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Abstract

Finding approximate answers to multi-dimensional range queries over
real valued attributes has significant applications in data exploration and
database query optimization. In this paper we consider the following prob-
lem: given a table of d attributes whose domain is the real numbers, and a
query that specifies a range in each dimension, find a good approximation
of the number of records in the table that satisfy the query.

We present a new histogram technique that is designed to approxi-
mate the density of multi-dimensional datasets with real attributes. Our
technique finds buckets of variable size, and allows the buckets to over-
lap. Overlapping buckets allow more efficient approximation of the den-
sity. The size of the cells is based on the local density of the data. This
technique leads to a faster and more compact approximation of the data
distribution. We also show how to generalize kernel density estimators,
and how to apply them on the multi-dimensional query approximation
problem.

Finally, we compare the accuracy of the proposed techniques with
existing techniques using real and synthetic datasets.

1 Introduction

Computing approximate answers to multi-dimensional range queries is a prob-
lem that arises in query optimization, data mining and data warehousing. The
query optimizer requires accurate estimations of the sizes of intermediate query
results in the evaluation of different execution plans. Recent work also shows



that top-k queries can be mapped to multi-dimensional queries [5, 9], so selec-
tivity estimation techniques can be used to optimize top-k queries.

The problem of approximating multi-dimensional range queries is also rele-
vant for data mining applications. Answering range queries is one of the simpler
data exploration tasks. In this context, the user defines a specific region of the
dataset that is interested to explore, and asks queries to find the characteristics
of this region (like the number of points in the interior of the region, the average
value or the sum of the values of attributes in the region). Consider for exam-
ple a dataset that records readings of different environmental variables, such as
types of pollution, at various space locations. In exploring this dataset the user
may be interested in answering range queries similar to: find how many loca-
tions exist for which the values of given pollution variables are within a specified
range [3, 33]. The user may want to restrict the answers to a given geographical
range too. The size of such datasets makes exact answers slow in coming, and
only an efficient approximation algorithm can make this data exploration task
interactive.

In data warehousing, datasets can be very large. Answering aggregate
queries exactly can be computationally expensive. It is therefore very important
to find approximate answers to aggregate queries quickly in order to allow the
user to explore the data.

In this paper we address the problem of estimating the selectivity of multi-
dimensional range queries when the datasets have numerical attributes with real
values. The range queries we consider are intersections of ranges, each range
being defined on a single attribute. In the multi-dimensional attribute space,
the queries are then hyper-rectangles with faces parallel to the axes. Solving
such a range query exactly involves counting how many points fall in the interior
of the query. When the number of dimensions increases, recent results show [37]
that the query time is linear to the size of the dataset.

Real domains have two important consequences. First, the number of pos-
sible queries is infinite in the case of real domains, but finite when considering
a finite discrete domain. In the case of real domains, the number of possible
query answers is still finite, since the dataset is finite, but depends on the size of
the dataset. Second, with real domains it is unlikely that many attribute values
will appear more than once in the database.

1.1 Our Contribution

There are three main contributions from this work:

First, we present a new technique, GENHIST, to find multi-dimensional his-
tograms for datasets from real domains. The method has been designed to ap-
proximate the joint data distribution more efficiently than existing techniques.

Second, we show how to use multi-dimensional kernel density estimators
to solve the multi-dimensional range query selectivity problem. Our technique
generalizes in multiple dimensions the technique given in [4]. Kernel estimation



is a generalization of sampling. Like sampling, finding a kernel estimator is
efficient, and can be performed in one pass.

Third, we present an extensive comparison between the new techniques
(GENHIST, multi-dimensional kernel density estimators), and most of the exist-
ing techniques for estimating the selectivity of multi-dimensional range queries
for real attributes (wavelet transform [35], multi-dimensional histogram MHIST
[27], one-dimensional estimation techniques with the attribute independence
assumption, and sampling [13]). We include the attribute independence as-
sumption in our study as a baseline comparison.

The experimental results show that we can efficiently build selectivity esti-
mators for multi-dimensional datasets with real attributes. Although the ac-
curacy of all the techniques drops rapidly with the increase in dimensionality,
the estimators are still accurate in 5 dimensions. GENHIST appears to be the
most robust and accurate technique that we tested. Multi-dimensional kernel
estimators are also competitive in accuracy. An advantage of kernel estimators
is that they can be computed in one dataset pass (just like sampling). However,
they work better than sampling for the dimensionalities we tried. Therefore,
multi-dimensional kernel estimators are the obvious choice when the selectivity
estimator must be computed fast.

In the next section (Section 2) we formally define the problem. In section 3
we briefly describe the multi-dimensional histogram and wavelet decomposition
approaches. We present a new multi-dimensional histogram construction in
section 4. We describe how to use kernel estimators for multi-dimensional data
in section 5. Section 6 includes our experimental results, and we conclude in
section 7.

