
FeedbackBypass: A New Approach to Interactive
Similarity Query Processing

Ilaria Bartolini Paolo Ciaccia Florian Waas

DEIS – CSITE-CNR, University of Bologna
Bologna, Italy

{ibartolini,pciaccia}@deis.unibo.it

Microsoft Corp.
Redmond, USA

florianw@microsoft.com

Abstract

In recent years, several methods have been
proposed for implementing interactive similarity
queries on multimedia databases. Common to all
these methods is the idea to exploit user feedback
in order to progressively adjust the query parame-
ters and to eventually converge to an “optimal” pa-
rameter setting. However, all these methods also
share the drawback to “forget” user preferences
across multiple query sessions, thus requiring the
feedback loop to be restarted for every new query,
i.e. using default parameter values. Not only is
this proceeding frustrating from the user’s point
of view but it also constitutes a significant waste
of system resources.

In this paper we presentFeedbackBypass, a new
approach to interactive similarity query process-
ing. It complements the role of relevance feed-
back engines by storing and maintaining the query
parameters determined with feedback loops over
time, using a wavelet-based data structure (the
Simplex Tree). For each query, a favorable set of
query parameters can be determined and used to
either “bypass” the feedback loop completely for
already-seen queries, or to start the search process
from a near-optimal configuration.

FeedbackBypass can be combined well with
all state-of-the-art relevance feedback techniques
working in high-dimensional vector spaces. Its
storage requirements scale linearly with the di-
mensionality of the query space, thus making even
sophisticated query spaces amenable. Experimen-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

tal results demonstrate both the effectiveness and
efficiency of our technique.

1 Introduction
Similarity and distance-based queries are a powerful way
to retrieve interesting information from large multimedia
repositories [Fal96]. However, the very nature of multi-
media objects often complicates the user’s task of choos-
ing an appropriate query and a suitable distance criterion
to retrieve from the database the objects which best match
his/her needs [SK97]. This can be due both to limitation
of the query interface and to the objective difficulty, from
the user’s point of view, to properly understand how the
retrieval process works in high-dimensional spaces, which
typically are used to represent the relevantfeaturesof the
multimedia objects. For instance, the user of an image re-
trieval system will hardly be able to predict the effects that
the modification of a single parameter of the distance func-
tion used to compare the individual objects can have on the
result of a query.

To obviate this unpleasant situation, several multimedia
systems now incorporate somefeedbackmechanisms so as
to allow users to provide an evaluation of therelevance
of the result objects. By analyzing such relevance judg-
ments, the system can then generate a new, refined query,
which will likely improve the quality of the result, as ex-
perimental evidence confirms [RHOM98]. This interactive
retrieval process, which can be iterated several times until
the user is satisfied with the results, gives rise to afeed-
back loopduring which the default parameters used by the
query engine are gradually adjusted to fit the user’s needs
(see e.g. [ORC+97]).

Although relevance feedback has been recognized as a
highly effective tool, its applicability suffers from two ma-
jor problems:

1. Depending on the query, numerous iterations might
occur before an acceptable result is found, thus con-
vergence can be slow.

2. Once the feedback loop of a query is terminated,
no information about this particular query is retained

mailto:ibartolini@deis.unibo.it
mailto:pciaccia@deis.unibo.it
mailto:florianw@microsoft.com
http://www.deis.unibo.it
mailto:ibartolini@deis.unibo.it
mailto:pciaccia@deis.unibo.it
http://www.microsoft.com/sql
mailto:florianw@microsoft.com

Query image

Default results

FeedbackBypass results

Figure 1: FeedbackBypass in action. The middle line
shows the 5 best matches computed using default parame-
ters for the query image on top. The bottom line shows the
results obtained for the same query when the parameters
suggested byFeedbackBypass are used

for re-use in further processing. Rather, for further
queries, the feedback process is started anew with de-
fault values. Even in the case where a query object
has already been used in an earlier feedback loop, all
iterations have to be repeated.

Note that both problems concern theefficiencyof the feed-
back process, whereas theeffectivenessof retrieval will de-
pend on the specific feedback mechanisms used by the sys-
tem, on the similarity model, and on the features used to
represent the objects.

This paper presentsFeedbackBypass, a new approach
to interactive similarity query processing, which com-
plements the role of current relevance feedback engines.
FeedbackBypass is based on the idea that by storing and
maintaining the information on query parameters gathered
from past feedback loops it is possible to either “bypass”
the feedback loop completely for already-seen queries or
to “predict” near-optimal parameters for new queries. In
both cases, as an overall effect, the number of feedback and
database search iterations is greatly reduced, thus resulting
in a significant speed-up of the interactive search process.

Figure1 shows a query image together with the 5 best
results obtained from searching with default parameters a
data set of about 10,000 color images. No result image
belongs to the same semantic category “Mammal” of the
query image (see Section5 for a description of image cat-
egories). The bottom line of the figure shows the 5 best
matches obtained for the same query whenFeedbackBy-
pass is applied and the system uses the predicted query
parameters. WithFeedbackBypass, we obtain 4 relevant
images (i.e. 4 mammals) among the top 5 query results.

