
Continually Evaluating Similarity-Based Pattern Queries
on a Streaming Time Series*

Like Gao, X. Sean Wang
Department of Information and Software Engineering

George Mason University, Fairfax, VA 22030, USA
{Igao, xywang}@gmu.edu

A B S T R A C T
In many applications, local or remote sensors send in streams
of data, and the system needs to monitor the streams to dis-
cover relevant events/patterns and deliver instant reaction
correspondingly. An important scenario is that the incom-
ing stream is a continually appended time series, and the
patterns are time series in a database. At each time when a
new value arrives (called a time position), the system needs
to find, from the database, the nearest or near neighbors of
the incoming time series up to the time position. This paper
attacks the problem by using Fast Fourier Transform (FFT)
to efficiently find the cross correlations of time series, which
yields, in a batch mode, the nearest and near neighbors of
the incoming time series at many time positions. To take
advantage of this batch processing in achieving fast response
time, this paper uses prediction methods to predict future
values. FFT is used to compute the cross correlations of
the predicted series (with the values that have already ar-
rived) and the database patterns, and to obtain predicted
distances between the incoming time series at many future
time positions and the database patterns. When the actual
data value arrives, the prediction error together with the
predicted distances is used to filter out patterns that are
not possible to be the nearest or near neighbors, which pro-
vides fast responses. Experiments show that with reasonable
prediction errors, the performance gain is significant.

1. I N T R O D U C T I O N
In many applications, data streams from various sensors ar-
rive at a system, and the system must monitor the streams
to discover relevant events or patterns, and to react corre-
spondingly. The reaction often needs to be fast each time a
new value arrives. Example applications include computer
network monitoring, automated reconnaissance flight con-
trol, and automated security trading. These applications
call for a type of "continuous query" processing, emphasizing

*This work was partially supported by the NSF career award
9875114.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

on fast responses. It has been realized that traditional data
processing systems are not enough for continuous queries,
and new techniques need to be developed [29, 7, 23, 3].

In this paper, we deal with an important scenario where the
incoming stream takes the form of a continually appended
time series (the streaming series), and the patterns are rep-
resented as a fixed set of time series in the database. The
pattern series may be of various lengths. At each time when
a new value arrives (called a time position), the system needs
to find quickly, from the database, the nearest or near neigh-
bors for the streaming series up to that time position. For
example, in an automated stock exchange/monitoring appli-
cation, the system may be asked to monitor the stock prices
and to respond in a particular manner at any moment when
the price trend shows a strong similarity (i.e., the distance
is within a certain threshold) to one of the preselected price
(pattern) series.

In the above stock exchange/monitoring example, if the
number of preselected price series is small and the new val-
ues arrive at a slow rate, fast response may be achieved by
a straightforward algorithm that scans all the preselected
price series to match against the streaming series every time
a new value arrives. However, when the number of pre-
selected series is large and/or new values arrive very fre-
quently, more efficient algorithms are needed. Existing in-
dexing strategies do not work well because pat tern series
may have various lengths (see Section 5 for more details).
The challenge is to develop a new strategy so that the system
can respond quickly once new values reach the system.

We attack the problem by taking advantage of the fact
that Fast Fourier Transform (FFT) can be used to effi-
ciently find the cross correlations of the streaming series
with the database patterns. These cross correlations are
closely related to the similarity measure we choose, namely
the weighted Euclidean distance. Using the cross correla-
tions, we can directly derive the nearest and near neighbors
of the streaming time series at many time positions con-
tained in the streaming series, in a batch processing mode.

The above batch processing, however, may not deliver fast
response time. Indeed, batch processing only saves overall
processing time, and does so by waiting for a number of
values to arrive before launching the batch processing. Since
the system does not immediately process the values as they
arrive, response time suffers.

370

In order to obtain fast response time and yet take advantage
of batch process, we use prediction methods to predict future
values. We use FFT to compute the cross correlations of the
predicted series (with the already arrived values) and the
database patterns, and obtain predicted distances between
the streaming time series at many future time positions and
the database patterns. When the actual data value arrives,
the prediction error, together with the predicted distances,
is used to filter out patterns that are not possible to be the
nearest or near neighbors, and thus expedite the process at
each time position. In some cases, we can even find out some
or all answers directly using the prediction.

The above strategy is similar to the blocked access idea in
cache management where a block of data values is brought
into the cache when any one value in the block is accessed.
This is advantageous in cache management because access-
ing a block costs much less than accessing all the values in
the block individually and the other values in the block are
likely to be useful in speeding up subsequent accesses. In
our method, the "block" consists of predicted values to take
advantage of batch processing and the predicted values in
the "block" are useful for fast processing when new values
arrive.

The effectiveness of the above strategy obviously depends on
the accuracy of the prediction model. In order to evaluate
its effectiveness, we perform experiments under various pre-
diction accuracy assumptions, instead of using some fixed
prediction models. Specific applications may use their par-
ticular prediction models to achieve accurate predictions [12,
16, 24, 11, 30]. Our experiments show that when the error
between the predicted series and actual series is reasonably
small, the performance gain of this strategy is significant.

The contribution of the paper is threefold. Firstly, we in-
troduce a new general effective strategy, based on predic-
tion and batch processing, to achieve better response time
for continuous queries. Secondly, we show in detail how
the above strategy is used on streaming time series to find
similarity-based patterns, i.e., the nearest neighbor or near
neighbors. And lastly, we demonstrate through experiments
the effectiveness of the method under various conditions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formally define our problem and show how FFT
can be used to provide us with the batch processing ca-
pability. We discuss in Section 3 the details of continuous
query processing using the batch processing and prediction.
In Section 4, we report our experiments and the effective-
ness of our method. We discuss related work in Section 5
and conclude the paper in Section 6 with some summary
remarks and future research directions.

