
Query Processing, Approximation, and Resource Management
in a Data Stream Management System�

Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, Rohit Varma

Stanford University

http://www-db.stanford.edu/stream

Abstract

This paper describes our ongoing work developing the
Stanford Stream Data Manager(STREAM), a system for
executing continuous queries over multiple continuous
data streams. The STREAM system supports a declar-
ative query language, and it copes with high data rates
and query workloads by providing approximate answers
when resources are limited. This paper describes specific
contributions made so far and enumerates our next steps
in developing a general-purpose Data Stream Manage-
ment System.

1 Introduction

At Stanford we are building aData Stream Management
System (DSMS)that we callSTREAM. The new chal-
lenges in building a DSMS instead of a traditional DBMS
arise from two fundamental differences:

1. In addition to managing traditional stored data such
as relations, a DSMS must handle multiple contin-
uous, unbounded, possibly rapid and time-varying
data streams.

2. Due to the continuous nature of the data, a DSMS
typically supports long-runningcontinuous queries,
which are expected to produce answers in a continu-
ous and timely fashion.

Our goal is to build and evaluate a general-purpose
DSMS that supports a declarative query language and
can cope with high data rates and large numbers of con-
tinuous queries. In addition to the obvious need for
multi-query optimization and sophisticated scheduling to
achieve high performance, we are targeting environments
where data rates and query load may exceed available re-
sources. In these cases our system is designed to pro-
vide approximate answersto continuous queries. Man-
aging the interaction between resource availability and

� This work was supported by NSF Grant IIS-0118173, a
Rambus Corporation Stanford Graduate Fellowship (Babcock),
a Microsoft Graduate Fellowship (Datar), an NSF Graduate
Fellowship (Olston), and grants (Motwani) from Microsoft,
Veritas, and the Okawa Foundation.

approximation is an important focus of our project. We
are developing both static techniques and techniques for
adapting as run-time conditions change.

This paper presents a snapshot of our language design,
algorithms, system design, and system implementation
efforts as of summer 2002. Clearly we are not presenting
a finished prototype in any sense, e.g., our query lan-
guage is designed but only a subset is implemented, and
our approximation techniques have been identified but
are not exploited fully by our resource allocation algo-
rithms. However, there are a number of concrete contri-
butions to report on at this point:

� An extension of SQL suitable for a general-purpose
DSMS with a precisely-defined semantics (Section 2)

� Structure of query plans, accounting for plan sharing
and approximation techniques (Section 3)

� A set of techniques for static and dynamic approxi-
mation to cope with limited resources (Section 4)

� An algorithm for allocating resources to queries (in
a limited environment) that maximizes query result
precision (Section 5.1)

� An algorithm for exploiting constraints on data
streams to reduce memory overhead in query plan
operators (Section 5.2)

� A near-optimal scheduling algorithm for reducing
inter-operator queue sizes (Section 5.3)

� A software architecture designed for extensibility
and for easy experimentation with DSMS query pro-
cessing techniques (Section 6)

Some current limitations are:

� Our DSMS is centralized and based on the relational
model. We believe that distributed query processing
will be essential for many data stream applications,
and we are designing our query processor with a mi-
gration to distributed processing in mind. We may
eventually extend our system to handle XML data
streams, but distribution has higher priority.

� We have done no significant work so far in query plan
generation. Our system supports a subset of our ex-

1



tended query language with naive translation to a sin-
gle plan. It also supports direct input of plans, includ-
ing plan component sharing across multiple queries.

Due to space limitations this paper does not include a
section dedicated to related work. We refer the reader
to our recent survey paper [BBD+02], which provides
extensive coverage of related work. We do make some
comparisons to other work throughout this paper, partic-
ularly theAuroraproject [CCC+02], which appears to be
the closest in overall spirit to STREAM. However even
these comparisons are narrow in scope and again we re-
fer the reader to [BBD+02].

2 Query Language

The STREAM system allows direct input of query plans,
similar to the Aurora approach [CCC+02] and described
briefly in Section 6. However, the system also supports
a declarative query language using an extended version
of SQL. All queries arecontinuous, as opposed to the
one-timequeries supported by a standard DBMS. In this
section we focus on the syntax and semantics of contin-
uous queries in our extended SQL.

A DSMS must handle data from both continuous data
streams and conventional relations:

� Streamshave the notion of an arrival order, they
are unbounded, and they are append-only. (Updates
can be modeled in a stream using keys, but from
the query-processor perspective we treat streams as
append-only.) In addition to the continuous data
streams that arrive at the DSMS, streams result from
queries or subqueries that reference one or more
streams (possibly with relations), do not perform ag-
gregation over streams, and do not use streams as
the target of negation (e.g., throughNOT EXISTS
or EXCEPT).

� Relationsare unordered, and they support updates
and deletions as well as insertions. In addition to
relations stored by the DSMS, relations result from
queries or subqueries that reference relations only, or
that include aggregation or negation over streams.

We extend SQL by allowing theFROMclause of any
query or subquery to contain relations, streams, or both.
A stream in theFROMclause may be followed by an op-
tionalsliding window specification, enclosed in brackets,
and an optionalsampling clause.

As introduced in [BBD+02], in our language a win-
dow specification consists of an optionalpartitioning
clause, a mandatorywindow size, and an optionalfil-
tering predicate. The partitioning clause partitions the
data into several groups, computes a separate window for
each group, and then merges the windows into a single

result. It is syntactically analogous to a grouping clause,
using the keywordsPARTITION BY in place ofGROUP
BY. As in SQL-99 [UW02], windows are specified us-
ing either ROWS(e.g., “ROWS 50 PRECEDING”) or
RANGE(e.g., “RANGE 15 MINUTES PRECEDING”).
The filtering predicate is specified using a standard SQL
WHEREclause.

A sampling clause specifies that a random sample of
the data elements from the stream should be used for
query processing in place of the entire stream. The syn-
tax of the sampling clause is a sampling rate followed by
keyword SAMPLE. For example, “1% SAMPLE” indi-
cates that, independently, each data element in the stream
should be retained with probability0:01 and discarded
with probability0:99.