The implementation ofFeedbackBypass utilizes a
novel wavelet-based data structure, calledSimplex Tree,

whose storage overhead is linear in the dimensionality
of the query space, thus makes even sophisticated query
spaces amenable. Its resource requirements areindepen-
dentof the number of processed queries but depend only
on the complexity of the query parameter function, which
guarantees proper scalability and performance levels. Fur-
thermore, storage requirements can be easily traded-off for
the accuracy of the prediction. Experimental results pre-
sented below demonstrate both the effectiveness and effi-
ciency of our technique.

The rest of the paper is organized as follows. Section2
provides the background on relevance feedback mecha-
nisms and on related work. In Section3 we describe our ap-
proach and state the basic requirements for an effective im-
plementation ofFeedbackBypass. Section4 provides a
thorough description of the Simplex Tree and of related im-
plementation issues. Experimental results on a real-world
image data set are presented in Section5. Section6 con-
cludes the paper.

2 Background and Related Work
We frame our discussion within the context ofvector space
similarity models, for which a multimedia object is repre-
sented by aD-dimensional vector (i.e. a point in<D) of
features, p = (p1, . . . , pD). The similarity of two points
p andq is measured by means of somedistance function
on such space. Relevant examples of distance functions in-
cludeLp norms (L1 is the Manhattan distance,L2 is the
Euclidean distance) and their weighted versions. For in-
stance, the weighted Euclidean distance is

L2W (p,q; W) =

(
D∑
i=1

wi (pi − qi)2

)1/2

(1)

Also quadratic distances can be used to capture correla-
tions between different coordinates of the feature vectors.
The well-known Mahalanobis distance is defined as

d2
Mahalanobis(p,q; W) =

D∑
i=1

D∑
j=1

wi,j(pi − qi)(pj − qj)

and leads to arbitrarily-oriented ellipsoidal iso-distant sur-
faces in feature space [SK97]. Note that this distance is
indeed a “rotated” weighted Euclidean norm.

The typical interaction with a multimedia retrieval sys-
tem that implements relevance feedback mechanisms can
be summarized as follows [Sal88]:

Query formulation. The user submits an initial query
Q = (q, k), whereq is called thequery pointand
k is a limit on the number of results to be returned by
the system.

Query processing.The query pointq is compared with
the database objects by using a (default) distance func-
tion d. Then, thek objects which are closest toq ac-
cording tod, Result(Q, d) = {p1, . . . ,pk}, are re-
turned to the user.

(a) (b)

Figure 2: The “query point movement” (a) and the “re-
weighting” (b) feedback strategies

Feedback loop.The user evaluates the relevance of the
objects inResult(Q, d) by assigning to each of them
a relevance score, Score(pj). On the basis of such
scores a new query,Q′ = (q′, k), and a new distance
function,d′, are computed and then used to determine
the second round of results.

Termination. After a certain number of iterations, the
loop ends the final result beingResult(Qopt, dopt),
whereQopt = (qopt, k) is the “optimal” query the
user had in mind, anddopt the “optimal” distance
function to retrieve relevant objects forQopt.

Every interactive retrieval system provides a specific im-
plementation for each of the above steps. For instance,
the choice of the initial query point depends on the sys-
tem interface and, also considering the nature of the mul-
timedia objects, can include aquery-by-sketchfacility, the
choice from a random sample of objects, the upload of the
query point from a user’s file, etc. A number of options
is also available for implementing the actual query pro-
cessing step, which typically exploits index structures for
high-dimensional data, such as X-trees [BKK96] and M-
trees [CPZ97].

More relevant to the present discussion are the issues
concerning the feedback loop. The use ofbinary relevance
scores is the simplest one, even from the user’s point of
view. In this case the user can mark a result object either
as “good” or “bad”, and implicitly assigns a neutral (“no-
opinion”) score to non-marked objects. Graded, and even
continuous, score levels have also been used to allow for a
finer tuning of user’s preferences [RHOM98].

The two basic strategies for implementing the feedback
loop concern the computation of a new query point (query
point movement) and the change of the distance function,
which can be accomplished by modifying the weights (im-
portance) of the feature components (re-weighting).

Query point movement. The idea behind this strat-
egy is to try to move the query point towards the “good”
matches (as evaluated by the user), as well as to move it
far away from the “bad” result points (see Figure2 (a)). A
well-known implementation of this idea dates back to Roc-
chio’s formula [Sal88], which has been successfully de-
ployed in the context of document retrieval. More recently,
query point movement has been applied by several image
retrieval systems, such as the MARS system [RHOM98].
Ishikawa et al. [ISF98] have proved that, when usingpos-

itive feedback (scores) and the Mahalanobis distance, the
“optimal” query point (based on the available set of results)
is a weighted average of the good results, i.e.:

q′ =

∑
j Score(pj)× pj∑

j Score(pj)
(2)

Re-weighting.The idea of re-weighting stems from the ob-
servation that user feedback can help identify feature com-
ponents that are more important than others in determining
whether a result point is “good” or not. Consequently, such
components should be given a higher relevance. For sim-
plicity of exposition, let us consider a retrieval model based
on weighted Euclidean (see Equation1) and also refer to
Figure 2 (b). In order to assess the relative importance
of the i-th feature vector component, the distribution of
the “good”pj,i values, i.e. the values of the good matches
along thei-th coordinate, is analyzed. In an earlier version
of the MARS system [RHOM98], it was proposed to assign
to thei-th coordinate a weightwi computed as the inverse
of the standard deviation of thepj,i values, i.e.wi = 1/σi.
Later on, it was proved in [ISF98] that the “optimal” choice
of weights is to havewi ∝ 1/σ2

i . Similar results have been
proven for quadratic distance functions [ISF98], as well as
for the case where the number of good matches is less than
the dimensionality of the feature space [RH00].

