memory length L. Consider a
PST T and a substring queryσ. Letβ1, . . . , βn be themaximal
substrings of σ in T . Then, if ∀i > 1 : βi−1 � βi has length
≥ L, thenMO(σ) is a better estimate (in terms of log ratio)
thanKV I(σ). ��

Note that we have used the standard metric of log ratio to
compare the goodness of a probability estimate.

In general, determining L is not practical, especially in
the presence of updates, and the MO strategy of conditioning
based on the longest preceding subsequence in the PST is a
rational strategy.

4.4 Experimental evaluation

To complement our theoretical analysis presented above, we
present preliminary experimental results comparing the qual-
ity of the estimates computed by KVI and MO.

We implemented both KVI and MO in C. We paid special
attention to ensure that MO is not affected by round-off errors.
The results reported below were obtained using a real AT&T
data set containing information about over 100,000 employ-
ees. In particular, the reported results are based on the last name
of each employee and on a pruned tree that keeps roughly 5%
of the nodes with the highest counts.

Following the methodology used in [KVI96], we consid-
ered both “positive” and “negative” queries. Positive queries
are strings that were present in the un-pruned tree (or in the
database), but that were pruned. We used relative error, i.e.,
(estimated count − actual count)/actual count, as the metric
for measuring the accuracy. We randomly picked 50 positive
queries of variable length, of variable actual counts, and to
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cover different parts of the pruned tree. The results reported
below give the average relative error over the 50 queries.

Negative queries are strings that were not in the un-pruned
tree (or in the database). That is, if the un-pruned tree were
available, the correct count to return for such a query would
be 0. To avoid division by 0, estimation accuracy for negative
queries is measured using mean standard error as the metric,
i.e., the square root of the mean squared error.

The first column of the table in Fig. 4 compares the esti-
mation accuracy between MO and KVI for positive queries.
The average relative error of MO is −28%, whereas the cor-
responding error of KVI is +326%. A detailed examination
of each of the 50 queries used indicates that KVI has a strong
tendency to overestimate by a wide margin, whereas MO has a
roughly 50-50 chance of overestimating and underestimating.

The second column of the table in Fig. 4 compares the es-
timation accuracy between MO and KVI for negative queries.
Because the actual count of a negative query is 0, the closer
the average standard error is to 0, the more accurate the esti-
mate. MO again is more accurate than KVI, even though both
appear to give acceptable estimates for negative queries.

5 Using count-suffix tree constraints

While MO provides a better estimate for the substring selectiv-
ity of query string σ than KVI, it is possible that both estimates
are infeasible, i.e., there may be no completion of PST T such
that the count Cσ in the completion is equal to MO(σ) or to
KVI(σ). The following example illustrates this possibility.

Example 4 (o-Suffix tree constraints) Suppose the PST in
Fig. 1 is a pruned o-suffix tree. For the substring query jes,
both KVI and MO estimate Pr(jes) as Pr(j) · Pr(es) =
2.5%.

Since the counts Cα in an o-suffix tree record the number
of occurrences of α in the database D, it must be the case that
Cα ≥∑Cαα1 , for strings αα1 corresponding to the children
nodes (not all descendant nodes) of α in the PST. Specifically,
for the PST in Fig. 1, observe thatCj = Cjon +Cjack. Hence,
no completion of T can have a non-zero count corresponding
to the string jes. Thus, using the constraints, one can infer
that the substring selectivity of jes must be 0. ��

Let us now repeat the exercise of Example 4 using a pruned
p-suffix tree. The key difference between pruned p-suffix tree
constraints and pruned o-suffix tree constraints is that the re-
lationship Cα ≥ ∑

Cαα1 does not hold for pruned p-suffix
trees. Instead, only a much weaker relationship, Cα ≥ Cαα1 ,
holds for each child node αα1 of α in the pruned p-suffix
tree. For example, for the jes query, the database D might
have 10 strings containing both jack and jon, allowing for
additional strings containing jes.

In the next two sections, we show that more can be done
using pruned o-suffix tree constraints for developing accurate
estimation algorithms.

5.1 o-Suffix tree constraints

There are three components contributing to Cα in an o-suffix
tree. First, α appears as a string (by itself) in D; we denote this

number by Oα.1 Second, α can appear as a suffix of a string
in D; this is the third term in (4) below. Third, α can appear
as a proper, non-suffix, substring of a string in D; this is the
second term in (4).

Definition 4 (ConSuffix(α)) Given a string α, we define
ConSuffix(α) to be the following equality:

Cα = Oα +
∑

a1∈A
(Cαa1)

+
∑

a2∈A

(
Ca2α −

∑
a3∈A

(Ca2αa3)

)
. (4)

��
Alternatively, one can express the above three components

contributing to Cα in an o-suffix tree in terms of prefixes,
instead of suffixes. Then, we get the following definition:

Definition 5 (ConPrefix(α)) Given a string α, we define
ConPrefix(α) to be the equality:

Cα = Oα +
∑

a1∈A
(Ca1α)

+
∑

a2∈A

(
Cαa2 −

∑
a3∈A

(Ca3αa2)

)
. (5)

��

5.2 Characterizing completions C(T )

We can now characterize the set of all completions, C(T ), of
a pruned o-suffix tree T . First, for each completion, it must
satisfy (4) and (5) for each string in the completion. Second,
the completion must agree with the “semantics” of T , which
is formalized as follows:

Definition 6 (ConPrune(α, T , p))Givenaprunedo-suffix tree
T , with pruning threshold p, denote kα to be the count of α
in T . We define ConPrune(α, T , p) to be the following con-
straint:

Cα = kα, if α in T ,
≤ p, otherwise. (6)

��
Definition 7 (ConComp(T , p)) For a pruned o-suffix tree T ,
with pruning threshold p, define ConComp(T , p) to be the
set of constraints: { ConSuffix(α)|α ∈ A∗}∪ { ConPrefix
(α)|α ∈ A∗} ∪ { ConPrune(α, T , p)|α ∈ A∗}. ��

The following result, easily established by induction on
the height of the tree, characterizes the set of all completions
of a given PST T .

Theorem 2 Consider a pruned o-suffix tree T , with pruning
threshold p. An o-suffix tree is a completion of T if and only if
the counts associated with its strings satisfy ConComp(T , p).
��

A straightforward corollary of the above result is that we
only need to consider strings α in ConComp(T , p) that are
bounded in length by N , the root count of T .

A similar exercise can be repeated to give a complete char-
acterization of completions of a pruned p-suffix tree.

1 In general, D can have multiple occurrences of the same string.
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5.3 Projection constraints

It is possible that the estimateMO(σ) [andKV I(σ)], which
uses only “local” information from T , is infeasible, i.e., it
is impossible for any completion of T (as characterized by
Theorem 2) to agree with this estimate. Example 4 illustrates
such a situation. In the following, we seek to improve the MO
estimate whenever this estimate is infeasible.

Given a substring query σ, determining if MO(σ) is fea-
sible, with respect to ConComp(T , p), is NP-hard [Sch86]. In
our effort to check efficiently whetherMO(σ) is feasible, we
need to approximate ConComp(T , p), where a sound approx-
imation of a set of constraints is one whose solution space is
a superset of that of the original set of constraints. A simple
sound approximation is the set

{ConPrune(α, T , p)|α ∈ A∗},
which only requires that strings not inT have counts that do not
exceed the pruning threshold p. Observe that in Example 4 this
sound approximation would consider the MO (and KVI) esti-
mate to be feasible (since p/N = 5/200 = 2.5%). We show
that it is possible to obtain a “better” sound approximation of
ConComp(T , p), without sacrificing a polynomial-time check
of the feasibility of MO(σ).