2.1 Examples

Our example queries reference a streamRequests of
requests to a web proxy server, each with four attributes:
client id , domain , URL, andreqTime .

The following query counts the number of requests for
pages from the domainstanford.edu in the last day.

SELECT COUNT(*)
FROM Requests S [RANGE 1 DAY PRECEDING]
WHERE S.domain = ‘stanford.edu’

The semantics of providing continuous answers to this
query are covered in Section 2.4.

The following query counts how many page requests
were for pages served by Stanford’s CS department web
server, considering only each client’s10 most recent
page requests from the domainstanford.edu . This
query makes use of a partitioning clause and also brings
out the distinction between predicates applied before de-
termining the sliding window cutoffs and predicates ap-
plied after windowing.

SELECT COUNT(*)
FROM Requests S

[PARTITION BY S.client id
ROWS 10 PRECEDING
WHERE S.domain = ‘stanford.edu’]

WHERE S.URL LIKE ‘http://cs.stanford.edu/%’

Our final example references a stored relationDo-
mains that classifies domains by the primary type of
web content they serve. This query counts the number of
requests for pages from “commerce” domains out of the
last 10; 000 requests for pages from domains that have
been classified. A 10% sample of theRequests stream
is used for the query. Notice that the stream of requests
must be joined with the Domains relation (resulting in a
stream labeledT ) before applying the sliding window.

SELECT COUNT(*)
FROM

2



(SELECT R.class
FROM Requests S 10% SAMPLE, Domains R
WHERE S.domain = R.domain) T
[ROWS 10000 PRECEDING]

WHERE T.class = ‘commerce’

2.2 Stream Ordering and Timestamps

The sliding windows in our query language require that
streams have an ordering forROWSwindow specifica-
tions, and some type of timestamp forRANGEwindows.
In our current language design we assume that each
stream tuple has a timestamp, which also implies stream
ordering.

In many cases, the arrival times of stream elements at
the DSMS can be used as timestamps for input streams
and provide sufficient accuracy. However, sometimes
it is preferable to use explicit timestamps provided as
part of the data stream (generated by the stream source
or perhaps by an application-specific timestamping fea-
ture). OurCREATE STREAMstatement, which is used
to register an input stream with the system, allows the op-
tional designation of one attribute asTIMESTAMP(e.g.,
we might so designate attributereqTime in the exam-
ple schema of Section 2.1). Currently we require this
attribute to be of typeDATETIMEand we assume its val-
ues correspond to actual clock times. Offering more flex-
ibility for explicit timestamps complicates our semantics
considerably, but is planned for future work.

By definition, arrival-based timestamps guarantee that
stream tuples arrive in timestamp order. In our semantics
we assume that streams with explicit timestamps also ar-
rive in timestamp order, modulo ascrambling boundB:
if a tuple with explicit timestamp� arrives on streamS,
then no tuple with timestamp greater than� � B can ar-
rive later onS. We assumeB is global to the DSMS but
B could easily be stream-specific, declared along with
theTIMESTAMPattribute.

Timestamps for streams generated by subqueries are
defined in Section 2.4. Note that the related areas of
temporalandsequencequery languages [SLR96, Soo91]
can capture most aspects of the timestamps and window
specifications in our language. Those languages are con-
siderably more expressive than our language, and we feel
they are “overkill” in typical data stream environments.

2.3 Inactive and Weighted Queries

Two dynamic properties of queries are controlled
through our administrative interface discussed in Sec-
tion 6. One property is whether the query isactive or
inactive, and the other is theweightassigned to the query.
When a query is inactive, the system may not maintain
the answer to the query as new data arrives. However,
because an inactive query may be activated at any time,

its presence serves as a hint to the system that may influ-
ence decisions about query plans and resource allocation
(Sections 3–5).

Queries may be assigned weights indicating their rel-
ative importance. These weights are taken into account
by the system when it is forced to provide approximate
answers due to resource limitations. Given a choice be-
tween introducing error into the answers of two queries,
the system will attempt to provide more precision for the
query with higher weight. Weights might also influence
scheduling decisions, although we have not yet explored
weighted scheduling. Note that inactive queries may be
thought of as queries with negligible weight.

2.4 Formal Semantics

One of our contributions is to provide a precise semantics
of continuous queries over multiple data streams with
user-specified sliding windows. We also have developed
an algebra corresponding to our query language and se-
mantics, although it is not presented here due to space
limitations. We assume basic knowledge of SQL seman-
tics and focus on three new aspects in our language: slid-
ing windows, mixing relations and streams, and contin-
uous (as opposed to one-time) answers. The semantics
of theSAMPLEoperator are straightforward and not dis-
cussed further.

As will be seen, we specify “conservative” semantics,
requiring global timestamps, exact coordination among
all components of a query, and never allowing answers
on a stream until all earlier answers are guaranteed to
have been produced. We believe that our conservative se-
mantics serves as an important theoretical baseline, but it
may be difficult to implement efficiently for the full gen-
erality of the query language. Many applications may
be satisfied with a more relaxed or “best-effort” seman-
tics (particularly in terms of timing), which we hope to
formalize as future work.

We begin with some definitions. Thecurrent times-
tamp� for an input streamS, denotedC(S), is defined
as the largest� 0 such that no tuple with timestamp less
than� 0 can arrive onS. For a streamS that uses arrival-
based timestamps,C(S) at any given time is simply the
value of the system clock at that time. For a streamS that
uses explicit timestamps,C(S) is � 0�B, where� 0 is the
largest timestamp of any tuple that has arrived onS and
B is thescrambling bounddiscussed in Section 2.2. If
S uses explicit timestamps but is empty, then we define
C(S) to be the earliest possible timestamp.

The current timestampC(Q) for a queryQ is the
smallestC(S) over all streamsS referenced byQ. C(Q)
is computed globally for a query, so the same value is
used in defining the semantics for all subqueries inQ.