In a recent paper [RH00] Rui and Huang have extended
the re-weighting strategy to a “hierarchical model” of sim-
ilarity, where above strategy is first separately applied to
each individual feature, and then each feature (rather than
each feature component) is assigned a weight which takes
the overall distance into account that good matches have
from the query point by considering only that very fea-
ture. Note that forF features this amounts to define the
distance between objectsp andq as a weighted sum of fea-
ture distances, each of which the authors assume to have a
quadratic form [RH00].

3 TheFeedbackBypass Approach

The basic idea of our approach is to “bypass”, or at least to
reduce, the loop iterations to be performed by an interactive
similarity retrieval system by trying to “guess” what the
user is actually looking for, based only on the initial query
he/she submits to the system.

If we abstract from the specific differences existing be-
tween the systems and concentrate on what all such systems
share, two important observations can be made:

1. All systems assume that the user has in mind an “op-
timal” query point as well as an “optimal” distance
function for that query.

2. Each time a new distance function is computed, this
is taken from aparameterized classof functions (e.g.
the class of weighted Euclidean distances), by appro-
priately setting the values of the class parameters.

Figure 3: The optimal query mapping for 3 sample query
points, assuming Mahalanobis distance

This general state of things can be synthetically represented
as a mapping:

q 7→ (qopt, dopt) ≡ (∆opt,Wopt) (3)

which assigns to the initial query pointq an optimal query
point, qopt, and an optimal distance function,dopt. The
equivalence just highlights thatdopt is the distance func-
tion obtained when the parameters are set toWopt, and
that qopt can be obtained from the initial query point by
adding to it the “optimal offset”∆opt = qopt − q. In the
following we refer to the pair(∆opt,Wopt) as theoptimal
query parameters, OQPs, of queryq. Figure3 provides an
intuitive graphical representation of the above mapping for
three 2-dimensional query points.

FeedbackBypass is based on the observation that, as
more and more query points are added, an “optimal”query
mapping,Mopt , from query points to query points and dis-
tance functions, will take shape, and that “learning” such
mapping can indeed lead to “bypass” the feedback loop.

Let Q ⊆ <D be the domain of query points and let
W ⊆ <P be the set of possible parameter choices, where
eachW ∈ W corresponds to a distance function in the
considered class andP is the number of independent pa-
rameters that characterize a distance function. Then, the
problem faced byFeedbackBypass can be precisely for-
mulated as follows:

Problem 1 Given theQ query domain and a class of dis-
tance functions with set of parametersW , “learn” the
query mappingMopt : Q → <D × W which associates
to each query pointq ∈ Q the optimal query parameters
(∆opt,Wopt) = Mopt(q).

In other terms, the problem can be described as that of
learning the optimal way to map (query) points of<D into
points of<D+P . It should be remarked that when query
points are normalized, the dimensionality of both the input
(feature) and the output space ofMopt can be reduced by
1.

Of course, statistical techniques fordimensionality re-
duction could be applied to lower the dimensionality of
both the input and the output space. We do not consider
dimensionality reduction in this paper, and leave it as an
interesting follow-up of our research.

DB

Result

Result

Feedback
Module

Distance Function
and

New Query

User Query

Predicted Query and Distance Function

Optimal Query and Distance Function

User

Feedback
Bypass

Relevance Scores

Query/

Figure 4: An interactive retrieval system enriched with the
FeedbackBypass module

Example 1 Assume that objects are color images, which
are represented by using a 32-bins color histogram, and that
similarity is measured by the weighted Euclidean distance.
Since the sum of the color bins is constant (it equals the
number of pixels in the image) and one of the weights of
the distance function can be set to a constant value, say 1,
without altering at all the retrieval process, it turns out that
Mopt is a function from<31 to<31+31. 2

Figure4 shows the basic architecture of a generic inter-
active retrieval system enriched withFeedbackBypass,
with the flow of interactions being summarized in Fig-
ure 5 using a C++ like notation. Upon receiving the ini-
tial user queryq, the system forwardsq to FeedbackBy-
pass by invoking itsMopt method, which returns the pre-
dicted OQPs(∆opt,Wopt) for q. Then, the usual query
processing-user evaluation-feedback computation loop can
take place. When the loop ends, the new OQPs are passed
to FeedbackBypass by invoking itsInsert method, to
be stored as new optimal parameters forq. Clearly, this in-
sertion step can be skipped at all if no feedback information
has been provided by the user.