Definition 8 (l- and r-parents)Given a stringα of lengthm,
we call the stringsα[1 . . . (m−1)] andα[2 . . .m] the l-parent
(l for left) and the r-parent (r for right) of α. ��

Observe that by rearranging the terms in (5) and dropping
non-negative terms, we get the following inequality:

Caα = Cα −Oα −
∑

a1∈A,a1 �=a

(Ca1α)

−
∑

a2∈A

(
Cαa2 −

∑
a3∈A

(Ca3αa2)

)

≤ Cα −
∑

a1∈A,a1 �=a

(Ca1α)

≤ Cα −
∑

a1∈A,a1 �=a,a1α∈T
(Ca1α).

This and the symmetric inequality obtained by using (4)
are formalized below.

Definition 9 (l-and r-ConPar(α, T ))Givenaprunedo-suffix
treeT , anda stringα = α1a1 not inT , wedenote l-ConPar(α, T )
to be the inequality:

Cα1a1 ≤ Cα1 −
∑

a2∈A,a2 �=a1,α1a2∈T
(Cα1a2).

Similarly, given a string α = a1α1 not in T , we denote
r-ConPar(α, T ) to be the inequality:

Ca1α1 ≤ Cα1 −
∑

a2∈A,a2 �=a1,a2α1∈T
(Ca2α1).

��
Now, given a string α not in the PST T , one can use l-

ConPar(α, T ) and r-ConPar(α, T ) to obtain constraints on
the count ofCα in terms of the counts of its l- and r-parents (as

Algorithm MOC
Input: a PST T with pruning threshold p, and

root count N ; a substring query σ
Output: the estimate MOC(σ)

{ 1. MOC = MO(σ);
2. let ConProj(σ, T , p) be of the form Cσ ≤ vσ;
3. if (MOC > vσ/N ) {MOC = vσ/N}
4. return(MOC);

}

Fig. 5. The MOC estimation algorithm

well as the counts of “siblings” of α in T ). If a parent string is
not in T , one can obtain analogous constraints on its count. It-
erating this process until all the l- and r-parents are in T gives
us a set of projection constraints, denoted ConProj(α, T , p),
which is a sound approximation of ConComp(T , p). We for-
malize this below.

Definition 10 (anc(α, T ), ConProj(α, T , p)) Consider a
pruned o-suffix tree T , with pruning threshold p, and a string
α not in T .

Define the set anc(α, T ) to be the smallest set such that:
(a)α ∈ anc(α, T )and (b) ifα1 ∈ anc(α, T )andα2 is an l- or
an r-parent ofα1, such thatα2 not in T , thenα2 ∈ anc(α, T ).
Intuitively, anc(α, T ) is the set of all ancestors of α that are
not in T .

Define ConProj(α, T , p) as the projection of the follow-
ing constraints on Cα: {ConPrune(α1, T , p) | α1 ∈ T } ∪
{l-ConPar(α1, T ) | α1 ∈ anc(α, T )} ∪ {r-ConPar(α1,T |
α1 ∈ anc(α, T )} ∪ { ConPrune(α, T , p)}. ��

Example 5 (ConProj(jones, T , p)) Consider the pruned o-
suffix tree T shown in Fig. 1, with pruning threshold p = 5.
For the substring query jones, anc(jones, T ) is the set
{jones, jone, ones}. Assume all relevant nodes are as
shown. ConProj(jones, T , p) is given by the projection of
the constraints below on Cjones:

Cjones ≤ p = 5
Cjones ≤ Cjone

Cjones ≤ Cones

Cjone ≤ Cjon − Cjond = 10 − 7
Cjone ≤ Cone = 15
Cones ≤ Cone − Coned = 15 − 7
Cones ≤ Cnes − Canes = 20 − 13.

This simplifies to the single inequality Cjones ≤ 3. ��

Putting all of the above together, we have the following
theorem:

Theorem 3 Given a pruned o-suffix tree T , with pruning
threshold p, and a string α not in T , ConProj(α, T , p) is
(a) a sound-approximation of the projection of the constraints
ConComp(T , p) on Cα, and (b) of the form Cα ≤ vα, for
some value vα. ��
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5.4 Algorithm MOC: Maximal overlap with constraints

We use the constraints ConProj(σ, T , p) to create a new esti-
mation algorithm, which we call maximal overlap with con-
straints (MOC), and present in Fig. 5.

Example 6 (Estimating MOC(jes)) Consider the pruned
o-suffix tree in Fig. 1, and the substring query jes. As shown
in Example 4, MO(jes) = KV I(jes) = 2.5%. The con-
straint ConProj(jes, T , p) is given by:

Cjes ≤ Cj − Cjo − Cja = 20 − 10 − 10

As a result, MOC(jes) would return 0, which is the only
feasible value. ��

Intuitively, if MO(σ) is a feasible value for Cσ in
ConProj(σ, T , p), the estimate MOC(σ) is the same as
MO(σ). Otherwise, MOC(σ) is set to the largest possible
feasible value, vσ , of Cσ . This directly leads to the following
two results, which summarize the relative behavior of theMO
and MOC algorithms:

Theorem 4 Consider a pruned o-suffix tree T . Then, it is the
case thatMOC(σ) ≤ MO(σ) for all σ. ��
Theorem 5 Consider a pruned o-suffix tree T . Then,
MOC(σ) is a better estimate (in terms of log ratio) than
MO(σ) for all σ. ��

6 Lattices and constraints

The MOC(σ) estimate improves on the MO(σ) estimate by
“applying” constraints that relate Cσ to various Cα in the
pruned o-suffix T , such that α is a substring of σ. However,
it should be possible, in principle, to “apply” the MOC al-
gorithm one step at a time to all members of anc(σ, T ) and
obtain an even better algorithm than MOC. In this section, we
explore this possibility, and propose a new algorithm, MOLC,
which validates our intuition.

6.1 The string completion lattice

We first formalize the notion of a step-at-a-time computation
using a string completion lattice, defined below.

Definition 11 (String completion lattice) For α not in PST
T , we define the string completion lattice of α with respect to
T , denoted Lα, inductively as follows: (a) α is a node in Lα

and (b) for any node α1 inLα, the l-parent and r-parent of α1
are also nodes in Lα. There is an (undirected) edge (α1, α2)
in Lα, if α1 is an l-parent or an r-parent of α2.