2. PROBLEM FORMULATION AND BATCH
PROCESSING USING FFT

In this section, we start with introducing some basic notions,
and defining precisely the continuous queries we are dealing
with. We then present the batch processing technique based
on FFT.

We assume that all (one-dimensional) time series axe sam-
pled at an equal time interval. Without loss of general-

Symbol I Meaning

x, y, . . . time series
x[i, j] subseries of x between positions i and j ,

inclusively
Z8 streaming time series (query series)
~ S predicted time series
F~ the i th pattern or feature series, li + 1 is

its length.

Ta b l e 1: Some f r e q u e n t l y u sed s y m b o l s .

ity, we take the interval as the unit and thus all time se-
ries are represented as a sequence of real numbers, with
the position of the sequence corresponding to the sampling
time. We further assume that the first sample is always
taken at time 0. Hence, a time series x takes the form of
(x[0], x[1],. . . , x[l],...). A time series x is finite if it ends at
certain I > 0, and we then say that the series has a length
l + 1. A time series is infinite if no such I exists. If x is a
time series, we use x[i, j] to denote the finite time (sub)series
(x[i], x[i + 1],. . . , x[j]), where 0 < i < j are integers with j
less than the length of x if x is finite.

There are situations where the values in time series are not
sampled at a fixed interval. When this is the case, interpola-
tion may be necessary to even define the notion of distance
of a pair of time series. How the interpolation is done and
other related issues are beyond the scope of this paper.

Given two series of length I + 1, we use a weighted Eu-
clidean distance to measure the distance between them and
the weight is the square root of the length. More specifically,
given two finite series x and y of length l + 1, the distance
between x and y is defined as:

D(x, y) = (x[s] - y[s])2/(l + 1).

In our scenario, we assume that we have a (fixed) set of
finite time series, called pattern series, Fi. The series Fi
is of length li + 1. These are the pattern or feature series
that the system needs to watch out for. In the stock ex-
change/monitoring example mentioned in the introduction,
the preselected historical price trends are these pattern se-
ries. We also assume there is an infinite time series, which
is our streaming series, denoted ZS; and at time position
p > 0, the value ZS[p] comes into the system. Hence, at
time position p > 0, the streaming series is a finite series of
length p + 1. In the stock exchange/monitoring example, the
stock prices of the market is this infinite streaming series.
At time p, the stock price at the time arrives at the system.

The continuous query we are dealing with is that at each
time p, find the nearest neighbor or near neighbors of the
"current" ZS among the pattern series Fi. To precisely de-
fine these neighbor concepts, we first have:

D e f i n i t i o n Let Fi be a pattern series in the database with
length li + 1. For a given p _> li, the distance between ZS and

371

pattern Fi at position p, is defined as D(ZS[p - li,p], Fi). If
p < li, then this distance is defined as positive infinite.

Intuitively, the distance of I S and Fi at position p is from
comparing Fi with the values of I S at position p and looking
backward for li steps. With the above distance definition,
we define neighbors of the streaming series at position p.

D e f i n i t i o n Let p > 0 be an integer. Given a real number
h > 0, a pattern Fi is the nearest neighbor of Z S at position
p if for all other patterns Fj(j ~ i), D (Z S [p - li,p],Fi) <
D (Z S [p - l j ,p],Fj); and Fi is an h-near neighbor of I S at
position p if D(ZS[p - li,p],Fi) < h.

In order to simplify the presentation, in the remainder of
the paper, we assume that no two finite distances (two reals)
will ever be exactly the same. This assumption can be lifted
without much problem, and is not pursued in this paper.

D e f i n i t i o n A continuous query on a streaming time series is
one of the following standing requests: (1) For each position
p, find the nearest neighbor of Z S at position p; or (2) For
each position p, find the h-near neighbors of 778 at position
p, where h > 0 is a real number, called threshold.

We assume we are interested only in position p such that the
distance between 27S and Fi at position p is defined for each
Fi. In other words, we are only interested in time position
p such that p _> max{l i lFi} , where li -4- 1 is the length of
Fi. This is not a severe restriction at all since the streaming
time series at most of the time is much longer than any of
the pattern series. Lifting this restriction is not difficult,
either, but is not pursued in this paper.

It is possible that at position p, the answer of the h-near
neighbor query returns an empty set. This is when the dis-
tance of I S and Fi is greater than h for each Fi.

The naive method of processing the query is to find the
distance of I S and Fi at each time position p for each Fi.
As mentioned earlier, in many situations, this naive method
may not be enough to derive sufficiently fast response. In
the remainder of the section, we derive a batch processing
method to calculate distance of I S and Fi at multiple time
positions.

Consider the definition o fD(ZS[p- l i , p] , Fi). We have (l i+l
is the length of Fi):

(li -4- 1) * D2(ZS[p - li,p], Fi)

I i l i

= zS[(p - l ,) + s] 2 +
~=o 8=0 (1)

l i

- 2 ~ Z S [(p - l l) + s] * Fi[s]
s=0

Once the values are known for all three terms on the right
hand side of the equation, D(ZS[p - li,p],F~) is easily ob-
tained. The first term on the right hand side can be com-
puted incrementally as p moves forward to the next position.