//data structure for optimal query parameters (OQPs)
class Oqp {

Vector Delta(D);
Vector W(P);

}
// get the user query

Vector &q = getUserQuery();
// obtain OQPs from FeedbackBypass

Oqp &v = FeedbackBypass::Mopt(q);
Oqp &vPred = v.copy();

// main feedback loop
while(feedbackLoop) {

// compute results for q using OQPs
Vector results[] = queryEvaluate(q, v);

// get relevance scores for results
Score scores[] = getUserFeedback(results)

// compute new OQPs given the scores
newValues(q, v, scores);

}
// in case feedback information has been provided

if(vPred != v)
// insert new OQPs for query q

FeedbackBypass::Insert(q, v);

Figure 5: Basic interactions between an interactive retrieval
system andFeedbackBypass

3.1 Requirements

The method we seek for learningMopt from sample
queries has to satisfy a set of somewhat contrasting require-
ments, which are summarized as follows:

Limited Storage Overhead. Since the number of possi-
ble queries to be posed to the system is huge and will
grow over time, it is not conceivable to just do some
“query book-keeping”, i.e. storing the values ofMopt

for all already-seen queries. The method we seek
should have a complexityindependentof the num-
ber of queries and only a low (e.g. linear) complexity
in the dimensionalities of the feature and the output
spaces.

Prediction. The method should also be able to provide
reasonable “guesses” for new queries. It is also re-
quested that the quality of this approximation has to
increase over time, as more and more queries and user-
feedback information are processed.

Dynamicity. Since we consider an interactive retrieval
scenario, it is absolutely necessary that the method is
able to efficiently handle updates, i.e. incorporate ad-
ditional data without rebuilding the approximation of
Mopt from scratch.

We have been able to achieve a satisfactory trade-off,
thus meeting all above requirements, by implementing
FeedbackBypass using a wavelet-based data structure,
which we call theSimplex Tree.

4 The Simplex Tree

The Simplex Tree forms the core of our approach. It or-
ganizes the query domainQ as a set of non-overlapping
multi-dimensional intervals on which the approximation
for Mopt can be defined.

Recall that we want to approximate the optimal query
mappingMopt : Q → <D × W, whereQ ⊆ <D and
<D ×W ⊆ <N , withN = D + P (see Problem1), given
a small but evolving sample of data points, namely queries
for which feedback data is available.

Of the various techniques that mathematical approxima-
tion theory provides, we have chosen wavelets to approxi-
mate the query mapping. Unlike other transforms, such as
the Fourier transform, wavelets model a target function as
composition of functions with a limited support. Therefore,
modifying the wavelet at a later point in time entails only
local recomputations but no re-organization of the repre-
sentation as a whole.1 In the following, we make use of
this locality and develop the approximation of the optimal
query mapping step by step by local recomputation around
newly added feedback points. We will use the well-known
Haar-Wavelet in the following.

1For a comprehensive overview of wavelets and multi-resolution anal-
ysis in particular, see e.g. [Kai94, Swe96]

In order to define wavelets inQ ⊆ <D we first need
to organize this high-dimensional vector space as a collec-
tion of intervalsS = {Sh} such that their union covers
the whole query domain, that is,Q ⊆

⋃
h Sh. The de-

limiters of the intervals managed by the Simplex Tree are
taken from the sets of points for which user feedback has
been provided. Let us denote withs one of such delimiters,
i.e. a query pointstoredin the Simplex Tree. For eachs we
maintain in the Simplex Tree also itsN -dimensional vec-
tor of OQPs,Mopt(s). GivenS and a new query pointq,
the wavelet-based prediction of the OQPs forq is then ob-
tained, as explained in more detail below, from the OQPs
of the stored points that delimit the (unique) interval that
containsq.

4.1 Multi-dimensional Triangulation

Given an initial set of query points for which feedback data
is available, we define suitable intervals on which we can
base our wavelet bytriangulating the set. In general, a tri-
angulation is a decomposition into simplices, i.e. intervals
spanned byD + 1 points—that is, triangles in<2, tetrahe-
drons in<3, and so forth. Triangulations are one of the fun-
damental problems in computational geometry and very ef-
ficient techniques to find “good” triangulations are known
for low dimensional spaces [Meh84, PS85]. Computing
triangulations like the Delaunay triangulation, which min-
imizes the lengths of edges of the simplices, is computa-
tional expensive and too time consuming for dimensions
higher than 10.

Instead, to keep the computational effort low, we use an
incrementaltriangulation technique as we go forward and
split for every new point its enclosing simplex. More for-
mally, letS = {s1, . . . , sD+1} be the set of points spanning
the simplex that encloses the new to-be-stored query point
q. Then,

Sh = {sj |j 6= h} ∪ {q}, 1 ≤ h ≤ D + 1

is a decomposition ofS into D + 1 simplices.2 Figure6
shows examples for splits in two and three dimensions, re-
spectively.

D = 2 D = 3

Figure 6: Splitting of 2- and 3-dimensional simplices

Note that splitting a simplex can be done inO(1) time
for a fixed dimension, and that the the number of simplices
scales linearly with the number of stored query points. Ob-
viously, we can only split a simplex if the new point is in-
side the simplex itself. To this end we need to define an

2For simplicity, we use the same notation to denote both a simplex, i.e.
an interval of<D , and the set of itsD + 1 vertices.

= vector of optimal query parameters (OQPs)

Figure 7: The structure of the Simplex Tree (D = 2)

initial simplex, denotedS0, such thatQ ⊆ S0, i.e.S0 cov-
ers the entire query domain.