2 Problem Description

Let R be a relation with d attributes and n tuples. Let A = {A;, Ao, ..., Aq}
be the set of these attributes. The domain of each attribute A4; is scaled to the
real interval [0, 1]. Assuming an ordering of the attributes, each tuple is a point
in the d-dimensional space defined by the attributes. Let V; be the set of values
of A; that are present in R. Since the values are real, each could be distinct
and therefore |V;| can be as large as n.

The range queries we consider are of the form (a3 < R.A; < b1)A...N(ag <
R.A; < bg). All a;,b; are assumed to be in [0,1]. Such a query is a hyper-
rectangle with faces parallel to the axes. The selectivity of the query sel(R, Q)
is the number of tuples in the interior of the hyper-rectangle.

Since n can be very large, the problem of approximating the selectivity of a
given range query () arises naturally. The problem is how to preprocess R so
that accurate estimations can be derived from a smaller representation of R.

Let f(z1,...xq) be a d-dimensional, non-negative function that is defined in



[0,1]? and has the property that

/[' 1df(xla---xd)da?l...d:l}d:]__
0,1

We call f a probability density function. The value of f at a specific point
x = (z1,...24) of the d-dimensional space is the limit of the probability that a
tuple exists in area U around x over the volume of U, when U shrinks to x.

For a given f with these properties, to find the selectivity of query (a1 <
R.A; <bi)A...AN(ag < R.Ay < byg) we compute the integral of f in the interior
of the query Q:

8€l(f,Q) = / f(.’El,-...’I?d)d$1 d.’Ed
[a1,b1]><...><[ad,bd}

For a given R and f, f is a good estimator of R with respect to range queries
if for any range query @, the selectivity of () on R and the selectivity of () on
f multiplied by n are similar. To formalize this notion, we define the following
error metrics (also used by [35]).

The relative error of a query @ is generally defined as the ratio of the absolute
error over the selectivity of the query. Since in our case a query can be empty,
we follow [35] in defining the relative error as the ratio of the absolute error over
the maximum of the selectivity of ) and 1:

_|sel(R,Q) — n sel(f, Q)]
eret(@, B, f) = max(1, sel(R,Q))

To represent the error of a set of queries, we define the p-norm average
error. Given a query workload {Q1, ..., Qx} comprising of k queries, R, f, and
an error metric € that can be any of the above, the p-norm average error for this
workload is:

1 1
e lls= (¢ > QiR f)P)7.
1<i<k
We can also define different aggregate queries such as the sum on one at-
tribute:

sum(R,Q,1) = Z x,
(z1,...,2q)ERNQ
or the average
Z(zl,...,zd)eRnQ T
sel(R,Q)

Following [31], we can approximate such a query using the density estimator f:

ave(R, Q,i) =

sum(f,Q,x;) = /le flzy,...,zq)dzy ... dzg,.



3 Multi-dimensional Density Estimators

In this section we briefly examine existing techniques to estimate the selectiv-
ity of a query. We group them into histograms (one- and multi-dimensional),
discrete decomposition techniques, and statistical estimators.

3.1 One-dimensional Histograms.

In system R [30], density estimators for each attribute are combined under
the attribute independence assumption to produce a multi-dimensional density
estimator. To estimate the selectivity of a multi-dimensional query as a fraction
of the size of relation R, first the query is projected on each attribute and the
selectivity of each one-dimensional query is estimated, and then the selectivities
are multiplied. Typically one-dimensional histograms are used. This technique
is still widely employed.

3.2 Multi-dimensional Histograms.

Multi dimensional histograms were introduced in [24]. Multi dimensional his-
tograms attempt to partition the data space into b non-overlapping buckets. In
each bucket, the data distribution is assumed to be uniform [3, 17, 26, 33] or it
can be approximated using a different technique [19, 20].

[27] presents two new algorithms, PHASED and MHIST-2, the second being
an “adaptive” version of the first. In PHASED, the order in which the dimen-
sions are to be split is decided only once at the beginning and arbitrarily; in
MHIST-2, at each step, the most “critical” attribute is chosen for partition. For
a MaxDiff histogram, at each step, MHIST-2 finds the attribute with the largest
difference in source values (e.g., spread, frequency, or area) between adjacent
values, and places a bucket boundary between those values. Therefore, when
frequency is used as a source parameter, the resulting MaxDiff histogram ap-
proximates the minimization of the variance of values’ frequencies within each
bucket. Of the two techniques, MHIST-2 is shown to be more accurate and
performs better than previous approaches [27].

Another very interesting alternative to multi dimensional histograms is the
self-tuning histograms (STH) recently presented in [1]. However ST-histograms
are less accurate than MHIST-2 for high dimensions and skewed data [1].