The depth of a node α1 in Lα is defined inductively as fol-
lows: if α1 is in T , depth(α1) = 0, otherwise depth(α1) =
1 + max{depth(γ1), depth(γ2)}, where γ1, γ2 are the
l-parent and r-parent of α1. ��

Example 7 (String completion lattice) Consider the PST T
shown in Fig. 1, and the substring query jones. In this case,
a relevant fragment of Ljones is given in Fig. 6. Nodes with
counts correspond to strings in T . ��

jone ones

jones

jon
(10)

(15)one nes (20)

(30)on ne (50)

Fig. 6. Ljones

Algorithm MOL
Input: a PST T with pruning threshold p, and

root count N ; a substring query σ
Output: the estimate MOL(σ)

{ 1. construct Lσ;
2. for all nodes α ∈ Lσ of depth 0, Pr(α) = Cα/N ;
3. process nodes α in ascending order of depth ≥ 1: {

3.1 set γ1, γ2 the l- and r-parent of α;
3.2 Pr(α) = Pr(γ1) · Pr(γ2)/Pr(γ1 � γ2) }

4. MOL = Pr(σ); return(MOL);
}

Fig. 7. The MOL estimation algorithm

Algorithm MOLC
Input: a PST T with pruning threshold p, and

root count N ; a substring query σ
Output: the estimate MOLC(σ)

{ 1. construct Lσ;
2. for all nodes α ∈ Lσ of depth 0, Pr(α) = Cα/N ;
3. process nodes α in ascending order of depth ≥ 1: {

3.1 set γ1, γ2 the l- and r-parent of α;
3.2 Pr(α) = Pr(γ1) · Pr(γ2)/Pr(γ1 � γ2);
3.3 let ConProj(α, T , p) be Cα ≤ vα;
3.4 if (Pr(α) > vα/N ) { Pr(α) = vα/N} }

4. MOLC = Pr(σ); return(MOLC);
}

Fig. 8. The MOLC estimation algorithm

6.2 Lattice-based estimation

As a step towards our goal of obtaining a step-at-a-time
constraint-based estimation algorithm, we first extend the max-
imal overlap (MO) estimation algorithm to the lattice, and re-
fer to it as the maximal overlap on lattice (MOL) algorithm.
Figure 7 shows the MOL estimation algorithm. It is easy to
show by induction on the depth that all terms on the right-hand
side of step 3.2 are known each time the step is executed. In-
tuitively, the MOL algorithm repeatedly applies the MO algo-
rithm to “complete” the fragment of the lattice that “supports”
the given substring query.

Example 8 (MOL(jones)) Consider the PST T in Fig. 1,
the substring query jones, and the string completion lattice
Ljones in Fig. 6. MOL first estimates Pr(jone) as

Pr(jone) = (Cjon/N) · (Cone/N)/(Con/N)
= (Cjon · Cone)/(N · Con)
= 2.5%

and Pr(ones) as

Pr(ones) = (Cone/N) · (Cnes/N)/(Cne/N)
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= (Cone · Cnes)/(N · Cne)
= 3%.

Then MOL estimates Pr(jones) as

Pr(jones) = Pr(jone) · Pr(ones)/Pr(one)
= (Pr(jone) · Pr(ones) ·N)/Cone

= 1%,

giving the same estimate as MO. ��
The identical estimates by MO and MOL in the above

example are not a coincidence, as shown by the following
result:

Theorem 6 Consider a PST T . Then it is the case that
MOL(σ) = MO(σ), for all σ. ��

The proof is by induction on the depth of the string com-
pletion lattice of a substring query σ. It is reassuring to know
that the MOL estimate is identical to the MO estimate. In par-
ticular, this means that the MO algorithm described earlier is
sufficient to obtain the effect of full lattice completion. How-
ever, the incorporation of constraints has a positive effect over
MOC(σ), as we see next.

6.3 Algorithm MOLC

The MOL algorithm obtains estimates for the selectivities at
multiple intermediate nodes and uses these as a basis to esti-
mate the final answer. However, some of these intermediate
estimates may be infeasible with respect to the constraints
discussed previously. We would expect to do better if at each
stage we applied constraints to the intermediate estimates and
used these constrained estimates to determine the final desired
answer. The algorithm, maximal overlap on lattice with con-
straints (MOLC), modifies MOL along the lines of MOC, and
is shown in Fig. 8.

Example 9 (MOLC(jones)) Continuing with Example
8, MOLC modifies the MOL estimate Pr(jone) to 1.5% be-
cause of the following constraint in ConProj(jone, T , p) (see
Example 5):

Cjone ≤ Cjon − Cjond = 3.

Similarly, MOLC modifies the MOL estimate Pr(ones) to
2.5% = 5/200 because of the following constraint in Con-
Proj(ones, T , p):
Cones ≤ p = 5.

Consequently, the MOLC estimate Pr(jones) is reduced to
0.5% = (3 ·5)/(15 ·200). Note that this is lower than the MO
and MOC estimates. ��

The following lemma is the key to establishing the subse-
quent theorems:

Lemma 1 Consider a pruned o-suffix tree T , a substring
query σ, and the string completion lattice Lσ . Then, for any
node α ∈ Lσ , if step 3.4 of Algorithm MOLC lowers Pr(α),
then the estimates for all nodes below α in Lσ are also re-
duced. ��

The following result is similar to Theorem 4.

Theorem 7 Consider a pruned o-suffix tree T . Then, it is the
case thatMOLC(σ) ≤ MOC(σ), for all σ. ��

The major result of this section is the following analog to
Theorem 5.

Theorem 8 Consider a pruned o-suffix tree T . Then, it is the
case thatMOLC(σ) is a better estimate (in terms of log ratio)
thanMOC(σ), for all σ. ��

6.4 Trading accuracy for efficiency

Combining the results from Sects. 5 and 6, we have

0 ≤ MOLC(σ) ≤ MOC(σ) ≤ MO(σ)[= MOL(σ)] ≤ 1

for the values of the estimates produced by the various algo-
rithms. The estimate KV I(σ) can be anywhere in the [0, 1]
range.

In terms of the error, expressed as the log ratio, using the
various estimation algorithms, we have

MOLC ≤ MOC ≤ MO(= MOL) ≤ KVI.

To understand the tradeoff between computational cost
and estimation error, we study the computational costs of the
various estimation algorithms.

Theorem 9 Let s be the size of the alphabet A. Let m be
the length of the substring query σ. Assume a unit cost for
each level that the PST is traversed, and that all traversals
work their way down from the root. Let d be the depth of the
PST. Then, the worst-case time costs of the various estimation
algorithms are given by:

1. Cost(KV I(σ)) is O(m).
2. Cost(MO(σ)) is O(m · d).
3. Cost(MOC(σ)) is O(m · s · d).
4. Cost(MOLC(σ)) is O(m2 · s · d). ��

The costs of computing the estimates MOC(σ) and
MOLC(σ) are dominated by the cost of computing the pro-
jection constraints. In the former case, it suffices to consider
O(m) constraints, each of which may have O(s) terms. For
an r-ConPar(α, T ) constraint, determining the counts of its
terms requires traversing O(s) paths, each of length O(d).2
This gives theO(m·s·d) bound. In the latter case, one needs to
compute the projection constraints for each node in the string
completion lattice Lσ . In the worst case there areO(m2) such
nodes, leading to the given bound. Hence, in terms of the com-
putational effort (running time) required, the ordering is the
opposite of the estimation accuracy ordering:

MOLC ≥ MOC ≥ MO ≥ KVI.

7 Developing k-D structures for estimation

So far, in this paper, we have focussed on the 1-D problem.
Next we turn our attention to the k-D problem. But before we

2 One can pre-compute and store two additional constants per node
in the PST and eliminate the dependence of the cost on s.



10 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

✟✟✟ 

✟✟✟✟
✔

✔
❅

❅
❛❛❛❛❛

��
✱

✱

❜❜❜❜
❍❍❍❍

✦✦✦✦✦
✟✟✟✟

..................

..................
..................

..................
..................

❝❝

..................
..................

..................

(ab, ε )

(abd, ε )(abc, ε ) (ab, 0 ) (ab, 1)

(abc, 0) (abd, 1 )

( ε , ε )

( ε , 0 ) ( ε , 1)

Fig. 9. Example 2-D count-trie

do so, in this section, we first establish a k-D data structure
for estimation.