The specific details on howS0 can be defined depend
on the data set at hand. For instance, ifQ = [0, 1]D, set-
ting S0 = {(0, 0, . . . , 0), (D, 0, . . . , 0), . . . , (0, 0, . . . , D)}
guarantees thatQ ⊆ S0, as it can be easily verified.
On the other hand, when the data set consist of normal-
ized histograms (i.e. the sum over the bins equals 1), by
dropping the value of one bin (e.g. the last one) leads to
a query domainQ which already is a simplex, namely
S0 = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

4.2 The Data Structure

The Simplex Tree is an index structure that can be charac-
terized as follows:

• each node is a simplexS defined byD + 1 points;

• every inner nodeS has pointers toD + 1 children
Sh, which partitionS and are pairwise disjoint, i.e.
S =

⋃
h Sh andSh1 ∩ Sh2 = ∅ ∀h1, h2;

• every leaf node stores for each of itsD + 1 pointssj
the corresponding OQPs,Mopt(sj);

• S0, the root, covers the entire query domainQ.

Figure 7 shows the Simplex Tree corresponding to a 2-
dimensional triangulation.

The operations necessary to maintain the index are
sketched in Figure8. Below, the individual parts are dis-
cussed in more detail.

Lookups. Given a new query point, we need to deter-
mine in which simplex the new query point is contained.
Starting with the root node we traverse the tree descending
at each inner node into the child node which contains the
new point.3

We do not re-organize the tree in case it gets unbalanced
due to the distribution of the data. Hence, the depth of the

3Due to lack of space, we omit the discussion of special cases where
the query point is not properly contained in one of the child simplices but
it is an element of the delimiting hyperplanes of several simplices.

// initially called with the root simplex
Simplex &SimplexTree::Lookup(Simplex &S, Vector &q) {

// when in leaf node, we know we found it
if (S.IsLeaf()) return S;

// otherwise check each child
for (int h = 0; h < D + 1; h++)

if (S.child[h]->Contains(q))
// descend into h-th child

return Lookup(S.Child[h],q);
}
Oqp &SimplexTree::Predict(Point &q) {

// get the enclosing simplex
Simplex &S = Lookup(q);

// interpolate in point q using the points of S
return Wavelet::Interpolate(S,q);

}
void SimplexTree::Insert(Point &q, Oqp &v) {

// get enclosing simplex
Simplex &S = Lookup(q);

// get predicted values in this point
Oqp &vPredict = Predict(q);

// if predicted and actual OQPs differ
// by more than ’epsilon’ insert the point

if (v.Difference(vPredict) > epsilon)
for (int h = 0; h < D + 1; h++){

// get the h-th corner of the simplex
Vector &pCorner = GetCorner(h);

// create a simplex using the points of this
// simplex but exclude pCorner and add q instead

Simplex &SSon = S.CreateSimplex(pCorner, q);
// add the new simplex as child

S.AddChild(SSon);}
}

Figure 8: Basic functionality of the Simplex Tree

tree isO(n) in the worst case,n being the number of stored
query points, andO(logD+1 n) in the best case. We will
assess the average behaviour experimentally in Section5.

Interpolation. To interpolate off the Simplex Tree, i.e.
define a wavelet representation of the mapping, first ob-
serve that for each points in the Simplex Tree the value of
Mopt(s) = (m1(s),m2(s), . . . ,mN (s)) is stored. Thus,
given a query pointq for which an approximation of
Mopt(q) is sought, we can solve the problems of approxi-
mating each of theN mi(q) values independently of each
other.

Using an unbalanced Haar-Wavelet for approximating
vi = mi(q) means to perform a linear interpolation inq
given the valuesvisj = mi(sj) of theD+1 points defining
the simplexS = {s1, . . . , sD+1} enclosingq. SinceS is a
D-dimensional linear subspace, solving

∣∣∣∣∣∣∣
q1 − s1,1 . . . qD − s1,D v̂i − vis1

s2,1 − s1,1 . . . s2,D − s1,D vi
s2 − vis1

.
sD+1,1 − s1,1 . . . sD+1,D − s1,D vi

sD+1 − vis1

∣∣∣∣∣∣∣ = 0

for v̂i yields the desired approximation ofvi = mi(q).
Note that, for a given data set, the complexity of interpola-
tion isO(1), since neitherD norP change.

Inserts. As opposed to typical spatial index structures
the Simplex Tree is not an index whose aim is to store
points to be searched. Instead, it stores points to organize
the feature space into simplices. As a consequence, not ev-
ery point needs to be inserted, since it is sufficient to insert
only those points that can improve the quality of the ap-
proximation in asignificantway. These are the points for

which
max
i
|mi(q)− v̂i| > ε

holds, for a given thresholdε. In other words, if all the pre-
dictionsv̂i’s are already almost equal to the corresponding
mi(q)’s there is no need to storeq in the Simplex Tree. The
particular choice of the thresholdε determines the quality
of the approximation: for low thresholds the approxima-
tion is more accurate whereas high thresholds cause more
slack. More important, however, is the character of the op-
timal query mapping. IfMopt is composed of low frequen-
cies, only very few query points are stored, whereas for a
query mapping composed of high frequencies, more query
points are needed to reach approximations of suitable qual-
ity. As a limit case, when the OQPs always coincide with
the default ones, no point at all is inserted in the Simplex
Tree. Consequently, the resource requirements of the Sim-
plex Treedo notdepend on the number of queries for which
feedback is provided but on the intrinsic complexity of the
optimal query mapping and on the insert threshold.