3.3 Discrete Decomposition Techniques

The d dimensional data distribution of a dataset R with attributes A;,... Ay
can be represented by a d dimensional array D with [[,.,.,|Vi| slots (recall
that V; is the set of distinct values of attribute A;). The value in each slot is
the number of times this value combination appears in R.



One approach to find an approximation of the joint data distribution is to
approximate the array D directly. A number of decomposition techniques have
been proposed in the literature to find such an approximation. These include
the Singular Value Decomposition (SVD) [27], the wavelet transform [35], and
recently the Discrete Cosine Transform (DCT) [22].

These techniques compute the transformation and keep the b most important
coefficients, for a given input parameter b. The remaining coefficients are set to
zero. This results in an array D" with b non zero values (so we need O(b) space
to store it). To estimate a value of D we compute the inverse transformation
on D",

Of the three techniques we mentioned, SVD can only be used in two di-
mensions ([27]). Wavelets and, recently, DCT have been shown to give good
results in high dimensionalities [35, 23, 22, 34]. In our comparisons we include
the wavelet transform.

If the attributes have real values, the size of the array D can be n?, where
n is the size of R. Since each of these approaches involves operations on the
array D, we cannot use the raw data, and therefore we perform a & regular
partitioning of the data space first. Hence, we partition the domain of each
attribute into & non-overlapping intervals. The width of each interval is 1/¢, so
that we obtain an equi-width partitioning, resulting into ¢? d-dimensional non-
overlapping buckets that cover the entire data space. We denote the resulting
&4 size array with De.

We can compute the wavelet decomposition of either D¢ or the partial sum
array Di of D¢. In the partial sum the value of a array slot is replaced by the
sum of all preceding slots:

Dg[’il,...,id]z Z Dﬁ[jl;"';jd]‘

J1<41,50,Ja <1t

We ran experiments to determine which of the two methods should be used. The
results indicate that wavelets on the partial sum array provide a more accurate
approximation for our datasets. Also [35] suggests that partial sum method is
more accurate because this operation smoothes up the data distribution.

3.4 Statistical Estimators

The simplest statistical method for selectivity estimation is sampling. One finds
a random subset S of size b of the tuples in R. Given a query @, the selectivity
sel(S,Q) is computed. The value 7sel(S,Q) is used to estimate sel(R,Q).
Sampling is simple and efficient, and so it is widely used for estimating the
selectivity [30, 6, 10, 21, 25] or for on-line aggregation [14, 2]. Sampling can be
used to estimate the selectivity of a query regardless of the dimensionality of
the space, and can directly be applied to real domains.

More sophisticated kernel estimation statistical techniques [36, 7, 32] have
rarely been applied in database problems.



One similar statistical technique is clustering the dataset and using a Gaus-
sian function to model each cluster [31]. This technique can be quite accurate if
the clusters themselves can be accurately modeled by multi-dimensional Gaus-
sian functions. Even assuming that this is the case however, the technique
requires clustering the dataset, a task that is much less efficient than simple
sampling.

4 A New Multi-Dimensional Histogram Construc-
tion

In this section we present a new density estimation technique, GENHIST (for
GENeralized HISTograms). As in other histogram algorithms, we want to pro-
duce a density estimator for a given dataset R using rectangular buckets. The
important difference is that we allow the buckets to overlap.

Histogram techniques typically partition the space into buckets and assume
that the data distribution inside each bucket is uniform (if uniformity within
each bucket is not assumed, additional information about the data distribution
must be kept, at a higher storage cost). The problem with partitioning the
space into a fixed, small, number of buckets is that the volume of the space
increases exponentially when the dimensionality increases, or alternatively, the
number of buckets that are required to partition the space increases exponen-
tially with the dimensionality. Even a partitioning scheme that partitions each
attribute into 4 one-dimensional buckets, generates 4° = 1024 5-dimensional
buckets. Since the data points become sparser in higher dimensions it is very
likely that the actual data distribution deviates significantly from the uniform
distribution within each of these buckets. The problem becomes severe in higher
dimensions because the number of buckets a query can partially intersect in-
creases exponentially with the dimensionality. For example, consider a ¢ regular
partitioning of a d dimensional space. A query that is the intersection of two
(d— 1)-dimensional hyper-planes intersects £~! buckets. In the 4 regular parti-
tioning of a 5-dimensional space example above, such a query partially intersects
256 out of 1024 total buckets.

Clearly, to achieve acceptable accuracy a technique has to either ensure that
the data distribution within each bucket is close to uniform, or ensure that
each bucket contains a small number of points and therefore the error for each
bucket is small. Note that non-overlapping partitions into b buckets allow only
b different values for estimating the data density. To increase the number of
values, one has to increase the number of buckets. This has conflicting results.
The accuracy within each bucket becomes better, but the overall accuracy may
decrease because a query can now partially intersect more buckets.