The second does not change and can be pre-computed. As
for the third, we can see that each multiplicand z sq[(p - l i)+
s] will shift forward to the next value as p becomes p -4- 1,
while the multiplier Fi Is] keeps the same. The sum of prod-
ucts of current computation has little relationship with the
last one; and is the most time-consuming item. Fortunately,
as is shown below, this term is exactly double of the value
of a cross correlation of Z S and Fi, and Fast Fourier Trans-
form(FFT) can serve to compute multiple cross correlations
efficiently in a batch mode.

Given an infinite time series x and a finite series y of length
1 + 1, the cross correlation function of x and y is defined as

l

C C o r r ~ , ~ , [d] = ~ x [d + s l * Y [S] , d = 0 ,1 ,2 , . . . (2)
8=0

In the above, d is the number of shifts between the x and y,
and is called the lag parameter. It follows from the above
definition that only the values x[d], . . , x[d + l] are used in
calculating the cross correlation of x and y of lag d. Consider
equation (1), the third term is exactly 2*CCorrzs ,Fi [p-li].

There are a number of fast methods to calculate cross cor-
relations via convolutions [31, 5]. Here, we use the Circular
Correlation Theorem [25, 20], a property of the Discrete
Fourier Transform (DFT), to perform the calculation. Be-
fore stating the theorem, we need some auxiliary notation.

D e f i n i t i o n (1) Let x and X be two series of length N +

1. Then x .(DFT~, X denotes the fact that X is the (N +
N + I

1)-point DFT of x. Clearly, if this is the case, x is the
(N + 1)-point inverse D F T o f X . (2) Given two finite series
x and y of length N + 1, then CirCCorr~ ,~ denotes the
unnormalized circular cross correlation sequence, defined as

N

CirCCorr~,u[d] = E x[(d + s) m o d (N -4- 1)] * y[s],
8=0

d = 0 ,1 ,2 , . . . , N

We now give the Circular Correlation Theorem [25, 20].

T h e o r e m Let x, X, y and Y be finite series of length N + 1.

Assume x "tDFT~', , X and y ~ ' ~ Y. Then
N + i N + I

CirCCorr=.~ ~ (X[0] * Y[0], . . . , X[N] * Y[N]),
N + I

where Y[s] is the complex-conjugate of Y[s].

I f N = 2k--1 for some positive integer k, then we may use the
Fast Fourier Transform (FFT) algorithm to calculate DFT
and inverse DFT, and hence the circular cross correlations.
More specifically, given time series x and y of length N -4- 1,
we first use F F T to calculate X and Y. We then generate
the sequence (X[0] * Y[0],. . . , X[N] * Y[N]) and use inverse
F F T to obtain the circular cross correlations.

By using the circular cross correlation function, we can now
calculate the cross correlations of the streaming series Z S

372

and a pa t t e rn series Fi. Indeed, assume the length of Fi
is li + l , and let N _> li. We define x = Z S [p , - l i , p , -
li + N] , and y as the t ime series (F i [0] , . . . , F i [l i] , 0 , . . . , 0) ,
where 0 appears N - li t imes. Since y[li + 1]
y[N] = 0, it follows from the definitions tha t CCorr~ ,y[d] =
C i r C C o r r ~ , y [d] for each d wi th 0 _< d _< N - li. This
is because tha t the "last" circular cross correlat ion tha t
is still the same as the cross correlat ion is when the last
value of x "aligns" wi th y[ll], i.e., when the lag is up to
N - li; and hence, we obtain the cross correlat ions from
CCorr~ ,y[0] up to C C o r r x , y [N - li] from the circular cross
correlations. By the definition of x and y, we see tha t we
have the cross correlat ions from C C o r r z s , F i [p, -- li] up to
C C o r r z s , F i [ps - li ÷ N - li]. By the commen t after Equa-
t ion (2), we can obtain the distances of Z S and Fi at posi-
t ions from p, to ps + N - li in a ba tch mode.

For a set of pa t te rn series Fi, we will use a single t ime series
x for all the pa t te rn series in the ba tch process described in
the previous paragraph. In order to do so, we take Imax --
m a x { l i l l i is the length of pa t t e rn Fi}, and N = 2 k - 1 _>
Ima~ for some integer k. For each pa t t e rn series Fi, we define
yi as Fi padded with N - li zeros, and we let x = ZS[p~ -
1 p , - lma~ + N]. W i t h the same a rgument as in the
paragraph above, we see tha t the ba tch processing, applied
to x and yl for each i, can give us the dis tances between Z S
and Fi for each i at positions p , , . . . ,p , ÷ N - l~a~.

In summary, the batch processing has the following inputs
and outputs :

B a t c h Process
I n p u t : Z S [p s - I p~ - Ima~ + N] and all pa t te rn

series Fi, where N ---- 2 k - 1 _> l m ~ for some
k, and I m ~ + 1 is the m a x i m u m length of all
the pa t te rn series.

O u t p u t : Distances between Z S and Fi for each i at
positions p ~ , . . . ,ps + N - Imam.

Exper imen t s show tha t such a ba tch processing is much
faster t han a naive a lgor i thm tha t calculates each single dis-
tance separately, and fur thermore , the greater the value N
is, the more savings this batch m e t h o d provides.

3. CONTINUOUS QUERY WITH PREDIC-
TION

The batch processing given in the previous section saves
overall computa t ion t ime, but does not direct ly give fast
response time. In this section, we show how this batch pro-
cessing s t ra tegy can be used to deliver fast responses.