5 Experimental Evaluation

We have implementedFeedbackBypass in C++ under
Linux, and tested its performance in order to answer the
following basic questions:

• Which are the actual prediction capabilities ofFeed-
backBypass? How much feedback information does
FeedbackBypass need to perform reasonably well?
How long does it take to learn the optimal query map-
ping?

• How much do the predictions ofFeedbackBypass
depend on the specific data set? Alternatively, is
FeedbackBypass robust to changes in the type of
queries to be learned?

• How much do we gain, in terms of efficiency, by
“skipping”, or shortening, the feedback loop?

For evaluation purposes we used the IMSI data set consist-
ing of about 10,000 color images.4 Each image is already
annotated with acategory(such as “birds”, “monuments”,
etc.). From each image, represented in the HSV color
space, we extracted a 32-bins color histogram, by dividing
the hue channel H into 8 ranges and the saturation channel
S into 4 ranges.5 To compare histograms we use the class
of weighted Euclidean distances, with the (unweighted)
Euclidean distance being the default function. We imple-
mented both query point movement and re-weighting feed-
back strategies, as described in Section2, which means that
Mopt is a function from<31 to<62 (see also Example1).

The setup for the experiments was as follows. From
the whole data set we selected 2,491 images belonging
to 7 categories: Bird (318 images), Fish (129), Mammal

4IMSI MasterPhotos 50,000:http://www.imsisoft.com .
5See alsohttp://kdd.ics.uci.edu/databases/

CorelFeatures/CorelFeatures.data.html .

Figure 9: Sample images from the “Fish” category

(834), Blossom (189), TreeLeaf (575), Bridge (148), and
Monument (298). This subset of images was then used to
randomly sample queries, whereas images in other classes
were just used to add further noise to the retrieval process.
For each query image, any image in the same category was
considered a “good” match whereas all other images were
considered “bad” matches,regardless of their color simi-
larity. This leads to hard conceptual queries, which how-
ever well represent what users might want to ask to an im-
age retrieval system. Since within each category images
largely differ as to color content, any query based on a color
distance cannot be expected to find more than a fraction of
relevant images to be close in color space. For instance, all
the 4 images shown in Figure9 belong to the “Fish” cat-
egory: only the 2nd image (“shark”) has a dominant blue
color, whereas others have strong components of yellow,
gray, and orange, respectively. A similar evaluation proce-
dure was also adopted in [RH00].

To measure the effectiveness ofFeedbackBypass we
consider classicalprecisionandrecall metrics [Sal88], av-
eraged over the set of processed queries. For a given num-
berk of retrieved objects, precision (Pr) is the number of
retrieved relevant objects overk, and recall (Re) is the num-
ber of retrieved relevant objects over the total number of
relevant objects (in our case, the number of images in the
category of the query).

In our experiments we used a typical value ofk = 50,
and in any casek never exceeded80. This is because we
consider that a real user will hardly provide feedback in-
formation for larger result sets. As a consequence, since
the number of retrieved good matches is limited above by
k (and in practice stays well below thek limit), the use of
distance functions more complex than weighted Euclidean,
such as Mahalanobis, was not considered. Indeed, as ob-
served in [RH00], improvement due to feedback informa-
tion is possible only when the number of good matches is
not much less than the number of parameters of the dis-
tance function to be learned, which is 31 in our case but
would be31× 32/2 = 496 for the Mahalanobis distance.

The results we show refer to three different scenarios:

• Default: this is the strategy currently used byall inter-
active retrieval systems, which starts the search by us-
ing the user query point and the default distance func-
tion (i.e. the Euclidean one in our case);

• FeedbackBypass, for which precision and recallal-
waysrefer to “new” (i.e. never seen before) queries
for which the optimal query point and the optimal dis-
tance function, as predicted by theFeedbackBypass
module, are used in place of the user query and the

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

P
re

ci
si

on

no. of queries

AlreadySeen
FeedbackBypass

Default

(a)

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

P
re

ci
si

on
 G

ai
n

(%
)

no. of queries

AlreadySeen
FeedbackBypass

(b)

Figure 10: Precision results: (a) absolute values; (b) gains
with respect to the DEFAULT strategy

default Euclidean distance;

• AlreadySeen: this is mainly used for reference pur-
pose, and corresponds to the case where theFeed-
backBypass module delivers predictions for already
seen queries, for which the predicted parameters in-
deed coincide with the optimal ones. It can be ar-
gued that the more the results fromFeedbackBypass
andAlreadySeen are similar, the moreFeedback-
Bypass is approaching the intrinsic limit established
by the use of a given class of distance functions and of
specific relevance feedback strategies.

For each query, after measuring precision and recall for the
first round ofk results, we automatically run (using the cat-
egory information associated to each image) the feedback
loop until it converges to a stable situation, i.e. when no
changes are observed anymore in the result list. The corre-
sponding query parameters are then sent toFeedbackBy-
pass for insertion.