The relevant datafor a queryQ at time� consists of
all stream tuples with timestamps less than or equal to� ,

3



plus the contents of all relations at the time whenC(Q)
first became greater than or equal to� . Theactive setfor
a query or subqueryQ at time� consists of all tuples that
remain after the window specifications inQ are applied
to the relevant data ofQ at� . The semantics ofPARTI-
TION BY are straightforward. When a window size is
expressed as aRANGE, the offset is computed from time
� . When a window size is expressed usingROWS, the
offset is computed from the last tuple in the stream with
timestamp less than or equal to� (i.e., from the end of
therelevantportion of the stream). DefineA(Q; �) to be
the answer that results from evaluatingQ using standard
relational semantics over the active set ofQ at time� .

The semantics for continuous queries are slightly dif-
ferent depending on whether the query produces a re-
lation (queries involving only relations, or involving
aggregation or negation over streams) or produces a
stream (queries referencing streams without aggregation
or negation):

� When a continuous queryQ produces a relation, its
answer at any instant is equal toA(Q;C(Q)), i.e.,
the result of the query considering the most recent
consistent snapshot ofQ’s data.

� WhenQ produces a stream, that stream consists ofS
��C(Q)A(Q; �), where a tuple appears in the result

of the union the maximum number of times it appears
in any branch of the union. Effectively, under this se-
mantics tuples produced on the result stream can be
computed as input streams arrive using the relational
data at the time of arrival, and additional result tuples
may be produced if relations are updated. If a tuplet
appears in the result stream only once, then its times-
tamp in the answer toQ is the smallest� such that
t 2 A(Q; �), i.e., the time at whicht first appears
in the result stream. The generalization to multiple
instances oft is straightforward.

This semantics is applied to subqueries (which also may
produce streams or relations) analogously, bearing in
mind that the value ofC(Q) is global to an entire query.

3 Query Plans

This section describes the basic query processing archi-
tecture of the STREAM system. Queries are registered
with the system and execute continuously as new data ar-
rives. For now let us assume that a separate query plan is
used for each continuous query, although sharing of plan
components is very important and will be discussed in
Section 3.2. We also assume that queries are registered
before their input streams begin producing data, although
clearly we must address the issue of adding queries over
existing (perhaps partially discarded or archived) data
streams.

It is worth a short digression to highlight a ba-
sic difference between our approach and that of Au-
rora [CCC+02]. Aurora uses one “mega” query plan per-
forming all computation of interest to all users. Adding
a query consists of directly augmenting portions of the
current mega-plan, and conversely for deleting a query.
In STREAM, queries are independent units that logically
generate separate plans, although plans may be com-
bined by the system and ultimately could result in an
Aurora-like mega-plan.

To date we have implemented only a subset of the lan-
guage presented in Section 2, primarily omitting support
for aggregation, certain subqueries, certain constructs in
window specifications, and of course many esoteric fea-
tures of standard SQL. A number of important imple-
mentation issues have not yet been dealt with, such as
monitoring the system clock for time-based windows,
encoding relations as streams during query processing,
and strict output semantics (Section 2.4). Nevertheless,
our basic query processing architecture is in place and
functional. In this section we highlight its features but do
not go into detail about individual query operators since
many of them are analogous to a traditional DBMS.

A query plan in our system runs continuously and is
composed of three different types of components:

� Query operators, similar to a traditional DBMS.
Each operator reads a stream of tuples from a set of
input queues, processes the tuples based on its se-
mantics, and writes its output tuples into a single out-
put queue.

� Inter-operatorqueues, also similar to the approach
taken by some traditional DBMS’s. Queues connect
different operators and define the paths along which
tuples flow as they are being processed.

� Synopses, used to maintain state associated with op-
erators and discussed in more detail next.

A synopsis summarizes the tuples seen so far at some
intermediate operator in a running query plan, as needed
for future evaluation of that operator. For example, for
full precision a join operator must remember all the tu-
ples it has seen so far on each of its input streams, so
it maintains one synopsis for each (similar to asymmet-
ric hash join [WA91]). On the other hand, simple fil-
ter operators, such as selection and duplicate-preserving
projection, do not require a synopsis since they need not
maintain state.

For many queries, synopsis sizes grow without
bound if full precision is expected in the query re-
sult [ABB+02]. Thus, an important feature to support is
synopses that use some kind of summarization technique
to limit their size [GGR02], e.g.,fixed-size hash tables,
sliding windows, reservoir samples, quantile estimates,

4



and histograms. Of course limited-size synopses may
produce approximate operator results, further discussed
in Sections 4 and 5.

Although operators and synopses are closely coupled
in query plans, we have carefully separated their imple-
mentation and provide generic interfaces for both. This
approach allows us to couple any operator type with any
synopsis type, and it also paves the way for operator and
synopsis sharing. The generic methods of theOpera-
tor class are:

� create , with parameters specifying the input
queues, output queue, and initial memory allocation.

� changeMem, with a parameter indicating a dynamic
decrease or increase in allocated memory.

� run , with a parameter indicating how much work the
operator should perform before returning control to
the scheduler (see Section 5.3).

The generic methods of theSynopsis class are:

� create , with a parameter specifying an initial
memory allocation.

� changeMem, with a parameter indicating a dynamic
decrease or increase in allocated memory.

� insert anddelete , with a parameter indicating
the data element to be inserted into or deleted from
the synopsis.

� query , whose parameters and behavior depend on
the synopsis type. For example, in a hash-table
synopsis this method might look for matching tu-
ples with a particular key value, while for a sliding-
window synopsis this method might support a full
window scan.

So far in our system we have focused on sliding-
window synopses, which keep a summary of the last
w tuples of some intermediate stream. Sliding-window
synopses are used for approximation (Section 4), in
which casew is determined by the tuple size and mem-
ory allocationM . They also are used to provide precise
results for theROWS-based window specifications in our
query language (Section 2), in which case the memory
requirementM is determined by the tuple size andw.