Our approach to solve this problem is to allow overlapping buckets. The
intuition is the following. As in previous approaches, we assume that within



each bucket the data distribution can be approximated by the average data
density of the bucket. But when two buckets overlap, in their intersecting area
we assume that the data density is the sum of the two densities. If more than two
buckets overlap, the data density in their intersecting area will be approximated
by the sum of the data densities of the overlapping buckets. Clearly, for our
scheme to work, we have to be careful when we compute the average density
within each bucket. In particular, if a tuple lies in the intersection of many
buckets, we must count it in the computation of the average density of only one
of the buckets.

A simple two dimensional example shows that we can achieve more using
overlapping buckets (Fig. 1). In the example we partition [0,1] using four
buckets. If the buckets are non-overlapping, this results into a partitioning into
4 regions. We have to assume that the data distribution is uniform within each
region. If we use 4 overlapping buckets of the same size, we can partition [0, 1]
into a total of 9 regions. Although we again keep only 4 numbers, each of the
9 regions is the intersection of different buckets and its density is estimated
differently. Moreover, if we use 4 rectangular buckets of different sizes, we can
partition [0,1] into 13 regions, each with a different estimated density. The
number of intersections increases exponentially with the dimensionality.

1 1 1
a |p b
a b a |atb| b porey. T bid
| brctd
atht btc atd
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d c d c 1 arcrd
crd d cHd |
0 1 0 1 0 1

Figure 1: The same 2-dimensional space is partitioned first into 4 regions, using
4 non-overlapping buckets (average densities are a, b, ¢ and d), then into 9
regions, using 4 overlapping equal-sized buckets (densities are a, b, ¢, d, a+b,
b+c, c+d, d+a, a+b+c+d), and finally into 13 regions, using 4 overlapping
buckets of different sizes.

4.1 Heuristic for finding generalized multi-dimensional his-
tograms

Our heuristic approach partitions a d-dimensional space using b overlapping
buckets of different sizes. The main idea of the algorithm is to iteratively com-
pute an approximation of the density function using a grid. In each iteration,
the algorithm tries to find and approximate the dense areas. Our approach
for finding dense areas is to partition the space using a regular grid, and find
which buckets have the larger average density. Buckets with high count are in



areas where the density is large. However, instead of removing the entire dense
buckets, we only remove enough points from each bucket so that the density of
this bucket is approximately equal to its surrounding area. Tuples are removed
at random to ensure that the density decreases uniformly to the level of the
density of neighboring buckets.

The density of the entire dataset is now smoother, because the high bumps
have been removed. In the successive iteration we have to approximate the new
smoother data density in the entire data space.

Due to the overall smoothing effect, a coarser grid is used in each successive
iteration. The buckets with the largest densities are kept in the estimator,
along with their average density values set to the fraction of points removed
from each. Clearly, buckets produced from different iterations can overlap.
This ensures that the density of regions in the intersection of many buckets is
correctly estimated by adding up the average densities of each one.

Thus GENHIST can be classified as a generalization of the biased histograms
[28]. Biased histograms keep in singleton buckets the values with highest fre-
quencies, and partition the remaining values in a number of buckets. Like biased
histograms, GENHIST uses buckets to approximate the areas where the density
is highest.

The possible bucket overlapping effectively partitions the data space into
a much larger number of regions than simply the number of buckets. In this
respect the technique is similar to the wavelet transform. Just as the wavelet
transform provides more resolution in the areas where the variation in the fre-
quencies is highest, GENHIST provides more detail in the areas where more
points are concentrated (the areas of higher density).

We next describe the algorithm in detail. There are three input parameters:
the initial value of &, the number of buckets we keep at each iteration, and the
value of o that controls the rate by which ¢ decreases. We describe how to set
these parameters after the presentation of the algorithm. The output of the
algorithm is a set of buckets E along with their average densities. This set can
be used as a density estimator for R. Figure 2 gives the outline of the algorithm.

We use a = (1/2)}/? to ensure that at each iteration we use roughly half
as many buckets to partition the space as in the preceding operation (the new
buckets have approximately twice the volume of the previous ones). Unless we
remove more than half the tuples of R in each iteration, the average number of
tuples per bucket increases slightly as we decrease the number of buckets. This
is counterbalanced by the overall smoothing effect we achieve in each iteration.
S counts the number of points we remove during an iteration. If this number
is large (lELﬂS < at), we decrease ¢ faster, and we do not allow the average
bucket density to decrease between operations.

The number of buckets that we remove in each iteration is constant. Since &
is replaced by |a€] in each operation, we expect to perform approximately log 1 I3

iterations, and in each iteration we keep approximately [b/log1 £] buckets. The




Given a d-dimensional dataset R with n points and input parameters b, ¢, and «,
1. Set E to empty.

2. Compute a ¢ regular partitioning of [0, 1], and find the average density of each
bucket (i.e., number of points within each bucket divided by n).