The problem of the batch processing is t ha t the response
t ime suffers since it waits for N - lmaz values to come before
launching the batch process. If N is chosen so tha t N - lma~
is small, the batch processing does not save too much t ime,
and may actual ly be slower than the naive me thod due to
its overhead. On the other hand, if N - Imax is large, then
the response t ime will be poor.

We will use the predict ion to solve the above slow response
t ime problem. In practical applications, most t ime series
have some t rends or pa t te rns tha t can be used to successfully
predict future values in a s t reaming t ime series at most of the
t ime. Much research has been dedica ted to this subject and

provided m a n y predict ion models and a lgor i thms for specific
appl icat ions [12, 16, 24, 11, 30]. An n - s t e p ahead p r e d i c t i o n
m o d e l predicts the values for the next n t ime positions.

By using predic ted values instead of actual values from the
s t reaming series, we may use the F F T batch m e t h o d to cal-
culate the pred i c t ed d i s tances between the s t reaming series
and the pa t t e rn series at many future positions. (The num-
ber of the future positions to be used largely depends on the
accuracy of the predict ion model because the far ther into the
future, the less accurate the predictions.) W h e n the actual
value arrives, the predict ion error will be known, and will
be used together wi th the predicted distances to obta in the
neighbors of the s t reaming series. We call such a m e t h o d
C o n t i n u o u s Q u e r y i n g wi th P r e d i c t i o n or C Q P for short.

~T Actual Streaming Time Series Predict.e..d..VaJues

~ 1 /r-q [~ Required Length of One Batch Process (=FFT Length: N +1) ~[

/
.~ (. 5 "'" - - i " T = II-

Ps-l~ Ps p +n ps-lm~+N Position

F i g u r e 1: P r e d i c t i o n and batch process ing.

Figure 1 i l lustrates the C Q P process. Assume current ly we
are considering t ime posit ion p , , i.e., the cont inuous query
has been answered for up to and including t ime posit ion
p~ - 1, and the value at posit ion ps has not arr ived yet. At
this momen t , we obtain n-s tep ahead predict ion, and de-
pict the s i tua t ion in the figure. We use p r e d i c t i o n length
to denote the m a x i m u m predict ion step achieved. At t ime
before ps, the predict ion model provides n looking forward
predic ted values for t ime posit ions p~, p8 + 1, ...,p8 + n - 1
(the do t t ed curve). We use P S to denote the t ime series
formed by the values of Z 8 up to p, - 1, and take the n pre-
dicted values, and pad the series wi th infinite number zeros
towards the end. We call P S the pred ic t ed ser ies . More
precisely,

p s = (z s [o] , . . . , z s [p ~ - 1], P o , . . . , P ~ - l , o , . . . , o , . . .),

where Pi, i = 0 , . . . , n - 1, are the predicted values.

We can now use the batch processing described at the end
of Sect ion 2 to calculate the predicted distances. In the
batch process, instead of using Z S , we use T 'S as the input .
Also, we choose a value N tha t is no less than n ÷ 1 as
i l lustrated in Figure 1. We use 7aS[p, - l p~ - lma~ + N]
aS the input (along with the pa t t e rn series) to the batch
process, and we will obta in the distances between P,5 and
Fi for posit ions p~, . . . , p , + N - I Since values after
p~ + n - 1 are not really predicted values (they are padded
zeros), we actual ly obta in the (predicted) dis tances be tween
P S and Fi for posit ions p , , . . . , ps + n - 1.

373

Step Action
1.
2.

3.

4.

From the next position p,, generate n predicted values, and form the predicted series 79S.
Use the b a t c h process on 'PS with all pattern series Fi to generate predicted distances
for positions p,, . . . , p~ + n - 1.
For each time position p, within the range from ps to p~ + n - 1, when the actual value
arrives, do:

3.1. Use the prediction error, i.e., the distance between the predicted values and actual
values, and the predicted distances to partition the patterns Fi into three categories:
Category (1): those that satisfy the query,
Category (2): those that cannot satisfy the query, and
Category (3): those that are in neither category (1) nor category (2).
We call the patterns in category (3) as candidate patterns.
(See two subsections below for details on these two types of queries.)

3.2. Verify among the candidate patterns to find (further) answers to the query
(This is done directly using the formula in Equation (1).)

Change p~ to be p, + n, and perform steps 1-4 repeatedly.

F i g u r e 2: C o n t i n u o u s q u e r y i n g w i th p r e d i c t i o n (C Q P) .

Once the actual value at a time position from p, to ps +
n - 1 arrives for the streaming time series, we can use the
prediction error to find the neighbors of the streaming time
series. This can be done very efficiently if the prediction
errors are small. This step of the process depends on the
type of query we are considering, namely whether it is the
nearest neighbor or the h-near neighbor query; and we will
illustrate the details in the following two subsections. Once
we use up the predicted values, we launch another batch
process.

We summarize the C Q P algorithm with n-step prediction
in Figure 2.

The verification procedure, Step 3.2 in Figure 2, can be done
with a direct application of the distance definition. The cost
of this step is in proportion to the number of the candidates.
If the candidate list has many patterns, then this step will
be costly. On the other hand, if the candidate list is small,
verification can be fast, and sometime can even be skipped.
(Indeed, if the query is asking for the nearest neighbor and
the candidate list only consists of one pattern, then this
pattern has to be the nearest neighbor and no verification
is necessary.) Experiments show that the verification step is
the main cost of C Q P algorithm.

li + 1, i.e., D(79S[p - l i ,p] ,ZS[p - li,p]) is known once the
data values of ZS up to position p have arrived.