3.1 Example

Figure 3.1 illustrates plans for two queries,Q1 andQ2.
Together the plans contain three operatorsO1–O3, four
synopsess1–s4 (two per join operator), and four queues
q1–q4. QueryQ1 is a selection over a join of two streams
R andS. QueryQ2 is a join of three streams,R, S, and
T . The two plans share a subplan joining streamsR and
S by sharing its output queueq3. Plan and queue sharing
is discussed in Section 3.2. Execution of query operators

s2s1

σ s4s3

O2
O3

O1

q1
q2

q
4

Scheduler

Q1
Q

2

q3

R S T

Figure 1: Plans for queriesQ1,Q2 over streamsR,S,T .

is controlled by a globalscheduler. When an operatorO
is scheduled, control passes toO for a period currently
determined by number of tuples processed, although we
may later incorporate timeslice-based scheduling. Sec-
tion 5.3 considers different scheduling algorithms and
their impact on resource utilization.

3.2 Resource Sharing in Query Plans

As illustrated in Figure 3.1, when continuous queries
contain common subexpressions we can share resources
and computation within their query plans, similar to
multi-query optimization and processing in a traditional
DBMS [Sel88]. We have not yet focused on resource
sharing in our work—we have established a query plan
architecture that enables sharing, and we can combine
plans that have exact matching subexpressions. How-
ever, several important topics are yet to be addressed:

� For now we are considering resource sharing and
approximation separately. That is, we do not in-
troduce sharing that intrinsically introduces approx-
imate query results, such as merging subexpressions
with different window sizes, sampling rates, or fil-
ters. Doing so may be a very effective technique
when resources are limited, but we have not yet ex-
plored it in sufficient depth to report here.

� Our techniques so far are based on exact common
subexpressions. Detecting and exploiting subexpres-
sion containment is a topic of future work that poses
some novel challenges due to window specifications,
timestamps and ordering, and sampling in our query
language.

5



The implementation of a shared queue (e.g.,q3 in Fig-
ure 3.1) maintains a pointer to the first unread tuple for
each operator that reads from the queue, and it discards
tuples once they have been read by all parent operators.
Currently multiple queries accessing the same incom-
ing base data streamS “share”S as a common subex-
pression, although we may decide ultimately that input
data streams should be treated separately from common
subexpressions.

The number of tuples in a shared queue at any time
depends on the rate at which tuples are added to the
queue, and the rate at which the slowest parent opera-
tor consumes the tuples. If two queries with a common
subexpression produce parent operators with very differ-
ent consumption rates, then it may be preferable not to
use a shared subplan. As an example, consider a queue
q output from a join operatorJ , and supposeJ is very
unselective so it produces nearly the cross-product of its
inputs. If J ’s parentP1 in one query is a “heavy con-
sumer,” then our scheduling algorithm (Section 5.3) is
likely to scheduleJ frequently in order to produce tuples
for P1 to consume. IfJ ’s parentP2 in another query is a
“light consumer,” then the scheduler will scheduleJ less
frequently so tuples don’t proliferate inq. In this situ-
ation it may not be beneficial forP1 andP2 to share a
common subplan rooted inJ .

We have shown formally that although subplan shar-
ing may be suboptimal in the case of common subex-
pressions with joins, for common subexpressions with-
out joins sharing always is preferable. Details are beyond
the scope of this paper.

When several operators read from the same queue, and
when more than one of those operators builds some kind
of synopsis, then it may be beneficial to introducesyn-
opsis sharingin addition tosubplan sharing. A number
of interesting issues arise, most of which we have not yet
addressed:

� Which operator is responsible for managing the
shared synopsis (e.g., allocating memory, inserting
tuples)?

� If the synopses required by the different operators are
not of identical types or sizes, is there a theory of
“synopsis subsumption” (and synopsis overlap) that
we can rely on?

� If the synopses are identical, how do we cope with
the different rates at which operators may “consume”
data in the synopses?

Clearly we have much work to do in the area of re-
source sharing. Note again that the issue of automatic
resource sharing is less crucial in a system like Au-
rora, where resource sharing is primarily programmed by
users when they augment the current mega-plan.

4 Approximations

It is our supposition that the combination of:

� multiple unbounded and possibly rapid incoming
data streams,

� multiple complex continuous queries with timeliness
requirements, and

� finite computation and memory resources

yields an environment where eventually the system will
not be able to provide continuous and timely exact an-
swers to all registered queries. Our goal is to build a sys-
tem that, under these circumstances, degrades gracefully
to approximatequery answers. Furthermore, the system
should maximize the precision of query answers based
on the available resources. In this section we discuss ap-
proximation techniques, and in Section 5 we discuss the
close relationship between approximation and resource
management.

4.1 Static Approximation

In static approximation, queries are modified when they
are submitted to the system so that they use fewer re-
sources at execution time. The advantages of static ap-
proximation over dynamic approximation (discussed in
Section 4.2) are:

1. Assuming the statically optimized query is executed
precisely by the system, the user is guaranteed cer-
tain query behavior. A user might even participate
in the process of static approximation, guiding or ap-
proving the system’s query modifications.

2. Adaptive approximation techniques and continuous
monitoring of system activity are not required—the
query is modified once, before it begins execution.

The two static approximation techniques we consider are
window reductionandsampling rate reduction.

4.1.1 Window Reduction
Our query language includes a windowing clause for

specifying sliding windows on streams or on subqueries
producing streams (Section 2). By decreasing the size
of a window, or introducing a window where none was
specified originally, both memory and computation re-
quirements can be reduced.1 In fact, several propos-
als for stream query languages automatically introduce
windows in all joins, sometimes referred to asband
joins, in order to bound the resource requirement, e.g.,
[CCC+02, CF02, HF+00, MSHR02, VN02].

1Throughout the paper we refer to the resource required for
state (synopses and queues) in query plans as “memory.” Disk
also could be used, although in that case we might want to treat
I/O as a separate resource given its different performance char-
acteristics, as in Aurora [CCC+02].

6



SupposeW is an operator that incorporates a window
specification, most commonly a windowed join. Reduc-
ingW ’s window size not only affects the resources used
by W , but it can have a ripple effect that propagates up
the operator tree—in general a smaller window results
in fewer tuples to be processed by the remainder of the
query plan. However, there are at least two cases where
we need to be careful:

� If W is a duplicate-elimination operator, then shrink-
ingW ’s window can actually increase its output rate.

� If W is part of the right-hand subtree of a negation
construct (e.g.,NOT EXISTSor EXCEPT), then re-
ducing the size ofW ’s output may have the effect of
increasing output further up the query plan.