3. Find the be buckets with highest density.
4. For each bucket ¢ of the bs buckets with highest density:

(a) Let d. be the density of c.
Compute the average density av. of ¢’s neighboring buckets.

(b) If the density of c is larger than the average density av. of its neighboring
buckets:

i. Remove from R a randomly chosen set of (d. — av.)n tuples that lie
in c.
ii. Add bucket ¢ into the set E and set its density to d. — av..
5. Set =Y

. (de —avce)n (S is the number of removed points).

cedb
Set o/ = min((5)7, a).
Set £ = |’ £].

6. If R is empty, return the set of buckets E.
else if R is non empty and £ > 1 return to Step 2.
else if ¢ < 1 add bucket [0,1]% with density £

= to E and output the set of
buckets E.

Figure 2: The GENHIST algorithm

value of b is provided by the user.

The choice of £ is important. If £ is set too large, the buckets in the first
iterations are practically empty. If £ is set too low, then we lose a lot of details in
the approximation of the density function. Since we have to provide b buckets,
we set & so that in the first iteration the percentage of the points that we remove
from R is at least 1/log1 ¢.

4.2 Running Time

The running time of the algorithm is linear in the size of R. One pass over the
data is performed each time the value of £ changes. Since £ is originally a small
constant, the number of passes over the data is also small. In our experiments
the number of passes was between 5 and 10. During each pass, to compute the
number of points that fall in each bucket, we use a hashing scheme: non-empty
buckets are kept in a hash table. For each point, we compute the slot it should
be in and probe the hash table. If the bucket is there, we increment its counter,
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otherwise we insert it into the hash table.

Implementing step 4.b.i of the algorithm can slow down the process, because
we have to designate that some points in the dataset are deleted, and to do so
we have to modify the dataset.

The following technique allows us to estimate accurately, at each step of the
algorithm, the number of remaining points that fall in each bucket, without
having to write at the disk at all.

Assume that we are scanning the dataset D at the i-th iteration, and, in
the previous i — 1 iterations we have already computed a set of buckets that
we will keep in the estimator. During the i-th scan of dataset D we want to
determine the number of points that fall in the interior of each bucket in the
grid, assuming that some points have been removed from the interior of each
bucket in the estimator. For each such bucket B; in the estimator we keep the
total number dataset points that lie in its interior (let that number be tot(B;)),
and the number of points we would remove from B; in step 4.b.ii (let that
number be r(B;).

During the scan of D, if a point p lies in a bucket B; that we have already
"Bi). we do not use this
Tot(B;) ’
point in the computation of densities of the grid buckets. The lemma follows
from the discussion above.

included in the estimator, then, with probability

Lemma 1 The expected density of a bucket in the i-th iteration that is computed
using this process is equal to the expected density of a bucket if we had removed
the same number of points at random in the previous iteration.

5 Multi-dimensional Kernel Density Estimators

For the problem of computing the query selectivity, all the proposed techniques
compute a density estimation function. Such function can be thought as an
approximation of the probability distribution function, of which the dataset at
hand is an instance. It follows that statistical techniques which approximate
a probability distribution, such as kernel estimators, are applicable to address
the query estimation problem. The problem of estimating an underlying data
distribution has been studied extensively in statistics [29] [36].

Kernel estimation is a generalized form of sampling. The basic step is to
produce a uniform random sample from the dataset. As in random sample,
each sample point has weight one. In kernel estimation however, each point
distributes its weight in the space around it.

A kernel function describes the form of the weight distribution. Generally,
a kernel function distributes most of the weight of the point in the area very
close the point, and tapers off smoothly to zero as the distance from the point
increases. If two kernel centers are close together, there may be a considerable
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region where the non-zero areas of the kernel functions overlap, and both dis-
tribute their weight in this area. Therefore, a given location in the data space
gets contributions from each kernel point that is close enough to this location
so that its respective kernel function has a non zero value. Summing up all the
kernel functions we obtain a density function for the dataset.

Let us consider the one dimensional case first. Assume that R contains
tuples with one attribute A whose domain is [0,1]. Let S be a random subset
of R (our sample). Also assume that there is a function k;(z) for each tuple ¢;
in S, with the property that f[o’” k(z)dz = 1. Then the function

Fa) = =3 ke — 1)

t; €S

is an approximation of the underlying probability distribution according to
which R was drawn.

To approximate the selectivity of a query @ of the form a < R.A < b, one
has to compute the integral of the probability function f in the interval [a, b]:

1
olf, = Tr) = — kia:—i.
(f.Q) (z) > /[a’b} (z —ti)

[aab} n tiGS

As defined, kernel estimation is a very general technique. [29] shows that any
non-parametric technique for estimating the probability distribution, including
histograms, can be recast as a kernel estimation technique for appropriately
chosen kernel functions.