With the above predicted distances and prediction errors, we
may derive upper and lower bounds for the distance of the
actual streaming series with each pattern series at position p.
Indeed, because we use a variation of the Euclidean distance,
the following triangular relationship holds:

ID(x, F~) - D(x, Y)I -< D(y, F~) _< ID(x, F~) + D(x, y)] (3)

where x = 7)S ip - l,, p] and y = Z S [p - l,, p]. This triangular
relationship is depicted in Figure 4.

Predicted Series
x=PS~t,,pl

~Prediction Error
/ D(x.y)
/ ~ A c t u a l time Series
I u y=lS[p-I~,p]

Predicted Distance
D(x .F)

Actual Distance
o(r ,~)

Pattern Series
15

3.1 CQP for the nearest neighbor
In this subsection, we develop the details for Step 3.1 in
Figure 2 for the case of finding the nearest neighbor at each
time position p. The basic task is to find the "candidate"
pattern or feature series that must be considered. In other
words, we want to filter out all the pattern series that cannot
be the nearest neighbor based on the predicted distances and
the prediction errors.

Consider a time position p, which is between ps and p~ + n - 1
(see Figure 1). Through the batch processing of Step 2,
the predicted distance D (P S [p - li, p], Fi) is already known
for each Fi. Also, it is easy to incrementally calculate the
prediction error between the predicted series and the actual
streaming time series I S at position p with the length of

F i g u r e 4: T r i a n g u l a r r e l a t i o n s h i p a m o n g d i s t a n c e s .

Inequality (3) holds for each pattern Fi at position p. To
simplify our algorithm, we take the maximum prediction er-
ror to calculate the above bounds, i.e., let m a x D (P S p , ZSp)
= m a x { D (P S [p - l i ,p] ,ZS[p - li,p])] for all li}. Given pat-
tern Fi , D(79 S [p - l i , p], Fi) + rnax D(79 Sp, ZSp) is the derived
upper bound, and D (P S [p - li,p], Fi) - m a x D (~ S p , Z S p) is
the derived lower bound. Note that we can use this derived
lower bound partly because a - b < la - b[for all numbers
a and b.

Figure 5 shows the derived upper bound and the lower bound
at time position p in the increasing order of the predicted
distances D(7)S[p - li,p], Fi), i -- 0 , . . . , m. To simplify the

374

INPUT D(79S[p- li,p], F~) for all pattern F~
O U T P U T Candidate pattern list.

METHOD: Step 1

Step 2

Step 3

Qu ickSor t the list of Fi based on the values
D(7~S[p-l~,p],F~), i = 0, 1, 2, . . . ,m.
Assume the list obtained is Fso, . . . , F~m.
Let rnaxD(7)Sp,ZSv) = max{D(79S[p - li,p],ZS[p - / i ,p])[for all li},
and let minUp = maxD(79Sp , ISp) + D(PS[p - lso,p], Fso).
Find the last pattern F~i in the list obtained in Step 1 such that
D(795[p- l~i,p], F~i) - m a x D (7 9 S p , I S v) is less than or equal to minUp.
Call this pattern rsL and R e t u r n Fso, . . . , F~L.

Figure 3: Find the c a n d i d a t e p a t t e r n s for t he n e a r e s t n e i g h b o r a t p o s i t i o n p.

Predicted Distance Upper Bound

• ° ' "

/~ & @ sL Minimum Upper Bound: minUp

/ ! Candidate Patterns

~ Fiiternd Out Patterns

b
F~ F= F~ Pattenns

Figure 5: C a n d i d a t e s for t he n e a r e s t n e i g h b o r .

illustration, we reassign the subscripts of pattern series in
the order of these distances with (sO, s l , . . . , sm). Hence,
D(7)S[p-18i,p],F~i) < D (P S [p - I s j , p] , F s j) for all si < sj.
(Again note we assume that no two distances can be exactly
the same.) The actual distances of.~S and Fi at position p
must be between the corresponding lower and upper bounds
(inclusively).

Our goal is to find the nearest neighbor at position p. Since
Fs0 has the smallest predicted distance, it has the smallest
derived upper bound among all patterns since the derived
upper bounds are the predicted distances for all Fi plus the
same number rnaxD(TJSp,ISp). Note that if the derived
lower bound of the distance from I S and a feature Fsi is
greater than this smallest upper bound, then Fsl cannot be
the nearest neighbor since definitely F~o must be closer to
Z S than Fsi. On the other hand, if the derived lower bound
of the distance from Fsi is not greater than this smallest
upper bound, then we cannot be sure which of the two, Fs0
or FFsi, is closer to I S . In this case, F~0 and F~i both need
to be considered further, and we call them candidate pat-
terns. Figure 5 illustrates the candidate list for the nearest
neighbor at position p.

The procedure to find the candidate list of the nearest neigh-
bor is given in Figure 3. Consider the three categories in
Figure 2. If sL = O, then we know that Fso is the only an-
swer, thus in category (1). Otherwise, category (1) is empty,

and Fs(L_4_l), . . . ,Fsr n are in category (2) and FF,0,... , F s L

are the candidate patterns in category (3).