Fortunately, these “bad” cases can be detected statically
at query modification time, so the system can avoid in-
troducing or shrinking windows in these situations.

4.1.2 Sampling Rate Reduction

Analogous to shrinking window sizes, we can reduce
the sampling rate when aSAMPLEclause (Section 2)
is applied to a stream or to a subquery producing a
stream. We can also introduceSAMPLEclauses where
not present in the original query. Although changing the
sampling rate at an operatorO will not reduce the re-
source requirements ofO, it will reduce the output rate.
We can also take an existing sample operator and push
it down the query plan. However, we must be careful to
ensure that we don’t introduce unbiased sampling when
we do so, especially in the presence of joins as discussed
in [CMN99].

4.2 Dynamic Approximation

In our second and more challenging approach,dynamic
approximation, queries are unchanged, but the system
may not always provide precise query answers. Dynamic
approximation has some important advantages over static
approximation:

� The level of approximation can vary with fluctuations
in data rates and distributions, query workload, and
resource availability. In “times of plenty,” when loads
are low and resources are high, queries can be an-
swered precisely, with approximation occurring only
when absolutely necessary.

� Approximation can occur at the plan operator level,
and decisions can be made based on the global set of
(possibly shared) query plans running in the system.

Of course a significant challenge from the usability
perspective is conveying to users or applications at any
given time what kind of approximation is being per-
formed on their queries, and some applications simply

may not want to cope with variable and unpredictable
accuracy. We are considering augmenting our query lan-
guage so users can specify tolerable imprecision (e.g.,
ranges of acceptable window sizes, or ranges of sampling
rates), which offers a middle ground between static and
dynamic approximation.

The three dynamic approximation techniques we con-
sider aresynopsis compression, which is roughly anal-
ogous to window reduction in Section 4.1.1,sampling,
which is analogous tosampling rate reductionin Sec-
tion 4.1.2, andload shedding.

4.2.1 Synopsis Compression

One technique for reducing the memory overhead of
a query plan is to reduce synopsis sizes at one or more
operators. Incorporating a sliding window into a syn-
opsis where no window is being used, or shrinking the
existing window, typically shrinks the synopsis. Doing
so is analogous to introducing windows or statically re-
ducing window sizes through query modification (Sec-
tion 4.1.1). Note that if plan sharing is in place then mod-
ifying a single window dynamically may affect multiple
queries, and if sophisticated synopsis-sharing algorithms
are being used then different queries may be affected in
different ways.

There are other methods for reducing synopsis size,
including maintaining a sample of the intended syn-
opsis content (which is not always equivalent to in-
serting a sample operator into the query plan), using
histograms[TGIK02] or compressedwavelets[GG02]
when the synopsis is used for aggregation or even for a
join [CGRS02], and usingBloom filters[Blo70] for du-
plicate elimination, set difference, or set intersection.

All of these techniques share the property that memory
use is flexible, and it can be traded against precision stati-
cally or on-the-fly. Some of the techniques provide error
guarantees, e.g., [GG02], however we have not solved
the general problem of conveying accuracy to users dy-
namically.

4.2.2 Sampling and Load Shedding

The two primary consumers of memory in our query
plans are synopses and queues (recall Section 3). In the
previous subsection we discussed approximation tech-
niques that reduce synopsis sizes (which may as a side-
effect reduce queue sizes). In this section we mention
approximation techniques that reduce queue sizes (which
may as a side-effect reduce synopsis sizes).

One technique is to introduce one or moresampleop-
erators into the query plan, or to reduce the sampling
rate at existing operators. This approach is the dynamic
analogue of introducing sampling or statically reduc-
ing a sampling rate through query modification (Sec-
tion 4.1.1), although again we note that when plan shar-

7



ing is in place one sampling rate may affect multiple
queries.

We can also simply drop tuples from queues when they
grow too large, a technique sometimes referred to asload
shedding[CCC+02]. Load shedding at queues, which
typically drops chunks of tuples at a time, differs from
sampling at operators, which eliminates tuples proba-
bilistically. Both are effective techniques for reducing
queue sizes. While sampling may be more “unbiased,”
load shedding may be easier to implement and to make
decisions about dynamically.

5 Resource Management

Effective resource management is a key component of
a data stream management system, and it is a specific
focus of our project. There are a number of relevant re-
sources in a DSMS: memory, computation, I/O if disk
is used, and network bandwidth in a distributed DSMS.
We focus primarily on memory consumed by query plan
synopses and queues, although some of our techniques
can be applied readily to other resources. Furthermore,
in many cases reducing memory overhead has a natu-
ral side-effect of reducing other resource requirements
as well.

We motivated the need for sophisticated memory man-
agement in Section 4, where we saw that when resources
are limited we can reduce memory overhead in a va-
riety of ways that all result in approximate query an-
swers. When conditions such as data rates and query
load change, the availability and best use of resources
change also. Our overall goal is to maximize query pre-
cision by making the best use of available resources, and
ultimately to have the capability of doing so dynamically
and adaptively. Solving the overall problem (which fur-
ther includesinactiveandweightedqueries as discussed
in Section 2.3) involves a huge number of variables, and
certainly is intractable in the general case. To date we
have developed:

1. An algorithm for allocating memory to a query plan
statically, maximizing result precision under a rela-
tively simple precision model. This work is described
in Section 5.1.

2. An algorithm for incorporating known constraints on
input data streams to reduce synopsis sizes without
compromising precision. This work is described in
Section 5.2.

3. An algorithm for operator scheduling that minimizes
queue sizes. This work is described in Section 5.3.

In comparison with other systems for processing
queries over data streams, both theTelegraph[HF+00]
and Niagara [CDTW00] projects do consider resource

management (largely dynamic in the case of Telegraph
and static in the case of Niagara), but not in the context
of providing approximate query answers when available
resources are insufficient. An important contribution was
made in Aurora [CCC+02] with the introduction of “QoS
graphs” that capture tradeoffs among precision, response
time, resource usage, and usefulness to the application.
However, in Aurora approximation currently appears to
occur solely throughdrop-boxesthat perform load shed-
ding as described in Section 4.2.2.