By a k-D string, we mean a k-tuple (α1, . . . , αk), where
αi ∈ A∗ for all 1 ≤ i ≤ k. A k-D substring of a given k-D
string (α1, . . . , αk) is (γ1, . . . , γk), such that γi is a (possibly
empty) substring of αi, 1 ≤ i ≤ k.

7.1 k-D count-tries

In k-D, a count-trie is a rooted DAG that satisfies the following
properties:

– Each node is a k-D string. The root is the k-D string
(ε, . . . , ε).

– There is a directed edge from node (α1, . . . , αk) to node
(β1, . . . , βk) iff
– there exists 1 ≤ i ≤ k such that αi is an immediate

prefix of βi; and
– for all j �= i, 1 ≤ j ≤ k, αj = βj .

By “immediate prefix,” we mean that there does not exist an-
other node (. . . , γi, . . .) in the trie, such that αi is a proper
prefix of γi, and γi is in turn a proper prefix of βi. For con-
venience, we restrict all our discussion for the k-D case to
presence counting. Our techniques carry over easily to occur-
rence counting as well.

Figure 9 shows the 2-D count-trie for a database with the
two 2-D strings (abc, 0) and (abd, 1). The root node (ε, ε) and
the node (ab, ε) have count = 2, while the remaining nodes all
have count = 1.

As is done for standard 1-D count-tries, a simple optimiza-
tion can be applied to compress k-D count-tries. For any two
nodes connected by an edge, there is no need to store the com-
mon prefix twice. In Fig. 9, for instance, the node (abd, ε) can
simply be stored as (d, ε); we show the prefix in the figure
only for clarity.

7.2 k-D count-suffix DAGs

In 1-D, a suffix tree [Wei73,McC76] is a trie that satisfies
the following property: whenever a string α is stored in the
trie, all suffixes of α are stored in the trie as well. The same
property is preserved for k-D count-suffix DAGs, which are
k-D count-tries. Specifically:

Property P1: For a k-D string (α1, . . . , αk) in the count-suffix
DAG, each of the k-D strings (γ1, . . . , γk) is also in the
DAG for all (improper) suffixes γi of αi, 1 ≤ i ≤ k.

For example, to make the count-trie shown in Fig. 9, a 2-D
count-suffix DAG for (abc, 0) and (abd, 1), we need to add
the strings/nodes (bc, 0), (bc, ε), (c, 0), (c, ε), (bd, 1), (bd, ε),
(d, 1), and (d, ε), and the corresponding edges.

7.3 Compressed representation: k-D count-suffix trees

Note that with a count-suffix DAG each query search begins
from the root of the DAG. To answer a query, it thus suffices to
ensure that there is a path from the root of the DAG to each node
in the DAG. From this standpoint, a k-D count-suffix DAG is
an overkill, in the sense that there may bemultiple paths from
the root to a node in the DAG (e.g., there are paths from (ε, ε)
to (abc, 0) through (ε, 0) as well as through (abc, ε) in Fig. 9).
Thus, to reduce space, we seek to compress a k-D count-suffix
DAG into a k-D count-suffix tree, while preserving the desired
query answering capabilities.

To do so, we first pick a canonical enumeration of the at-
tributes.3 Without loss of generality, let us assume that the
enumeration order is attributes 1 to k. Then for any node
(α1, . . . , αk) in the count-suffix DAG, we define the following
path from the root to the node as the canonical path:

(α1,1, ε, . . . , ε), (α1,2, ε, . . . , ε), . . . , (α1,m1 , ε, . . . , ε),
(α1, α2,1, ε, . . . , ε), . . . , (α1, α2,m2 , ε, . . . , ε),

. . .
(α1, . . . , αk−1, αk,1), . . . , (α1, . . . , αk−1, αk,mk

),

where for all 1 ≤ i ≤ kand1 ≤ j < mi, αi,j is an immediate
prefix of αi,j+1 and for all 1 ≤ i ≤ k, αi,mi ≡ αi.

Intuitively, the canonical path of (α1, . . . , αk) corresponds
to the path that “completes” first α1, then α2 and so on. For
example, for the node (abc, 0) in Fig. 9, the canonical path
from the root passes through the nodes (ab, ε) and (abc, ε).
This path is guaranteed to exist in the DAG.

Finally, to prune a count-suffix DAG to the correspond-
ing count-suffix tree, any edge in the DAG that is not on any
canonical path is discarded. In Fig. 9, the four edges marked
with ‖ are not on any canonical path and are removed to give
the count-suffix tree.

As compared with the original count-suffix DAG, the
count-suffix tree has the same number of nodes, but fewer
edges. Because of the canonical path condition, each node,
except for the root, has exactly one parent,4 reducing the DAG
into a tree.

It is important to note that, even though we introduce k-
D count-suffix trees as pruning the appropriate edges from
the corresponding k-D count-suffix DAGs, in practice, a k-
D count-suffix tree can be constructed directly for a given
database, without explicitly constructing the DAG. Effective-
ly, to insert any k-D string, we pick the canonical path as the
path for inserting the string into the count-suffix tree.

In the following, we use count-suffix trees and suffix trees
interchangeably, for simplicity.

3 The choice of the enumeration order turns out to be immaterial
from the point of view of selectivity estimation. The only effect it
has is on the actual size of the resultant count-suffix tree. Since this
is a second-order effect, we do not address this issue further in this
paper.

4 In the original DAG, each node may have up to k parents.
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8 Direct construction of PSTs

8.1 The necessity of pruning nodes

A k-D count-suffix tree compresses the corresponding k-D
count-suffix DAG by removing edges not on any canonical
path. However, the number of nodes in both structures remain
the same. It is easy to see that the number of nodes is huge for
very large databases and for k ≥ 2.

To be more precise, first consider a 1-D count-trie. Index-
ing N strings, each of maximum length L, requires at most
N · L nodes, assuming no sharing. For a 1-D count-suffix
tree, because of all the suffixes, the same database requires
O(N · L) strings, each of maximum length L. Thus, the total
number of nodes, assuming no sharing, is O(N · L2). With
sharing of nodes between suffixes of a given string, the total
number of nodes can be reduced to O(N · L). Now consider
a k-D count-trie. Indexing N k-D strings, each of maximum
lengthL, requiresO(Lk) possible prefixes for each k-D string,
giving a total ofO(N ·Lk) nodes in the trie. Finally for a k-D
count-suffix tree, there are O(Lk) possible suffixes for each
k-D string. This gives a grand total ofO(N ·L2k) nodes in the
k-D count-suffix tree. No sharing of nodes between suffixes
is possible here.

In summary, going from 1 to k dimensions increases the
database size by only a factor of k, but it increases the size
of the count-suffix tree by a factor of L2k−1. Even in the 1-D
case, it has been argued [KVI96] that one cannot afford to
store the whole count-suffix tree for many applications and
that pruning is required. In the k-D case, the need for pruning
becomes even more urgent.5

8.2 Rules for pruning

A tree can be pruned by using any well-formulated pruning
rule that ensures that when a node is pruned all its child nodes
are pruned as well. In this paper, we consistently use a prun-
ing rule that prunes a node if its count is less than a pruned
count threshold p ·N . (We will find it convenient to think of
p as the pruned probability threshold. If N is the count at the
root, then, with a frequency interpretation of probability, we
get p ·N as the corresponding count threshold.) The threshold
may be fixed a priori, or, for the approximate, probabilistic
construction algorithms presented next, the threshold may ad-
just itself in order to meet given memory restrictions. Since
the count associated with any node is guaranteed to be no
greater than the count associated with its parent in the tree,
our pruning threshold rule is well formulated.