5.1 Speed of Learning

Figures10 (a) shows average precision as a function of the
number of processed queries. For this figure the number
of retrieved objects was set tok = 50. It is evident that
the performance ofFeedbackBypass monotonically in-
creases with the number of queries, and that the difference
betweenFeedbackBypass and theDefault strategy is al-
ready significant after the first few hundred queries. This is
also emphasized in Figure10(b), where we show values of
theprecision gain, PrGain, defined as:

PrGain(FeedbackBypass) =

(
Pr(FeedbackBypass)

Pr(Default)
− 1

)
× 100

and similarly for theAlreadySeen case. The number
of good matches doubles for already seen queries, and in-
crease by60% for queries never seen before.

Figures11(a), (b), and (c) show, respectively, the values
of average precision, recall, and precision vs. recall after
1000 queries, whenk varies between10 and80. The graphs
confirm that our method is able to provide accurate predic-
tions even when the number of retrieved objects per query,
k, is low. This can also be appreciated in Figures12(a) and
(b), where precision and recall curves fork = 20, 50, and
80 are plotted versus the number of queries.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70 80

P
re

ci
si

on

k

AlreadySeen
FeedbackBypass

Default

(a)

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70 80

R
ec

al
l

�

k

AlreadySeen
FeedbackBypass

Default

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25

P
re

ci
si

on

Recall

AlreadySeen
FeedbackBypass

Default

(c)

Figure 11: Precision (a), recall (b), and precision vs. recall
curves (c) after 1000 queries

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

P
re

ci
si

on

no. of queries

k = 20
k = 50
k = 80

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

R
ec

al
l

�

no. of queries

k = 20
k = 50
k = 80

(b)

Figure 12: Precision (a) and recall (b) ofFeedbackBy-
pass for different values ofk

In the previous experiments we have considered a same
value ofk both to train the system and to evaluate it. How-
ever, it is also important to understand if trainingFeed-
backBypass with larger values ofk can be better than
trainingFeedbackBypass with less information. Clearly,
precision results shown in Figure12 (a) are of little use to
this purpose, since they are obtained with a different num-
ber of retrieved objects for each curve. Thus, we have com-
pared several versions ofFeedbackBypass each trained
with a specifick value, when they are used to answer
queries requesting the same number of objects from each
version. The basic conclusion that can be drawn from the
results shown in Figure13 is that using largerk values is
worthwhile, even if less objects are retrieved. This is par-
ticularly evident for thek = 80 curve, while less for the
casek = 50.

5.2 Robustness

We now turn to consider how much the performance of
FeedbackBypass depends on the specific queries for
which predictions are required. For this experiment we

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40 50 60 70 80

P
re

ci
si

on

no. of retrieved objects

k = 20
k = 50
k = 80

(a)

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80

R
ec

al
l

�

no. of retrieved objects

k = 20
k = 50
k = 80

(b)

Figure 13: Precision (a) and recall (b) ofFeedbackBy-
pass for several values ofk as a function of the number of
retrieved objects

separately measured precision for the 7 query categories.
Looking at precision results (see Figure14 (a)) it can be
observed thatFeedbackBypass is able to provide useful
predictions in all cases where there is a significant differ-
ence between theDefault and theAlreadySeen cases. In-
deed, such a difference is a clear indication that feedback
information actually leads to improve the results. This is
particularly evident for the largest query category (“Mam-
mal”). On the other hand, when feedback only slightly im-
proves the quality of the results (see the “TreeLeaf” cate-
gory, denoted simply as “Leaf” in the figure), predictions
for new queries do not provide benefits, as it could have
been expected. This general behavior is only violated for
the “Fish” category, where it seems that no improvement
can be obtained fromFeedbackBypass on new queries,
even if performance ofAlreadySeen is particularly good.
However, since “Fish” is the smallest category (129 im-
ages), it can be argued that the number of sampled queries
is still not enough to well approximate the optimal query
mapping for that category. Similar results are observed in
Figure14 (b) for the recall metric.

5.3 Efficiency

An important aspect that we analyze here is how much we
can gain by usingFeedbackBypass in terms ofefficiency.
Clearly, the overall performance of an interactive retrieval
system will also depend on the specific access methods that
are used to retrieve the stored objects, as well as by the
indexed features. In order to provide unbiased results, we
consider the following performance metrics:

• The average number of feedback iterations thatFeed-
backBypass saves with respect to theDefault strat-
egy, in order to obtain the same level of precision.
Thus, for each query we start the feedback loop ei-
ther from default or from predicted query parameters,
and measure how many iterations are needed before
no further improvements are possible. This “Saved-
Cycles” measure tells us how many query requests to
the underlying system we save, on the average, for
each user query.

• The average number of objects that wedo nothave to
retrieve for achieving the same level of precision than

0

0.1

0.2

0.3

0.4

0.5

0.6

Bird Fish Mammal Blossom Leaf Bridge Monument

P
re

ci
si

on

AlreadySeen
FeedbackBypass

Default

(a)

0

0.05

0.1

0.15

0.2

Bird Fish Mammal Blossom Leaf Bridge Monument

R
ec

al
l

�

AlreadySeen
FeedbackBypass

Default

(b)

Figure 14: Precision (a) and recall (b) for the 7 query cate-
gories

Default. Note that this “Saved-Objects” metric is sim-
ply computed as: Saved-Objects= Saved-Cycles× k

Figure15 presents results fork = 20 andk = 50. In both
cases it can be seen that the savings improve over time, and
that after 1000 queries they amount to about 2 cycles for
k = 50, which translates in a net reduction of 100 objects
retrieved from the underlying system.