5.1 Static Resource Allocation

Our work so far in static resource allocation addresses
a restricted scenario but provides a solid basis for more
general algorithms. Consider one query, and assume the
query plan is provided or the system has already selected
a “best” query plan. Plans are expressed using the opera-
tors of relational algebra (including set difference, which
as usual introduces some challenges). We use a simple
model of precision that measures the accuracy of a query
result as its average rate offalse positivesandfalse neg-
atives.

We give a brief overview of our approach and algo-
rithm. Let us assume that each operator in a query plan
has a known function from resources to precision, typi-
cally based on one or more of the approximation methods
that reduce synopsis sizes discussed in Section 4. Fur-
ther suppose that we know how to compute precision for
a plan from precision for its constituent operators—we
will discuss this computation shortly. Finally, assume we
have fixed total resources. (Resources can be of any type
as long as they can be expressed and allocated numeri-
cally.) Then our goal of allocating resources to operators
in order to maximize overall query precision can be ex-
pressed as a nonlinear optimization problem, which we
currently solve using a packaged numerical iterative im-
provement solver, although in the long run scalability of
the packaged solver may become an issue.

In the language handled by our static resource alloca-
tion algorithm, all operators and plans produce a stream
of output tuples, although ordering is not relevant for the
operators we consider. The precision of a stream—either
a result stream or a stream within a query plan—is de-
fined by (FP,FN), whereFP2 [0; 1] andFN2 [0; 1]. FP
captures the false positive rate: the probability that an
output stream tuple is incorrect.FN captures the false
negative rate: the probability, for each correct output
stream tuple, that there is another correct tuple that was
missed. (FP,FN) also can denote the precision of an op-
erator, with the interpretation that the operator produces
a result stream with (FP,FN) precision when given in-
put(s) with (0,0) (exact) precision. In all cases,FP and
FN denote expected (mean) precision values over time.

We assume that all plan operators map allocated re-

8



sources to precision specifications (FP,FN). Currently
we do not depend on monotonicity—i.e., we do not as-
sume that more resources result in lower values forFP
andFN—although we can expect monotonicity to hold
and are investigating whether it may help us in our nu-
merical solver. We have devised (and shown to be cor-
rect, both mathematically and empirically) fairly com-
plex formulas that, for each operator type, compute out-
put stream precision (FP,FN) values from the precision
of the input streams and the precision of the operator it-
self.

We assume the base input streams to a query have ex-
act precision, i.e., (0,0). We apply our formulas bottom-
up to the query plan, feeding the result to the numerical
solver which produces the optimal resource allocation.

The next steps in this work are to incorporate variance
into our precision model, to extend the model to include
value-based precision so we can handle operators such
as aggregation, and eventually to couple plan generation
with resource allocation.

5.2 Exploiting Constraints Over Data Streams

So far we have not discussed exploiting data or arrival
characteristics of input streams during query processing.
Certainly we must be able to handle arbitrary streams,
but when we have additional information about streams,
either by gathering statistics over time or through con-
straint specifications at stream-registration time, we can
use this information to reduce resource requirements
without compromising query result precision. (An al-
ternate and more dynamic technique is for the streams to
containpunctuations, which specify run-time constraints
that also can be used to reduce resource requirements;
see [TMSF].)

Our main contribution to date has been to identify sev-
eral types of constraints over data streams, and for each
constraint type to specify an “adherence parameter” that
captures how closely a given stream or set of streams
adheres to a constraint of that type. We have devel-
oped query plan construction and execution algorithms
that take stream constraints into account in order to re-
duce synopsis sizes at query operators, while still pro-
ducing precise output streams. Using our algorithm, the
closer the streams adhere to the specified constraints at
run-time, the smaller the required synopses. We have
implemented our algorithm in a stand-alone query pro-
cessor in order to run experiments, and our next step is
to incorporate it into the STREAM prototype.

As a simple example, consider a continuous query
that joins a streamOrders (hereafterO) with a stream
Fulfillments (hereafterF ) based onorderID and
itemID (orders may be fulfilled in multiple pieces), per-
haps to monitor average fulfillment delays. In the general
case, answering this query precisely requires synopses of

unbounded size [ABB+02]. However, if we know that all
tuples for a given orderID and itemID arrive onO before
the corresponding tuples arrive onF , then we need not
maintain a join synopsis for theF operand at all. Fur-
thermore, ifO tuples arrive clustered by orderID, then
we need only saveO tuples for a given orderID until the
next orderID is seen.

In practice, constraints may not be adhered to by data
streams strictly, even if they “usually” hold. For exam-
ple, we may expect tuples on streamO to be clustered
by orderID within a tolerance parameterk: no more than
k tuples with a different orderID appear between two tu-
ples with same orderID. Similarly, due to network delays
a tuple for a given orderID and itemID may arrive onF
before the corresponding tuple arrives onO, but we may
be able to bound the time delay with a constantk. These
constants are the “adherence parameters” discussed ear-
lier, and it should be clear that the smaller the value ofk,
the smaller the necessary synopses.

The constraints considered in our work aremany-
one join and referential integrity constraints be-
tween two streams, andunique-value, clustered-arrival,
and ordered-arrival constraints on individual streams.
Our algorithm accepts select-project-join queries over
streams with arbitrary constraints, and it produces a
query plan that exploits constraints to reduce synopsis
sizes without compromising precision. The details are
extensive and beyond the scope of this paper.

5.3 Scheduling

Query plans are executed via aglobal scheduler, whose
job it is to call therun methods of query plan opera-
tors (Section 3) in order to make progress moving tuples
through query plans and producing query results. Our
initial scheduler uses a simple round-robin scheme, and
a single granularity for therun operator expressed as
the maximum number of tuples to be consumed from
the operator’s input queue before relinquishing control.
This simple scheduler gives us a functioning system but
clearly is far from optimal for most sets of query plans.

There are many possible objectives for the sched-
uler, including stream-based variations of response time,
throughput, and (weighted) fairness among queries. For
our first cut at a more “intelligent” scheduler, we have de-
cided to focus on minimizing intermediate queue sizes,
in keeping with our general project goal of coping
with limited resources. Furthermore, the granularity of
scheduling we consider is a “time unit,” during which
some operators may be able to consume more input tu-
ples than others. We have not considered parallelism in
our scheduling algorithms.