Note that the Q u i c k S o r t step does not involve the actual
time series value ZS[p] and can be performed before ~S[p]
comes. The computation of the upper bound and lower
bound will involve the error distance from actual time se-
ries to the predicted series at each position. It 's easy to
see that this computation can be implemented incremen-
tally and can be done very efficiently. So this procedure of
finding the candidate patterns needs very little CPU time.

P r o p o s i t i o n Algorithm C Q P in Figure 2 with Step 3.1 as
implemented in Figure 3 correctly processes the continuous
query for the nearest neighbor.

3.2 CQP for the h-near neighbors
The batch process on evaluating this query is exactly as
what we discussed earlier and summarized in Figure 2. In
this subsection, we develop Step 3.1 of Figure 2 for the h-
near neighbor query. Unlike the query of finding the nearest
neighbor that has exactly one pattern series as the output,
the h-near neighbor query may have 0 or any number of
patterns as the output.

We observe that the triangular relationship in Inequation (3),
as well as shown in Figure 4, among the three distances still
holds for each position p. We will use the same derived upper
bound and lower bound as those in Subsection 3.1. We sort
the patterns Fi based on their distances to the predicted se-
ries T'S, and illustrate the derived upper and lower bounds
derived from the triangular relationship in Figure 6.

Unlike the nearest neighbor query where the derived upper
bound can be used to filter out patterns that cannot be the
answer, the threshold h for the h-near neighbor query can
be any real number that is no less than 0.

In order to find the h-near neighbors, we classify pattern
series into three categories: a pattern series Fi is in category
(1) if the threshold h is greater than or equal to its derived
upper bound, Fi is in category (2) if the threshold h is less
than its derived lower bound, and Fi is in category (3) if the
threshold is between its derived lower bound (inclusive) and
derived upper bound (exclusive).

375

INPUT D(PS[p - li,p], Fi) for all pa t te rn Fi
OUTPUT Candidate pa t te rn list and some h-near neighbors.

METHOD: Step 1

Step 2

Step 3

Step 4

Step 5

Q u i c k S o r t the list of Fi based on the values
D(7~S[p - li,p], Fi), i = 0, 1, 2, ..., m.
Assume the list obtained is F~0, . . . , F,m.
Let maxD(7~Sp, 1$p) = max{D(7~S[p - li, p], Z S [p - li, p])Ifor all l, },
and let maxUp = m a x D (P S p , Z S p) + D(7~S[p -/sin,p], Fsm),
minLow = D (PS [p - l~ m, P], F~ m) -- m a x D (7)8p, I 8 p) .

Find the first pa t te rn F~i in the list obtained in Step 1 such tha t
D(PS[p - Isi,p], F~i) + maxD(P,Sn ,ZSp) > h.
Call this pat tern F~u.
If F~u does not exist, then R e t u r n (all pat terns as near neighbors).
Find the last pa t te rn Fsi in the list obtained in Step 1 such tha t
D(PS[p - l~i,p], F~i) - m a x D (P S p , Z $,) <_ h.
Call this pa t te rn F~L.
If F~L does not exists, then R e t u r n (no h-near neighbors).
R e t u r n candidate list: F~u, . . . , Fsn, and
h-near neighbors: F~0, . . . , F~(u- D if s U ¢ sO.

F i g u r e 7: F i n d t h e h - n e a r n e i g h b o r s a n d candidate patterns for the near neighbors a t pos i t ion p.

8 , c

maxUp i- l Vlaxirnum I

maxD.
hj

r~

Predicted Distance ~o .."
D(PS[p4=,p]. F=) - ~ ~ ? ~

Waximum Prediction Error O 9 ? ~ 4
maxD(PSp,lS n) ~ ~ 9 ~ 4 "

9 ~ ~ ~ ? ~-LowerBound,,
i I

l ~ i I r Fi#ered Out Pattemi
" ~ ~CandidatePattems [/ i

;¢; :~- .o--o--5--d--o- .0 ' ' " i " ' ' o - - - o ~ I~
F u F L F= F=~ Patterns

Figure 6: The h - n e a r n e i g h b o r s a n d candidates.

Clearly, pat terns in category (1) are those that are definitely
h-near neighbors since the actual distance cannot be greater
than h. Likewise, pat terns in category (2) are those tha t are
definitely not h-near neighbors (the "filtered out" pat terns)
since the actual distance must be greater than h. Pat terns
in category (3) are those we are not sure; these are what we
call candidate patterns, and need to be verified by computing
their actual distance to find out which of the candidates
are indeed h-near neighbors. These categories correspond
exactly to the categories in Figure 2.

It is not difficult to find the above three categories as shown
in Figure 7. We first sort the pa t te rn series in the increas-
ing order by their distances to the predicted series. We
then t ry to find the first pa t te rn series (call it F,u) that
has the derived upper bound greater than h. If no such
pa t te rn exists, then all pa t te rn series are in category (1),
i.e., all pat terns axe h-near neighbors. It is easily seen that
this is the case when h is in the range hi in Figure 6, i.e.,
h is greater than or equal to the maximum upper bound
maxUp : maxD(7~Sp, ZSp) + D(PS[p - lain, p], Fsm).

We then t ry to find the last pa t te rn series (call it F,L) tha t
has the derived lower bound less than or equal to h. If no
such pa t te rn exists, then all pa t te rn series are in category
(2), i.e., no pa t te rn series are h-near neighbors. I t is eas-
ily seen tha t this is the case when h is in the range h2 in
Figure 6, i.e., h is less than rninLow, defined as D (P S [p -
l~o, p], F~o) - maxD(7~Sn, ZSp).