While the above discusses which nodes to prune, we also
have a specific rule that stipulates which nodes cannot be
pruned, regardless of their counts. These are nodes of the form
(α1, . . . , αk) such that for all 1 ≤ i ≤ k, the length of αi is
less than or equal to 1. Hereafter, we refer to this as the unit-
cube pruning exemption rule. Note that the counts of these

5 Because of the dramatic increase in the size of the suffix tree, in
practice, given k alphanumeric attributes, it is ill-advised to blindly
build a k-D count-suffix tree. It is expected that some kind of analysis
be carried out, such as correlation testing, to select subgroups of
attributes to be indexed. We do not concern ourselves in this paper
on how such a selection can be made.

nodes are very likely to meet the p · N threshold by them-
selves. However, if they do not, the rule ensures that these
nodes are exempted from pruning. The exemption rule is set
up to facilitate the selectivity estimation algorithms presented
in Sect. 9.

8.3 Inadequate ways of creating pruned trees

Given the above rules for pruning, the next question is how
exactly to create the PST for the given database D. A naive
way is to build the full k-D count-suffix tree, and then to apply
the pruning rule. For most circumstances, this method is in-
feasible because the amount of intermediate storage required
is tremendous.

Given memory restrictions for creating the pruned tree,
we wish to be able to alternate between building and pruning
on the fly. An exact strategy to do so is to first form the com-
pleted database, comp(D), of the given database D of k-D
strings. That is, for each original string (α1, . . . , αk) in D, we
form its completed set according to Property P1, which is the
set {(γ1, . . . , γk) | for all (improper) suffixes γi of αi for all
1 ≤ i ≤ k}. We then sort (out-of-memory) the completed
database comp(D) lexicographically according to the canon-
ical enumeration of the dimensions. Finally, we can simply
build the pruned tree by reading in sorted order and prun-
ing whenever the given memory is exceeded. This strategy,
while exact, is in general too prohibitive in cost, because of
the sorting involved on a set many times larger than the original
database D. Furthermore, as updates are made to the database,
there is no obvious incremental maintenance technique.

For most applications, it may be sufficient to construct an
approximate PST. Recently, there has been considerable re-
search activity around the creation of synopsis data structures
in a fixed amount of space [GM98]. In particular, based on the
notion of a concise sample, which is “a uniform random sam-
ple of the data set such that values appearing more than once
in the sample are represented as a value and a count” [GM98],
Gibbons and Matias developed an incremental maintenance
algorithm to maintain a concise sample. In the following, we
refer to this as the GM algorithm.

For a given amount of working memory space, the GM
algorithm gives guarantees on the probabilities of false pos-
itives and negatives. To be more precise, we wish to find all
frequent values, i.e., values occurring at least a certain number
of times in the data set. Let us use F to denote the set of all
truly frequent values and F̂ to denote the set of all frequent
values reported based on the concise sample. The GM algo-
rithm provides guarantees on the probability of α �∈ F̂ given
that α ∈ F (i.e., false negative), and the probability of α ∈ F̂
given that α �∈ F (i.e., false positive) [GM98, Theorem 7].
Thus, one way to create an approximate pruned suffix tree for
a given amount of working memory space is to apply the GM
algorithm on comp(D).
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8.4 A two-pass algorithm

There are, however, two problems with a direct application of
the GM algorithm to our task.

Inversions: Recall that for k-D count-tries and count-suffix
trees, the count associated with a node must not exceed the
count associated with a parent. When applied to comp(D),
the GM algorithm does not make that guarantee, and it is
possible that, based on the concise sample, the relative or-
dering of the count values are reversed. In fact, it is even
possible that, while a certain node is reported to have a
frequency exceeding a given threshold, some of its ances-
tors are not reported as such, i.e., node α ∈ F̂ but some
of its ancestors β �∈ F̂ .

Inaccurate counts: While the GM algorithm gives probabilis-
tic guarantees on false positives and negatives, it does not
provide guarantees on the relative errors of the reported
counts (i.e., the error on Cα). As will be clear in our
discussion in Sect. 9 on selectivity estimation, inaccurate
counts in the pruned suffix tree may be compounded to
give grossly inaccurate estimates for k-D strings not kept
in the tree.

To deal with the above two problems, we augment the GM
algorithm into the following two-pass algorithm:

1. Pass 1: Construct comp(D) on the fly and apply the GM
algorithm.

2. Pass 2: Do a second pass over the original database D to
obtain exact counts for all the strings in comp(F̂).

The second pass of the above algorithm serves two purposes.
First, because counts are obtained for comp(F̂), no inversion
is possible. Note that in general because of the GM algorithm
the size of comp(F̂) − F̂ should not be large compared with
the size of F̂ . Second, the extra pass over the original database
eliminates any possibility of incorrect counts due to the sam-
pling done by the GM algorithm. If the strings in comp(F̂)
can all fit in main memory (e.g., ≤ 1 million strings), which is
achievable for many computer systems these days, the second
pass amounts to a single scan of the database.

Thus, in summary, the above two-pass algorithm repre-
sents a space- and time-efficient algorithm for constructing a
PST directly. It gives probabilistic guarantees on false posi-
tives and negatives (via the GM algorithm) and at the same
time avoids inversions and inaccurate counts. Furthermore, to
implement the unit-cube pruning exemption rule mentioned in
Sect. 8.2, the algorithm can simply skip over the strings to be
exempted in the first pass, but count them in the second pass.

When updates ∆D are made to the database D, the first
pass can be performed in an incremental fashion. Only when
there is a change to F̂ is there a need for a pass over D ∪∆D.
If there is no change to F̂ , then it is sufficient to perform a
pass over ∆D to update the counts of the existing nodes in the
PST.

9 GNO and MO: k-D selectivity estimation algorithms

We now come to the heart of the multi-dimensional substring
selectivity estimation problem. Given a k-D query string q =

a b c
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3
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II

III

Fig. 10. 2-D query with GNO estimation

(σ1, . . . , σk), where for all 1 ≤ i ≤ k σi ∈ A∗ (and can be
the null string), we use the PST to give the selectivity. If q
is actually kept in the pruned tree, the exact count Cq can be
returned. The challenge is when q is not found, and Cq has to
be estimated based on the content of the pruned tree. Below
we consider two algorithms to do so.

9.1 The GNO algorithm

Given query q, the GNO (Greedy Non-Overlap) algorithm ap-
plies greedy parsing to obtain non-overlapping k-D substrings
of q. This generalizes the KVI algorithm for the 1-D problem.
Before we go into the formal details of the algorithm, we give
an example to illustrate the idea.

Consider the 2-D query (abc, 123) shown in Fig. 10. The
call GNO(abc, 123) first finds the longest prefix of abc from
the pruned tree, and then from there the longest prefix of 123.
In our example, this turns out to be the substring (ab, 12) (rect-
angle I). Then recursive calls are made to find other substrings
to complete the whole query. In our example, the recursive
calls areGNO(ab, 3) andGNO(c, 123).6 As it turns out, the
substrings (ab, 3) (rectangle II) and (c,123) (rectangle III) are
found in the pruned tree. Then the estimated selectivity is the
product of the three selectivities.