In practice the functions k;(x) are all identical. The approximation can be
simplified to

Fle) = = 3 k1)

t; €S

To use kernels in d-dimensions we have to provide a d-dimensional kernel
function.

For a dataset R, let S be a set of tuples drawn from R at random. Assume
there exists a d dimensional function k(z1,...,xq), the kernel function, with
the property that

o k(z1,...,zq)dzy ...dxg = 1.
0,1

The approximation of the underlying probability distribution of R is

F@) = 2 Y K =tz ),

t; €S
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and the estimation of the selectivity of a d-dimensional range query @ is
sel(f,Q):/ f@r,. .. xq) =
[a,b]9NQ

12/ k(:l?l—til,...,wd—tid)diﬂl...dﬂ:d.
N s /abinQ

It has been shown that the shape of the kernel function does not affect the
approximation substantially [7]. What is important is the standard deviation
of the function, or, its bandwidth. Therefore, we choose a kernel function that
it is easy to integrate. The Epanechnikov kernel function has this property [7].
The d-dimensional Epanechnikov kernel function centered at 0 is

. 3 d 1 Ti o
b0 = (' gy 11 =G

if, for all 4, | 5| < 1, and 0 otherwise. (Figure 3).

15
1 1
1 o 1 1 -5 0 5 1
f(x) = 3/4 (1-x2) f(x) = 312 (L - ((x-5)/2)"2)

Figure 3: The one-dimensional Epanechnikov kernel, with B = 1, centered
around the origin, and, with B = 2, centered at 0.5.

The d parameters By, ..., By are the bandwidth of the kernel function along
each of the d dimensions. The magnitude of the bandwidth controls how far
from the sample point we distribute the weight of the point. As the bandwidth
becomes smaller, the non-zero diameter of the kernel becomes smaller.

There are two problems that we have to solve before we can use the multi-
dimensional kernel estimation method. The first is setting the bandwidth pa-
rameters and the second one is the boundary problem. Both problems have
been addressed before in statistics [36]. No efficient solution exists for finding
the optimal bandwidths. To get an initial estimate for the bandwidth we use
Scott’s rule [29] in d-dimensional space: B; = /5 s; |S|7dl?, where s; is the
standard deviation of the sample on the i-th attribute. This rule is derived
using the assumption that the data distribution is a multi-dimensional normal
and so it oversmoothes the function. To solve the second problem, we project
the parts of the kernel function that lie outside [0, 1]¢ back into the data space.
The complexity of this projection increases with the dimensionality, because
each d-dimensional corner of [0,1]? partitions R? into 2¢ quadrangles, and we
have to find the intersection of the kernel function with each quadrangle.
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5.1 Computing the selectivity

Since the d-dimensional Epanechnikov kernel function is the product of d one-
dimensional degree-2 polynomials, its integral within a rectangular region can
be computed in O(d) time. It follows that, for a sample of |S| tuples, sel(f,Q)
can be computed in O(d|S|) time.

5.2 Running Time

Computing a kernel density estimator with b kernels can be done in one dataset

pass, during which two functions are performed:

1. Take a random sample of size b (where b is an input parameter.

2.Compute an approximation of the standard deviation for each attribute.
Kernel estimation has the very important advantage that the estimator can

be computed very efficiently, in one dataset pass. Therefore, the cost of com-

puting a kernel estimator is comparable to the cost of finding a random sample.

In addition, for the dimensionalities we tried in our experimental study, it is

always better to use a multi-dimensional kernel estimator rather that random

sampling for selectivity estimation.

6 Experimental Results

In our experiments we want to compare the behavior of the different selectivity
estimation on synthetic and real-life datasets with real valued attributes. There
are three issues we want to address through the experiments.

First, one characteristic of the applications we have in mind (GIS, tempo-
ral and multimedia applications) is that attributes are also highly correlated.
For example the precipitation and humidity readings in climatic data are def-
initely correlated attributes.  Therefore, we created synthetic datasets that
experienced significant correlations among attributes. In addition, our real-life
datasets (Forest Cover and multimedia data) also have correlations among at-
tributes.

Second, we want to evaluate the accuracy of the various methods as the
dimensionality increases. We thus try datasets with 3, 4 and 5 dimensions.
Interestingly, at 5 dimensions, accuracy dropped significantly for all methods in
the correlated datasets we experimented with.

Third, we want to examine the behavior of the various methods when addi-
tional space for storing the estimator is available (in particular, how the accuracy
of the approximation is affected by the extra space).

6.1 Techniques.

We compare the new techniques (GENHIST and multi-dimensional kernels) with
the following existing techniques: random sampling, one-dimensional estimation
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with the attribute independence assumption, wavelet transform, and MHIST-
2. Random sampling is a simple and widely used technique. In particular, we
want to compare sampling against kernels, to measure the improvement we gain
using kernels. We use the Attribute Value Independence (AVI) assumption as a
baseline. We also consider the wavelet transform, since Vitter et al. [35] show
that wavelets perform well for discrete valued attributes. Finally, we consider
MHIST-2; as the current state of the art representative of multi-dimensional
histogram approaches for density estimation.