Consider the following very simple example. Suppose
we have a query plan with two unary operators:O1 op-
erates on input queueq1, writing its results to queueq2

9



which is input to operatorO2. SupposeO1 takes one
time unit to operate on a batch ofn tuples fromq1, and
it has 20% selectivity, i.e., it producesn=5 tuples inq2
when it consumesn tuples fromq1. (Time units and
batches ofn input tuples simplify exposition; their ac-
tual values are not relevant to the overall reasoning in
our example.) OperatorO2 takes one time unit to oper-
ate onn=5 tuples, and it produces no tuples on its output
queue. Let us assume that over time the average arrival
rate of tuples onq1 is no more thann tuples per two time
units, so all tuples can be processed and queues will not
grow without bound. (If queues do grow without bound,
eventually some form of load shedding must occur, as
discussed in Section 4.2.2). However, tuple arrivals may
be bursty.

Here are two possible scheduling strategies:

1. Tuples are processed to completion in the order they
arrive onq1. Each batch ofn tuples inq1 is processed
byO1 and thenO2 based on arrival time, consuming
two time units overall.

2. If there is a batch ofn tuples inq1, thenO1 operates
on them using one time unit, producingn=5 new tu-
ples inq2. Otherwise, if there are any tuples inq2
then up ton=5 of these tuples are operated on byO2,
consuming one time unit.

Suppose we have the following arrival pattern:2n tuples
arrive onq1 at time� = 0, followed by no tuples at time
� = 1 andn tuples each at times� = 2 and � = 3.
The following table shows the total size of queuesq1 and
q2 under the two scheduling strategies, where each table
entry is a multiplier forn.

Time � 0 1 2 3 4 5 6 7 8

Strat. 1 2 1.2 2 2.2 2 1.2 1 .2 0
Strat. 2 2 1.2 1.4 1.6 .8 .6 .4 .2 0

In this example, both strategies finish at the 8th time step,
and Strategy 2 is clearly preferable in terms of memory
overhead.

We have a designed a scheduling policy that provably
has close-to-optimal queue size overhead, and is based
on the general property observed in our example: greed-
ily schedule the operator that “consumes” the largest
number of tuples per time unit and is the most selective
(i.e., “produces” the fewest tuples). Two additional con-
siderations are reflected in the algorithm:

� We favor operators with full batches of tuples in their
input queues over higher-priority (i.e., more selective
or more consuming) operators with underfull input
queues, so that operators can make full use of their
timeslices and tuples continue to move through the
query plan.

� A high-priority operator may be underutilized if the
operators feeding it are low priority, so we also con-
siderchainsof operators within a plan when we make
scheduling decisions. However, we do not schedule
chains as a unit, a strategy taken by Aurora’strain
schedulingalgorithm [CCC+02]. Aurora’s objec-
tive is to improve throughput by reducing context-
switching between operators, batching the process-
ing of tuples through operators, and reducing I/O
overhead since their inter-operator queues may be
written to disk. So far we have considered minimiz-
ing memory-based queue sizes as our only schedul-
ing objective.

Details of our scheduling algorithm and the proof of its
near-optimality are fairly involved and not presented due
to space limitations.

Our algorithm achieves queue size minimization, but
we may pay in increased time to initial results. In our
example above, although both strategies finish process-
ing tuples at the same time and for simplicity the plan
produces an empty answer, it should be clear that Strat-
egy 1 generally has the potential to produce initial results
more quickly than Strategy 2. Important next steps are to
incorporate response time and (weighted) fairness across
queries into our scheduling algorithm, as well as intro-
ducing flexible timeslices and taking the cost of context-
switching into account.

5.4 Resource Management: Summary and
Discussion

Recall that our overall goal is to manage resources care-
fully, and to perform approximation in the face of re-
source limitations in a flexible, usable, and principled
manner. We want solutions that perform static approx-
imation based on predictable resource availability (Sec-
tions 4.1 and 5.1), and we want alternate solutions that
perform dynamic approximation and resource allocation
to maximize the use of available resources and adapt
to changes in data rates and query loads (Section 4.2).
Although we have solved some pieces of the problem
in limited environments, many important challenges lie
ahead; for example:

� We need a means of monitoring synopsis and queue
sizes and determining when dynamic reduction mea-
sures (e.g., window size reduction, load shedding)
should kick in.

� Even if we have a good algorithm for initial al-
location of memory to synopses and queues, we
need a reallocation algorithm to handle the inevitable
changes in data rates and distributions.

� The ability to add, delete, activate, and deactivate
queries at any time forces all resource allocation

10



schemes, including static ones, to provide a means
of making incremental changes.

It is clear to us that no system will provide a com-
pletely general and optimal solution to the problems
posed here, particularly in the dynamic case. However,
we will continue to chip away at important pieces of the
problem, with (we hope) the end result being a cohesive
system that achieves good performance and usable, un-
derstandable functionality.

6 Implementation and Interfaces

Since we are developing the STREAM prototype from
scratch we have the opportunity to create an extensible
and flexible software architecture, and to provide useful
interfaces for system developers and “power users” to vi-
sualize and influence system behavior. Here we cover
three features of our design: our generic entities, our en-
coding of query plans, and the system interface. Collec-
tively, these features form the start of a comprehensive
“workbench” we envision for programming and interact-
ing with the DSMS.

6.1 Entities and Control Tables

In the implementation of our system, operators, queues,
and synopses all are subclasses of a genericEntity
class. Each entity has a table of attribute-values pairs
called itsControl Table(CT for short), and each entity
exports an interface to query and update its CT. The CT
serves two purposes in our system so far. First, some CT
attributes are used to dynamically control the behavior of
an entity. For example, the amount of memory used by
a synopsisS can be controlled by updating the value of
attributeMemory in S’s control table. Second, some CT
attributes are used to collect statistics about entity behav-
ior. For example, the number of tuples that have passed
through a queueq is stored in attributeCount of q’s
control table. These statistics are available for resource
management and for user-level system monitoring. It is
a simple matter to add new attributes to a CT as needs
arise, offering convenient extensibility.