Probabilistically, GNO(abc, 123) is given by:

Pr{(abc, 123)} = Pr{(ab, 12)} · Pr{(ab, 123) | (ab, 12)}
·Pr{(abc, 123) | (ab, 123)}

≈ Pr{(ab, 12)} · Pr{(ab, 3)}
·Pr{(c, 123)}

= (C(ab,12)/N) · (C(ab,3)/N)
·(C(c,123)/N),

whereN is the count of the root node (i.e., the total number of
strings in the database). It is essential to observe that GNO as-
sumes conditional independence among the substrings. Note
that this is not as simplistic as assuming conditional indepen-
dence among the attributes/dimensions. If that were the case,
GNO would not have used counts such as C(ab,12) from the
pruned tree, and would have simply used counts such asC(ab,ε)
and C(ε,12).

A skeleton of the GNO algorithm is given in Fig. 11. Step 1
can be implemented by a search of the pruned tree that finds

6 Alternatively, the recursive calls can be GNO(c, 12) and
GNO(abc, 3). Regardless, in each case, the identified substrings
from the pruned tree do not overlap. Experimental results for both
alternatives will be presented in Sect. 10.
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Algorithm GNO(σ1, . . . , σk)

{ 1. Find from the pruned tree (γ1, . . . , γk) where γ1

is the longest prefix of σ1, and given γ1, γ2 is
the longest prefix of σ2, and so on.

2. gno = C(γ1,...,γk)/N .
3. If [(γ1, . . . , γk) equal (σ1, . . . , σk)], return (gno).
4. For (i = 1; i ≤ k; i + +) {

4.1 Compute δi such that σi equal γiδi.
4.2 If (δi not equal to null)

gno = gno · GNO(γ1, . . . , γi−1, δi, σi+1, . . . , σk).
}

5. Return (gno).
}

Fig. 11. Pseudo code of algorithm GNO

the longest prefix in the order of the dimensions. As usual, the
N in Step 2 is the count of the root node.

It should be obvious that in the worst case GNO searches
the pruned treeO(|σ1| · . . . · |σk|) times. This brings us back to
the unit-cube pruning exemption rule mentioned in Sect. 8.2.
The product |σ1| · . . . · |σk| gives the total number of unit (hy-
per)cubes for the query. The exemption rule guarantees that
the pruned tree has a count for each of the unit cubes. De-
pending on the outcome of Step 1, GNO may not need any
of the unit cubes. Strictly speaking, we can do away with the
exemption rule, and if a unit-cube is needed but is not found
in the pruned tree, we can simply use the pruning probability
p. We prefer to adopt the exemption rule, because in this way
the selectivity of the unit cube is the most accurate. This ac-
curacy is particularly significant when the actual selectivity is
much lower than p, such as for the so-called negative queries
considered in Sect. 10.

In terms of formal properties of GNO, the following the-
orem shows that GNO generalizes the KVI algorithm. Given
a k-D PST T , we use the notation proj(T , i), for some 1 ≤
i ≤ k, to denote the subtree of T such that:

– the set of nodes is given by: {αi | the node (ε, . . . , ε, αi,
ε, . . . , ε) is in T }, where αi can be the null string ε; and

– the set of edges is given by the set of edges in T , connecting
only nodes of the form (ε, . . . , ε, αi, ε, . . . , ε).

For example, the tree shown in Fig. 9, when projected on the
first dimension, consists of the root node and (ab, ε), (abc, ε)
and (abd, ε), and the edges connecting these nodes.

Theorem 10 For any k-D pruned tree T , and k-D query q =
(ε, . . . , ε, σi, ε, . . . , ε), the estimate given by GNO for q using
T is identical to the estimate given by the KVI algorithm for
σi using proj(T , i). ��

9.2 The MO algorithm: Example

MO for multiple dimensions tries to find maximum overlap-
ping substrings just as in the 1-D case. The complication is that
the nature of overlap can now be considerably more complex.
To illustrate, consider again the 2-D query (abc, 123) shown
in Fig. 10. While GNO finds three 2-D non-overlapping sub-
strings, MO finds overlapping substrings. In Fig. 12, to high-
light the comparison between MO and GNO, we assume that

b c
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Fig. 12. 2-D query with MO estimation

MO also finds three substrings, corresponding to the ones
shown in Fig. 10. (In general, MO may find a lot more k-D
maximal substrings, i.e., k-D substringsα, β such thatα is not
a substring of β and vice versa.) While the substring (ab, 12)
(rectangle I) remains the same, MO now finds (ab, 23) (rect-
angle II) and (bc, 123) (rectangle III).

The question now is how to “combine” all these substrings
together. Let us begin by considering (ab, 12) and (ab, 23).
Probabilistically, we have:

Pr{(ab, 123)} = Pr{(ab, 12)} · Pr{(ab, 123) | (ab, 12)}
≈ Pr{(ab, 12)} · Pr{(ab, 23) | (ab, 2)}
= Pr{(ab, 12)}

·Pr{(ab, 23)}/Pr{(ab, 2)}.
Thus, unlike GNO, MO does not assume complete condi-
tional independence among the substrings. Whenever pos-
sible, it allows conditioning up to the overlapping substring
[e.g., (ab, 2)] of the initial substrings under consideration [e.g.,
(ab, 12) and (ab, 23) here].

Operationally, we can view the above probabilistic argu-
ment as a counting exercise. When we take the product of
Pr{(ab, 12)} and Pr{(ab, 23)}, we are basically counting
rectangles I and II in Fig. 12. The problem is that we have “dou-
ble” counted the rectangle corresponding to substring (ab, 2).
To compensate, we divide the product with Pr{(ab, 2)}.

To continue now by taking into consideration rectangle III,
we take the product of probabilities Pr{(ab, 12)},
Pr{(ab, 23)} and Pr{(bc, 123)}, basically counting all three
rectangles. To compensate for double counting, we divide
the product by the three 2-way intersections: (a) Pr{(ab, 2)}
between I and II; (b) Pr{(b, 12)} between I and III; and
(c) Pr{(b, 23)} between II and III.

However, by dividing the 2-way intersections, we have
“overcompensated.” Specifically, the substring (b, 2) is ini-
tially counted three times in the product, but is then discounted
three times in the division of the three 2-way intersections.
To make up, we need to multiply what we have so far with
Pr{(b, 2)}, which is the 3-way intersection between the three
initial substrings.

9.3 The MO algorithm: Pseudo code

The counting exercise illustrated in the above example is gen-
eralized in Fig. 13, which gives a skeleton of the k-D MO
algorithm. Step 1 first finds all the maximal k-D substrings of
the query q from the pruned tree. Let these be λ1, . . . , λu for
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Algorithm MO(σ1, . . . , σk)

{ 1. Find from the pruned tree all the maximal
k-D substrings of (σ1, . . . , σk). Let these be
λ1, . . . , λu for some u.

2. Initialize S to {(λ1, 1), . . . , (λu, 1)}, and i to 1.
3. Repeat {

3.1 Initialize Snew to ∅.
3.2 For all (α,w) ∈ S such that w equal i

For all 1 ≤ j ≤ u {
If [(α not equal λj) and

(α ∩ λj non-empty)],
add (α ∩ λj , i + 1) to Snew.

}
3.3 S = S ∪ Snew, and i + +
} until (Snew equal ∅)

4. Initialize mo to 1.
5. For all (α,w) ∈ S {

5.1 Get count Cα from the pruned tree.
5.2 If (w is an odd integer), mo = mo · (Cα/N)

Else mo = mo/(Cα/N)
}

6. Return (mo).
}

Fig. 13. Pseudo code of algorithm MO

some u. Then Steps 2 to 3 find all the non-empty 2-way inter-
sections (i.e., λi ∩λj), 3-way intersections (i.e., λi ∩λj ∩λl),
and so on, up to w-way intersections for w ≤ u.