If F,u and F,L both exist, then we have the case minLow <
h < maxUp. This corresponds to the case when h is in the
range h3 in Figure 6. In this case, the pa t t e rn series F,0,
• . . , Fs(v-z) are in category (1), i.e., they are definitely
h-near neighbors, the pat terns F,(L+I), . . . , Fsm are in cat-
egory (2), i.e., the filtered out pat terns, and pa t te rns Fsv,
• . . , FsL are the candidate patterns. Whether a candidate
pa t te rn is an h-near neighbor or not needs to be verified.
The verification uses the distance formula directly in our
algorithm.

Figure 7 summarizes all the above steps in locating the pat-
terns in the three categories.

Note tha t in the case of h-near neighbor query, the number
of candidates to be verified is unrelated to the number of
answers. Indeed, in the above, the numbers of pa t te rns in
category (1) and category (3) are not related.

P r o p o s i t i o n Algori thm C Q P in Figure 2 with Step 3.1 as
implemented in Figure 7 correctly processes the continuous
query for the h-near neighbors.

4. P E R F O R M A N C E EVALUATION
In this section we s tudy the performance of C Q P algori thm
through experiments. The experiments are coded with the
programming language C + + and the F F T algori thm used
is F F T W [10]. Experiments axe performed on a dedicated
desktop computer (Dell Dimension 4100 with 256 MB mem-
ory and Pent iumIII 766 CPU).

376

300[
250

>

150

100

50

120

• I00

N 80

E
~ 60

N 4O
c

~ 20
i5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Position x 104

(a) The streaming series.

f
S

f

O Fso F,~ F , 9 F,2 ~ F39 Fs, , Fs59 Fs, 9 Fszg Fss . Fs99

(c) Distances of patterns in 300 ~ 400 with Z S
at position 5000. Ordered by the distances.

230

220

210

200

190
®
'~ 180
>

170

160

150

140

130
100 200 300 400 500 600 700

Position

(b) Pat tern Series with length 780.

100 200 300 400 500 600 700 800
k {Prediction Step Ahead)

(d) Linear prediction e r r o r (E r r t i ) with
a=0.1.

F i g u r e 8: S y n t h e t i c d a t a a n d p r e d i c t i o n e r r o r m o d e l s u s e d in t h e e x p e r i m e n t .

In order to control the test environment, we use synthetic
data. We generate the streaming time series with a func-
tion of the random-walk series, defined as I S [i] = 100 *
(s in(O.1 * R a n d o m W a l k [i]) + 1 + i/20000), i = 0 , . . . , 19999,
where R a n d o m W a l k [O : 19999] is a random-walk series. The
streaming time series generated and used in the experiment
is shown as Figure 8(a).

Four sets of pattern series with length ranges of 300 ~ 400,
500 ~ 600, 700 ~ 800 and 300 ~ 800, respectively, are
tested in the experiments. These patterns are also syntheti-
cally generated and each is made similar to a portion of the
streaming time series. Specifically, pattern series are gen-
erated by taking random positions in the streaming series
and obtaining subsequences of given lengths from those po-
sitions. Each pattern set consists of 100 patterns with their
lengths being uniformly distributed, i.e., for pattern series
set 300 ~ 800, the lengths are (300,305,310,. . . , 795). A
sample pattern series is shown in Figure 8(b). In Figure 8(c),
we show the distances of the I S with each of the pattern se-
ries in the set 300 ~ 400 at a sample position. The patterns
are ordered by the distance to I S at the position.

In order to control the experiments in terms of prediction
errors, we also generate predicted series based on the stream-
ing series. Suppose at the position p~ - 1, we need to launch
batch process. Assume we use an n-step prediction model,
and for each integer k (1 < k < n), we denote as 6[k] the

absolute error between the streaming time series I S and the
predicted series ~ S at position ps - 1 + k. This error 6[k]
tends to be bigger when the looking forward step k becomes
larger up to n. In order to simulate this, we assume that
6[k] is a uniformly distributed variable at each prediction
step k with the range of this variable growing increasingly
as k becomes greater.

Three kinds of prediction error models are implemented in
the experiment. The absolute error of the first one increases
in the order of O(x/~), which is defined as Errsqr t [k] =

a . R A N D * x / E ; the second follows the linear increasing trend
with the form of E r r t i [k] = a * R A N D * k; and the third
error model is E r r s q [k] = a . R A N D . k 2, which increases
in the order of O(k2). In these functions, k is the prediction
step, R A N D is a uniformly distributed random variable and
its values are within -0 .5 to 0.5, and a is named the error
contro l which can scale up the prediction error as needed. In
the experiments we report here, we fix a = 1 in the E r r s q r t
model, and a = 0.1 in the Err t inea~ and E r r s q models.
Figure 8(d) shows a sample linear prediction error function
with a = 0.1 and prediction steps from 50 to 800. Intuitively,
with the same a value and prediction step k, Er r~qr t model
gives the best prediction accuracy, meaning "PS is very close
to the actual streaming time series I S ; E r r l i gives a
moderate prediction accuracy and Errsq~a~e yields the worst
prediction accuracy.