6.2 Query Plans

We want to be able to create, view, understand, and man-
ually edit query plans in order to explore various aspects
of query optimization. Our query plans are implemented
as networks ofentitiesas described in the previous sec-
tion, stored in main memory. A graphical interface is
provided for creating and viewing plans, and for adjust-
ing attributes of operators, queues, and synopses. The in-
terface was very easy to implement based on our generic
CT structure, since the same code could be used for most
query plan elements.

Query plans may be viewed and edited even as queries
are running. Currently we do not support viewing of data
moving through query plans, although we certainly are
planning this feature for the future. Since continuous
queries in a DSMS should be persistent, main-memory
plan structures are mirrored in XML files, which were
easy to design again based on CT attribute-value pairs.
Plans are loaded at system startup, and any modifications
to plans during system execution are reflected in the cor-
responding XML. Of course users are free to create and
edit XML plans offline.

6.3 Programmatic and Human Interfaces

Rather than creating a traditional application program-
ming interface (API), we provide a web interface to
the DSMS through direct HTTP (and we are plan-
ning to expose the system as aweb servicethrough
SOAP [WSD01]). Remote applications can be written
in any language and on any platform. They can register
queries, they can request and update CT attribute values,
and they can receive the results of a query as a stream-
ing HTTP response in XML. For human users, we have
developed a web-based GUI exposing the same function-
ality.

7 Conclusion and Acknowledgments

A system realizing the techniques described in this
paper is being developed at Stanford; please visit
http://www.db.stanford.edu/stream . We
are grateful to Aris Gionis, Jon McAlister, Liadan
O’Callaghan, Qi Sun, and Jeff Ullman for their partic-
ipation in the STREAM project.

References

[ABB+02] A. Arasu, B. Babcock, S. Babu, J. McAlis-
ter, and J. Widom. Characterizing memory require-
ments for queries over continuous data streams. In
Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, pages 221–232,
Madison, Wisconsin, May 2002.

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani,
and J. Widom. Models and issues in data stream
systems. InProc. 21st ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems,
pages 1–16, Madison, Wisconsin, May 2002.

[Blo70] B. Bloom. Space/time trade-offs in hash coding
with allowable errors.Communications of the ACM,
13(7):422–426, July 1970.

[CCC+02] D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, G. Seidman, M. Stonebraker,

11



N. Tatbul, and S. Zdonik. Monitoring streams–a
new class of data management applications. InProc.
28th Intl. Conf. on Very Large Data Bases, Hong
Kong, China, August 2002.

[CDTW00] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang.
NiagraCQ: A scalable continuous query system for
internet databases. InProc. ACM SIGMOD Intl.
Conf. on Management of Data, pages 379–390, Dal-
las, Texas, May 2000.

[CF02] S. Chandrasekaran and M. Franklin. Streaming
queries over streaming data. InProc. 28th Intl. Conf.
on Very Large Data Bases, Hong Kong, China, Au-
gust 2002.

[CGRS02] K. Chakrabarti, M.N. Garofalakis, R. Ras-
togi, and K. Shim. Approximate query processing
using wavelets. InProc. 26th Intl. Conf. on Very
Large Data Bases, pages 111–122, Cairo, Egypt,
August 2002.

[CMN99] S. Chaudhuri, R. Motwani, and
V.R. Narasayya. On random sampling over joins. In
Proc. ACM SIGMOD Intl. Conf. on Management of
Data, pages 263–274, Philadelphia, Pennsylvania,
June 1999.

[GG02] M.N. Garofalakis and P.B. Gibbons. Wavelet
synopses with error guarantees. InProc. ACM SIG-
MOD Intl. Conf. on Management of Data, pages
476–487, Madison, Wisconsin, May 2002.

[GGR02] M.N. Garofalakis, J. Gehrke, and R. Rastogi.
Querying and mining data streams: You only get one
look (tutorial). In Proc. ACM SIGMOD Intl. Conf.
on Management of Data, page 635, Madison, Wis-
consin, May 2002.

[HF+00] J.M. Hellerstein, M.J. Franklin, et al. Adaptive
query processing: Technology in evolution.IEEE
Data Engineering Bulletin, 23(2):7–18, June 2000.

[MSHR02] S. Madden, M. Shah, J. Hellerstein, and
V. Raman. Dynamic multidimensional histograms.
In Proc. ACM SIGMOD Intl. Conf. on Management
of Data, pages 49–60, Madison, Wisconsin, May
2002.

[Sel88] T.K. Sellis. Multiple-query optimization.ACM
Trans. on Database Systems, 13(1):23–52, March
1988.

[SLR96] P. Seshadri, M. Livny, and R. Ramakrish-
nan. The design and implementation of a sequence
database system. InProc. 22nd Intl. Conf. on Very
Large Data Bases, pages 99–110, Bombay, India,
September 1996.

[Soo91] M.D. Soo. Bibliography on temporal databases.
SIGMOD Record, 20(1):14–24, March 1991.

[TGIK02] N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Dynamic multidimensional histograms. InProc.
ACM SIGMOD Intl. Conf. on Management of Data,
pages 428–439, Madison, Wisconsin, May 2002.

[TMSF] P. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Punctuated data streams. http://www.cse.ogi.edu/
~ptucker/PStream.

[UW02] J.D. Ullman and J. Widom.A First Course in
Database Systems (Second Edition). Prentice Hall,
Upper Saddle River, New Jersey, 2002.

[VN02] S.D. Viglas and J.F. Naughton. Rate-
based query optimization for streaming information
sources. InProc. ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 37–48, Madison, Wiscon-
sin, May 2002.

[WA91] A.N. Wilschut and P.M.G. Apers. Dataflow
query execution in a parallel main-memory envi-
ronment. InProc. Intl. Conf. on Parallel and Dis-
tributed Information Systems, pages 68–77, Miami
Beach, Florida, December 1991.

[WSD01] Web Services Description Language (WSDL)
1.1, March 2001. http://www.w3.org/TR/wsdl.

12