After all possible intersections among λ1, . . . , λu are
found, Step 5 of MO computes the final estimate. It obtains
the appropriate counts from the PST. Note that the suffix tree
guarantees that if there are nodes corresponding to α and λj ,
then their non-empty intersection α ∩ λj must have a corre-
sponding node in the tree. Thus, for any (α,w) in S, the count
Cα can always be obtained from the tree in Step 5.1. Finally,
Step 5.2 puts the probability (Cα/N) in the numerator or the
denominator, depending on whether w is odd or even. That is,
if α is a w-way intersection among λ1, . . . , λu, and w is odd,
then the probability appears in the numerator, but otherwise
in the denominator.

9.4 The MO algorithm: Properties

A natural question to ask at this point is if Step 5.2 is “correct.”
As motivated in the example shown in Fig. 12, by “correct,” we
mean that each substring of query q is counted exactly once,
i.e., neither over-counting nor over-discounting. We offer the
following lemma:

Lemma 2 For any (α,w) in S, representing a w-way inter-
section, Step 5.2 of MO is correct in that each k-D substring
α is counted exactly once.

Proof. For any w-way intersection α, let us assume, with-
out loss of generality, that α is the intersection of λ1, . . . , λw.
Then α must have been counted (w

1 ) times initially, then dis-
counted (w

2 ) times due to 2-way intersections, then counted
(w
3 ) times due to 3-way intersections, and so on. So the to-

tal number of times α has been counted and discounted is
(w
1 ) − (w

2 ) + (w
3 ) − . . . −(−1)w(w

w). This can be rewritten as

[−∑w
j=1 (−1)j(w

j ) ]. Now consider the well-known binomial
expansion (1 − x)w = ([1 +

∑w
j=1 (−1)j(w

j )xj ]. By substi-
tuting x = 1, we get 0 = (1 − 1)w = [1 +

∑w
j=1 (−1)j(w

j ) ].
Hence, [−∑w

j=1 (−1)j(w
j ) ] = 1. ��

Next, we investigate how the k-D MO algorithm discussed
in this section generalizes the 1-D MO algorithm presented in
the first half of the paper.

Suppose for the query abcde, 1-D MO finds three maximal
substrings: abc, bcd, and cde. Then 1-D MO, as presented
earlier, gives the following estimate:

Pr{abcde} ≈ Cabc

N
· Cbcd

Cbc
· Ccde

Ccd
.

On the other hand, the k-D MO procedure shown in Fig. 13
gives the following estimate:

Pr{abcde} ≈ (Cabc/N) · (Cbcd/N) · (Ccde/N) · (Cc/N)
(Cbc/N) · (Ccd/N) · (Cc/N)

.

While it is easy to see that both estimates are identical, we
must point out two more subtle details:

– In the k-D MO calculation above, there are terms that can-
cel each other out, notably (Cc/N). While the (Cc/N)
term in the numerator corresponds to the 3-way intersec-
tion between the three maximal substrings, the (Cc/N)
term in the denominator corresponds to the 2-way inter-
section between abc and cde. The point here is that the
3-way intersection of abc, bcd, and cde is exactly the 2-
way intersection of the first and the last ones.

– The use of the words “first” and “last” precisely under-
score the fact that in 1-D, all the maximal substrings can
be linearly ordered with respect to the query q. Thus it
is unnecessary to consider any w-way intersections for
w ≥ 3, and even unnecessary to consider the 2-way inter-
section between λi and λj for j > i + 1. In other words,
it is sufficient to just consider 2-way intersections of two
successive maximal substrings (e.g., the intersection bc be-
tween abc and bcd). The complication in k-D is that there
is no linear order to fall back on; λi may “precede” λj in
some dimensions and vice versa for the other dimensions.

That k-D MO is a proper generalization of 1-D MO is easy
to show by considering the nature of overlap possible in one
dimension. Since each maximal substring has a new starting
position, and the length of any maximal substring is finite,
there can be at most a finite number of overlapping strings,
and these can be ordered based on their starting positions.
Wherever strings k and k+2 overlap, we must also have k+1
overlap. Thus, the three-overlap term exactly cancels the 2-
apart 2-way overlap term. Similarly, where strings k and k+3
overlap, we must also have k + 1 and k + 2, leading to two
as yet unaccounted for 3-way overlap terms (k,k + 1,k + 3)
and (k,k + 2,k + 3), which exactly cancel the 3-apart 2-way
overlap term and the 4-way overlap term. Proceeding thus,
we can argue that all terms except two-way overlap cancel
amongst neighboring terms. This leads to the following result:

Theorem 11 For any k-D pruned tree T , and k-D query
q = (ε, . . . , ε, σi, ε, . . . , ε), the estimate given by the MO
algorithm shown in Fig.13 for q using T is identical to the
estimate given by the 1-D MO algorithm for σi using proj
(T , i). ��
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When the underlying dimensions are independent of each
other, the above theorem can be generalized to the following
result. It is proved by showing that for any term with multi-
ple dimensions expressed as the product of the corresponding
component 1-D terms (due to independence between dimen-
sions), all the one-dimensional terms generated will cancel.

Theorem 12 Suppose thek dimensions aremutually indepen-
dent, i.e., for all nodes (α1, . . . , αk) in the k-D count-suffix
tree T , C(α1,...,αk)/N = Πk

i=1(C(ε,...,αi,...,ε)/N). Then for
anyk-D pruned treeT ′ ofT , andk-D query q = (σ1, . . . , σk),
the estimate given by k-D MO for q using T ′ is equal to
the product of the estimates given by 1-D MO for σi using
proj(T ′, i), 1 ≤ i ≤ k. ��

Last, but not least, let us analyze the complexity of the MO
algorithm. In the worst case, Step 1 requiresO(|σ1|2·. . .·|σk|2)
searches of the pruned tree. Step 5 may need another O(2u)
searches of the tree, since in the worst case set S computed
in Step 3 may be of size O(2u). Thus, in terms of worst-case
complexity, MO is far inferior to GNO. The practical ques-
tions, however, are: how much more absolute time is required
by MO, and whether the extra runtime gives better accuracy
in return. We rely on experimentation to shed light on these
questions.

10 Experimental evaluation

10.1 Experimental setup

We implemented thek-D MO and GNO algorithms. They were
written in C. We paid special attention to ensure that MO is
not affected by round-off errors. Below we report some of the
experimental results we collected. The reported results were
obtained using a realAT&T data set containing office informa-
tion about most of the employees. In particular, the reported
results are based on two attributes: the last name and the office
phone number of each employee. For these two attributes, the
un-pruned 2-D count-suffix tree has 5 million nodes. The re-
sults reported here are based on a pruned tree that keeps the top
1% of the nodes (i.e., 50 000 nodes) with the highest counts.

Following the methodology used in [KVI96], we consid-
ered both “positive” and “negative” queries and used relative
error as one of the metrics for measuring accuracy. Positive
queries are 2-D strings that were present in the un-pruned tree
or in the database, but that were pruned. We further divided
positive queries into different categories depending on how
close their actual counts were to the pruned count. Below we
use Pos-Hi, Pos-Med, and Pos-Lo to refer to the sets of positive
queries whose actual counts were 36, 20 and 4 respectively,
where the pruned count was 40. Each of the three sets above
consists of 10 randomly picked positive queries. Those were
picked to cover different parts of the pruned tree.