Finally, in the last experiment we assess the Simplex
Tree as such. Figure16 shows the average number of
simplices traversed to reach a leaf node, together with the
depth of the tree, i.e. the maximum number of simplices
that could be traversed. Both are logarithmically increas-
ing, however, the average number of traversed simplices
is significantly lower than the depth of the Simplex Tree,
which leads to fast predictions of the optimal query param-
eters and underlines the efficiency ofFeedbackBypass.

0

0.5

1

1.5

2

2.5

300 400 500 600 700 800 9001000

S
av

ed
-C

yc
le

s

�

no. of queries

k = 20
k = 50

(a)

0

20

40

60

80

100

120

300 400 500 600 700 800 9001000

S
av

ed
-O

bj
ec

ts

�

no. of queries

k = 20
k = 50

(b)

Figure 15: Average number of feedback cycles (a) and re-
trieved objects (b) saved byFeedbackBypass

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

no. of queries

no. of simplices traversed
Depth of Simplex Tree

Figure 16: Average number of simplices traversed per
query and depth of Simplex Tree

6 Conclusions
In this paper we have presentedFeedbackBypass, a new
method to speed-up the process of interactively search-
ing for relevant information in multimedia databases. The
key idea ofFeedbackBypass is to organize the informa-
tion gathered from user interaction as a multi-dimensional
wavelet stored into the so-called Simplex Tree. Approxi-
mations obtained from this wavelet can be used to either
“bypass” the feedback loop completely for already-seen
queries, or to “predict” near-optimal parameters for new
queries. We detailed the operations on the Simplex Tree,
including inserts, lookups, and interpolation.

Our experiments show thatFeedbackBypass works
well on real high-dimensional data, and that its predictions
consistently outperform basic retrieval strategies which
start with default query parameters. We have also quan-
tified the savingsFeedbackBypass provides in terms of
number of queries and of retrieved objects.

A key feature ofFeedbackBypass is its orthogonality
to existing feedback models, i.e.FeedbackBypass can be
easily incorporated into current retrieval systems regardless
of the particular mathematical model underlying the feed-
back loop. FeedbackBypass is distinguished by its low
resource requirements which grow polynomially with the
dimensionality of the data set, thus making it applicable to
high-dimensional feature spaces.

Our future research is geared toward the application of
FeedbackBypass to other types of multimedia data and a
thorough investigation of the relationship between the re-
source requirements and the accuracy of the delivered pre-
dictions.

References
[BKK96] S. Berchtold, D.A. Keim, and H.-P. Kriegel.

The X-tree: An Index Structure for High-
Dimensional Data. InProc. of the Int’l.
Conf. on Very Large Data Bases, pages 28–39,
Mumbai (Bombay), India, September 1996.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-
tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. InProc. of the
Int’l. Conf. on Very Large Data Bases, pages
426–435, Athens, Greece, August 1997.

[Fal96] C. Faloutsos. Searching Multimedia Data-
bases by Content. Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 1996.

[ISF98] Y. Ishikawa, R. Subramanya, and C. Falout-
sos. MindReader: Querying Databases
Through Multiple Examples. InProc. of the
Int’l. Conf. on Very Large Data Bases, pages
218–227, New York, NY, USA, August 1998.

[Kai94] G. Kaiser.A Friendly Guide to Wavelets. Birk-
häuser, Boston, Basel, Berlin, 1994.

[Meh84] K. Mehlhorn.Data Structures and Algorithms
Vol. 3: Muti-dimensional Searching and Com-
putational Geometry. Springer-Verlag, Berlin,
New York, etc., 1984.

[ORC+97] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehro-
tra, and T. Huang. Supporting Similarity
Queries in MARS. InProc. of the Int.’l Con-
ference on Multimedia, pages 403–413, Seat-
tle, WA, USA, November 1997.

[PS85] F. P. Preparata and M. I. Shamos.Computa-
tional Geometry: An Introduction. Springer-
Verlag, Berlin, New York, etc., 1985.

[RH00] Y. Rui and T. S. Huang. Optimizing Learn-
ing in Image Retrieval. InProc. of IEEE Int’l.
Conf. on Computer Vision and Pattern Recog-
nition, Hilton Head, SC, USA, June 2000.

[RHOM98] Y. Rui, T. S. Huang, M. Ortega, and S. Mehro-
tra. Relevance Feedback: A Power Tool for
Interactive Content-Based Image Retrieval.
IEEE Trans. on Circuits and Systems for Video
Technology, 8(5):644–655, September 1998.

[Sal88] G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley,
1988.

[SK97] T. Seidl and H.-P. Kriegel. Efficient User-
Adaptable Similarity Search in Large Multi-
media Databases. InProc. of the Int’l. Conf.
on Very Large Data Bases, pages 506–515,
Athens, Greece, August 1997.

[Swe96] W. Sweldens. The Lifting Scheme: A
Custom-design Construction of Biorthogonal
wavelets. Appl. Comput. Harmon. Anal.,
3(2):186–200, 1996.

	Introduction
	Background and Related Work
	The FeedbackBypass Approach
	Requirements

	The Simplex Tree
	Multi-dimensional Triangulation
	The Data Structure

	Experimental Evaluation
	Speed of Learning
	Robustness
	Efficiency

	Conclusions