6.2 Synthetic datasets

We generate 3, 4, and 5 dimensional datasets with many clusters positioned in
random locations in space. This produces significant correlations between the
attributes (the attribute independence assumption does not work). In addition,
the distribution is non-uniform in each attribute.

We used 2 synthetic data generators:

Dataset Generator 1 creates clustered datasets (called Type 1). The number
of clusters is a parameter, set to 100 in our experiments. Each cluster is defined
as a hyper-rectangle, and the points in the interior of the cluster are uniformly
distributed. The clusters are randomly distributed. They can overlap and create
more complicated terrains. Datasets of Type 1 contain 10% to 20% uniformly
distributed error.

Dataset Generator 2 is similar to the previous one, but the clusters we gen-
erate are in the (d — 1) or (d — 2)-dimensional subspaces. This means that in
datasets of Type 2 d-way correlation is small. All datasets include 10® points.

6.3 Real datasets

We use the Forest Cover Dataset from the UCI KDD archive!. This was ob-
tained from the US Forest Service (USFS). It includes 590000 points, and each
point has 54 attributes, 10 of which are numerical. We use subsets of three, four
or five numerical attributes for our experiments (the projected datasets have the
same number of points with the original). In this dataset the distribution of the
attributes is non-uniform, and there are correlations between pairs of attributes.
We have also used multimedia datasets which have shown similar results and
therefore are not reported for brevity.

6.4 Query workloads

To evaluate the techniques we created workloads of 3 types of queries. For each
dataset we create a workload 1 of random queries with selectivity approximately
10%, and a workload 2, of random queries with selectivity approximately 1%.

Lavailable from kdd.ics.uci.edu/summary.data.type.html
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These workloads comprise 10* queries each. We also create a workload 3 of
20000 queries of the form (R.A; < a1) A ... A (R.Aq < aq) for a randomly
chosen point (ay,...,aq) € [0,1]%.

For each workload we compute the average absolute error || e.ss ||1 and the
average relative || e,,04 ||1 error.

6.5 Experimental comparison of the accuracy of different
methods

We implemented GENHIST algorithm as described in Section 4, using a main
memory hash table, to maintain statistics for every bucket. In our implemen-
tation we only consider buckets that contain more than 0.1% of the remaining
points. We vary the initial value of ¢ between 16 and 20. For a given value of
¢, we can use only two numbers to store a bucket. We use one number to store
the location of each bucket, and another one to keep the number of tuples in
the bucket.

To implement the wavelets method we followed the approach presented in
[35]. We used the Haar wavelets as our wavelet basis functions. In the first step
we perform a ¢ regular partitioning of the data space with ¢ equal to 32, and then
we compute the partial sum array Dg . We perform an one-dimensional wavelets
transform on the first dimension and we replace the original values with the
resulting coefficients. Then we do the same for the second dimension, treating
the modified array as the original array , and we continue up to d dimensions. We
perform thresholding after normalization, that is, first we weight the wavelets
coefficients, and then we keep the C' most important among them (with largest
absolute value). To store a coefficient we used two numbers, one to store the
bucket number and the other one to store its value. We run experiments both
using partial sums and using the original array. Our datasets are not sparse,
and the partial sum method performed better. Therefore, we report the partial
sum results only. We obtained the code for wavelets from [15].

We ran MHIST-2, using the binary code provided by the authors [27]. We
used MaxDiff as partition constraint, the attribute values as sort parameter,
and frequency as source parameter in our experiments. We also tested the Area
as source parameter, and obtained slightly worse results than for frequency.
Therefore, we report the results obtained for frequency.

For the kernels method we used the Epanechnikov product kernel. We select
a bandwidth using the Scott’s rule. The storage requirements of this method
is the same as sampling. That is, we store for each sample the value of each
attribute (thus for 5 dimensions we used 5¢ numbers to store ¢ samples). The
results we present in experiments for kernel and sampling are averages for five
different runs with randomly chosen sample sets.

Finally, we used the Attribute Value Independence (AVI) assumption as a
baseline. We did not use any particular method to keep statistics for each
attribute separately, but we computed the selectivity of every query in each
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dimension exactly. Thus the results presented here are the optimal results for

this method.