To measure the estimation accuracy of positive queries, we
give the average relative error over the 10 queries in the set, i.e.,
(estimated count − actual count)/actual count. Thus, relative
error ranges from −100% to infinity theoretically. Because rel-
ative error tends to favor underestimation to overestimation,
we adjust an overestimated count by the pruning count, when-
ever the former is greater than the latter, i.e., [min(estimated
count,pruning count) − actual count]/actual count.

Pos–Hi Pos–Med Pos–Lo

MO (+4%, 3.89) (+16%, 10.35) (−11%, 3.38)

GNO (−98%, 35.3) (−95%, 19.13) (−90%, 3.99)

Fig. 14. Estimation accuracy for positive queries

While relative error measures accuracy in relative terms,
mean squared error measures accuracy in absolute terms. For
some of the cases below, we give the square root of the average
mean squared error for positive queries. We refer to this as the
average mean standard error.

Negative queries are 2-D strings that were not in the data-
base or in the un-pruned tree. That is, if the un-pruned tree
were available, the correct count to return for such a query
would be 0. To avoid division by 0, estimation accuracy for
negative queries is measured using mean standard error as the
metric.

10.2 MO versus GNO: Positive queries

The table in Fig. 14 compares the estimation accuracy between
MO and GNO. Each entry in the table is a pair, where the first
number gives the average relative error, and the second num-
ber gives the average mean standard error. For example, the
first pair (−98%, 35.3) for GNO indicates that GNO underes-
timates by a wide margin, and for a “typical” positive query
of actual count being 36, GNO estimates the count to be 36 −
35.3 = 0.7. In contrast, MO gives a very impressive average
relative error of 4%, and for a “typical” positive query of ac-
tual count being 36, MO estimates the count to be 36 + 3.89
= 39.89.

As the actual counts of the positive queries drop, GNO
gradually gives better results. This is simply because GNO
always underestimates, but the underestimation becomes less
serious as the actual counts themselves become smaller. On the
other hand, no such trend can be said about MO. Sometimes
it underestimates, and other times it overestimates. But there
cannot be any doubt that MO is the winner.

In Sect. 9.1, we point out that there are many different ways
to make the recursive calls in Step 4.2 of GNO. For 2-D, there
are two ways. Besides the version of GNO as shown in Fig. 11,
we also implemented and experimented with the other version.
In general, there are some slight differences in the estimations.
However, in terms of accuracy, the other version remains as
poor.

10.3 MO versus GNO: Negative queries and runtime

The mean standard error for negative queries (averaged over
10 randomly picked ones) is 0.002 for GNO and 0.01 for MO.
While GNO is more accurate for negative queries than MO,
the accuracy offered by MO is more than acceptable.

By now it is clear that MO offers significantly more accu-
rate estimates than does GNO. The only remaining question is
whether MO takes significantly longer to compute than does
GNO. For our three sets of positive queries, MO often finds
12–16 maximal 2-D substrings, whereas GNO uses only 3–5
substrings. Consequently, while GNO takesO(10−6) seconds



16 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

Pos–Hi Pos–Med Pos–Lo Negative

Indep −23% −17% −27% 0.25
MO +4% +16% −11% 0.01

Fig. 15. Estimation accuracy: the independence assumption

MO Indep GNO

relative error 33% −57% −99%

Fig. 16. Estimation accuracy for large-area positive queries

to compute, MO usually takes O(10−4) seconds (on a 225
MHz machine). Nonetheless, we believe that the extra effort
is worthwhile.

10.4 MO versus two 1-D exact selectivities

The next question we explore experimentally is as follows.
Since we know that a 2-D count-suffix tree is much larger than
two 1-D count-suffix trees (i.e., like comparing the product
with the sum), there is always the question of: given the same
amount of memory, and in the presence of pruning, would
direct 2-D selectivity estimation give more accurate results
than using the product of the two 1-D selectivities? Because it
is difficult to adjust the settings to get two equal-sized PSTs,
we did the following:

– On the one hand, we used MO on the 2-D pruned tree we
have been using so far. This has 50 000 nodes for a total
size of 650 Kbytes.

– On the other hand, we used two un-pruned 1-D count-
suffix trees. In sum, the two trees have more than 160 000
nodes for a total size of 2.3 Mbytes.

Thus, for the latter setting, we used exact 1-D selectivities,
without any estimation involved. Essentially, this is an exercise
of comparing MO with applying the independence assumption
to k-D selectivity estimation. We gave the independence as-
sumption an unfair advantage over MO by allowing the former
three times as much space.

Nevertheless, Fig. 15 shows that MO compares favorably
for both positive and negative queries. For positive queries, the
figure only gives the average relative error; and for negative
queries, the figure gives the average mean standard error. For
easier comparison, the results of MO are repeated in the figure
from the earlier discussion.

Despite the fact that exact 1-D selectivities are used, and
that more space is given to the independence assumption ap-
proach, the approach gives results less accurate than those of
2-D MO. In particular, for negative queries, 2-D MO appears
to be far superior. We can attribute this to the unit-cube pruning
exemption rule.

The outcome of this comparison is actually somewhat sur-
prising. Initially we expected that the last name attribute of
AT&T employees would be quite independent of their office
phone numbers. (For instance, office phone numbers and office
fax numbers would be far more correlated.) However, using
MO still gives better results than relying on the independence
assumption.

10.5 Accuracy for large area positive queries

So far, all the positive queries used are “small area,” by which
we mean that the “area” (i.e., |σ1| · |σ2|) covered by q =
(σ1, σ2) is between 5 and 12. Two-dimensional strings corre-
sponding to a smaller area tend to always be kept in the pruned
tree. Figure 16 shows results for positive queries with “large
areas,” which are defined to be ≥ 18.

Compared with the small-area positive queries, MO be-
comes less accurate for large-area positive queries. One pos-
sible explanation is as follows: The larger the area covered by
a query, the greater the number of maximal substrings found.
Thus, in finding all w-way intersections, w tends to become a
larger number than before. Apparently, inaccuracies incurred
in the earlier counts are compounded to give a less-accurate
final estimate. Nonetheless, compared with the alternatives,
MO is still the best. Finding a way to improve accuracy with
large-area positive queries is an interesting open problem.

11 Conclusions and future work

Queries involving wildcard string matches in one or more di-
mensions are becoming more important with the growing im-
portance of LDAP directories, XML and other text-based in-
formation sources. Effective query optimization thus requires
good (one- and multi-dimensional) substring selectivity esti-
mates.

In this paper, we formally addressed the substring selectiv-
ity estimation problem, using PSTs. We presented several esti-
mation algorithms based on probabilistic and constraint satis-
faction approaches, compared them with previously known
techniques, both formally and experimentally, and demon-
strated the advantages of the MO family of estimation algo-
rithms.

Many open problems remain. Whereas our techniques are
substantially better than previously known techniques, we do
not know yet if they are “optimal.” Also, we have assumed the
pruned suffix tree as a given in most of the foregoing – Is it
possible to adjust the pruning technique to minimize estima-
tion error? Is this adjustment sensitive to the choice of esti-
mation algorithm? Finally, we have dealt with multiple string
matches in parallel, but not yet included possible sharing be-
tween strings to be matched. Such sharing is likely to be com-
mon as we consider path queries in the context of XML. For ex-
ample, univ.dept.name=CS AND univ.dept.bldg.name=
Gates. Can one extend our algorithms to such situations?
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