We performed an extensive study to evaluate the performance of different
methods for 3-, 4-, and 5-dimensional data. For 3-dimensional datasets there
were small differences in accuracy between the techniques. Interesting changes
started appearing at 4 and then 5 dimensions and are described below. For
brevity we present results only for two types of 4 and 5 dimensional datasets.
Results for other datasets can be found in [12]. In particular, we show results
for DS1 and Forest Cover dataset using query workloads 1, 2 and 3 on each

one.
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In Figures 4-11 we show the results.
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tive error for each method for different values of the available storage space
to store the estimator. In Figures 4 and 5 we present the results for the 4-
dimensional datasets. Figures 6 and 7 (10% queries) show the results for the
four 5-dimensional datasets for query workload 1. Similarly, Figures 8-9 show
the results for query workload 2 (1% queries) and Figures 10-11 show the results
for query workload 3.

The results for query workloads 1 and 2 can be used to evaluate the impact of
the query size on the accuracy of the selectivity estimators. Clearly the relative
error rate increases when the query size decreases. This is to be expected from
the definition of the relative error. Even a small difference in absolute terms
between the estimated and the actual query size can lead to a large relative
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5-dim.

error if the actual query size is small. Thus the performance of all methods
decreases significantly from workloads 1 to workloads 2.

It is clear that in 5 dimensions most methods do not offer very high accuracy,
for small queries in particular. GENHIST, the most accurate of the methods
we tested, offers an accuracy of 20% to 30% for queries of size 1%. In addition,
the curves for all methods are rather flat, so accuracy is unlikely to increase a
lot even if we allocate much more space.

However, all meaningful queries in high dimensions are likely to be small. For
example, in six dimensions a range query of the form (R.4; < 0.5)A.. . A(R.A¢ <
0.5) only covers 222% =~ 2% of the space. We consider 5 dimensions to be close
to the limit at which we can still expect an accurate estimation to the selectivity
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problem.

In another set of experiments we consider how the increase on the dimen-
sionality affects the accuracy of GENHIST. In Figures 12 and 13 we plot the
average relative error for GENHIST, for 3, 4 and 5 dimensions, as a function
of the space used for dataset DS1 and workloads 1 and 3. The results, not
surprisingly, show the significant degradation in the accuracy that accompanies
the increase in space dimensionality.

Finally, when comparing the running times of the technique, it is important
to note that an important advantage of random sampling and kernels require
only one pass through the data where other techniques are much slower. For
example GENHIST requires 5 to 10 passes.

7 Conclusions

In this paper we have addressed the problem of estimating the selectivity of a
multi-dimensional range query when the query attributes have real domains and
exhibit correlations. In this environment each value appears very infrequently.
Most of previous work considers only discrete-valued attributes with a small set
of different values, which implies that the frequency of each value is high.

The contributions of the paper are: (1) We propose a new generalized his-
togram technique GENHIST to solve the problem. GENHIST differs from ear-
lier partitioning techniques because it uses overlapping buckets of varying sizes.
(2) For the same problem we generalize a kernel estimator technique to many
dimensions. (3) We perform an experimental study to evaluate and compare
the GENHIST technique and the multi-dimensional kernel estimators over real
attributes, with a number of existing techniques: attribute independence as-
sumption, wavelet decomposition, MHIST-2 and sampling.

Conclusions we can draw from our experimental results include: (1) GEN-
HIST typically outperforms other techniques in the range of space dimension-
ality (3 to 5) that we run experiments on. GENHIST can be thought as a
multi-dimensional histogram that allows for overlapping partitioning. The ex-
periments show that overlapping partitioning shows an improvement over non-
overlapping partitioning. (2) Multi-dimensional kernel estimators offer good
accuracy, and very fast construction time. The kernel estimator approach out-
performed pure sampling in all our experiments. (3) For the real-valued and
correlated datasets we have used, the accuracy of all techniques decreases when
dimensionality increases. However some of the techniques we examine (and in
particular GENHIST and the multi-dimensional kernels) can be used effectively
in 5-dimensional spaces.

In future work we plan to perform experiments for higher dimensions. It
is not clear how GENHIST, multi-dimensional histograms, wavelets and other
decomposition techniques, and kernels will perform relative to each other or
relative to sampling as the dimensionality increases. However we do not expect
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any technique to perform effectively when the dimensionality of the space ap-
proaches 10. As evidence for this, [36] reports that it is difficult to achieve good
accuracy with kernel estimators when the dimensionality is larger than 5. We
conjecture that sampling will outperform any of these techniques for dimension-
ality of around 10, but that the error will be too large to make the technique
practical.

An interesting problem is to compare how the various query estimators are
maintained under different update loads. Updating in random sampling can
be achieved using techniques from [11]. Such techniques can be extended to
apply to kernel estimators, too. Most work for maintaining histograms has
concentrated on the one dimensional case [11], although recently [1] proposed
a technique for maintaining multi-dimensional histograms. Maintaining GEN-
HIST is similar to maintaining other multi-dimensional histograms: an insertion
or deletion will affect only one bucket. In particular for GENHIST if the up-
dated point is in the interior of more than one bucket we chose to update the
bucket that is the smallest in size.
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Figure 10: DS1 dataset, query workload 3, 5-dim.
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