377

FFT Length
Pat tern Set

(lengths)

300 ~ 400
500 ~ 600
700 ~ 800
300 ~ 800

Prediction Length
50 100 200 300 400 500 600 700 800

512 512 1024 1024 1024 1024 1024 2048 2048
1024 1024 1024 1024 1024 2048 2048 2048 2048
1024 1024 1024 2048 2048 2048 2048 2048 2048
1024 1024 1024 2048 2048 2048 2048 2048 2048

Table 2: P a t t e r n set , p r e d i c t i o n l e n g t h an d F F T l e n g t h used in t h e e x p e r i m e n t s .

1

0.9

~0.~

• O.Z

OZ'

0.2

0.1

Pattern Length:300-4OO
Pattern Length:5OO~6OO
Pattern Length:7OO~800
Pattern Length:300-800

100 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Err~q~t
1

0.9

0.8

~0.7

• 0.6

O0.5

_~o,4
g~

0.3

0.2

0.1

Pattern Length:3OO~400
Pattern Length:5OO~6OO
Pattern Length:700~800
Pattern Length:300~800

O.

O.

O,

:~o
~o
~g

O.

O.

O.

Pattern Length:300-4OO
Pattern Length:5OO~600
Pattern Length:70O~800
Pattern Length:300-800

0.1

O

100 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Errzinear

0.9 ~ Pattern Length:300-400
Pattern Length:5OO-600
Pattern Length:700-800

0.8 ~. Pattern Length:300-80O
0.7

.0.6

• g.5

~0.4

0.3 ~

0.2

o 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Prediction Length Prediction Length

30.0-near neighbor query with Errsqrt 30.0-near neighbor query with Errti~ear

0

0

~o

d °
O

o

o

Pattern Length:3OO~400
Pattern Length:5OO~60O
Pattern Length:70O~80O
. ~ P a t t e m Length:3OO~80g ~ ~

100 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Errsq~are
If

Pattern Length:30O~4OO o.gl Pattern Length:500~6OO
0.81 ~ Pattern Length:700~8OO

Pattern Length:300~800
0.7i

I
• 0.4

o.21
0.11

100 200 300 400 500 600 700 800
Prediction Length

30.0-near neighbor query with Errsq~are

F i g u r e 9: R e l a t i v e C P U cost to e v a l u a t e q u e r y w i t h d i f ferent p r e d i c t i o n error m o d e l s .

The following queries are evaluated in the experiments:

• QI: Find the nearest neighbor of the incoming stream
time series at each time position.

• Q2: Find the 30.0-near neighbors of the streaming
time series at each position p.

We define the CPU cost as the averaged computation time at
each time position (hence this is the average response time).
We show the relative CPU cost as the above CPU cost rela-
tive to the CPU cost of the naive method, which computes
the distances at each time position directly using the dis-
tance formula. Note the C Q P algorithm favors the query
at the beginning positions in one prediction period, while
the query at the tail end may need more time to perform
the verification because of the larger prediction errors.

In our experiments with a given prediction error model, the
relative CPU cost is a function of two parameters: the choice

of the pattern sets and the prediction length. The FFT
length is picked as the value 2 k, for some k such that 2 k is
the least value no less than the maximum length of pattern
series plus the prediction length. All combinations tested in
the experiments are shown in Table 2. Each combination
is also done with each of the three prediction error models
Err~qrt, E r r and Err~q

Figure 9 shows the performance of C Q P . Efficiency is mostly
dependent on prediction models. As long as the error of
the n-step prediction is small enough, the C Q P algorithm
can achieve good performance and outperform the naive
method. Compared with the naive method, with the given
prediction model and the prediction length, C Q P algorithm
works better as the pattern series lengths get longer. This
is because that only a little more time is needed to per-
form the F F T on a longer time series, while the cost of the
naive method is proportional to the length of the patterns.
However, if the prediction model and the pattern set are
fixed, the relative cost grows as the prediction length be-

378

0.6 0.6

0.5
~g

2 0.4
.¢_

i
®0.2

• 0.1

I ~ . . Pattern Length:300-400
Pattern Length:500-600
Pattern Length:700-800
Pattern Length:300-800

1 O0 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Errsqrt
0.6

I - -~-- Pattem Length:300--400 ~0.5 Pattern Length:500-..6OO
Pattern Length:700-800
Pattern Length:300-800

• 0.4
c

• o.3

©05

1 O0 200 300 400 500 600 700 800
Prediction Length

30.0-near neighbor query with Errsq~t

~0.5

2 0.4

~0.3
a.

©0.2

¢

o.

~ , Pattern Length:300-400
Pattern Length:500-6OO
Pattern Length:TO0-800
Pattern Length:300-800

0 100 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Errli,~e~r
0.~

[~ Pattern Length:300-4OO
Pattern Length:500-600

~0.: Pattern Length:70O~800
.~ Pattern Length:300-8OO

~0.,
c '~,

• 0.:

• 0.:

1 O0 200 300 400 500 600 700 800
Prediction Length

30.0-near neighbor query with Errtinear

.=o

°°
~o.

~o.

g~o.

100 200 300 400 500 600 700 800
Prediction Length

Nearest neighbor query with Errsquare
I

Pattern Length:300-400
Pattern Length:5OO-600

r Pattern Length:700-800
• > Pattern Length:300-800

100 200 300 400 500 600 700 800
Prediction Length

30.0-near neighbor query with Erreq

Figure 10: P e r c e n t a g e o f p a t t e r n s in t h e c a n d i d a t e set .

comes longer due to the increasing prediction error between
the actual and predicted time series.

The wall clock time for the whole process (with all the time
positions) takes approximately 29 to 65 seconds with the
naive method depending on the data sets. Here we assume
that a value in the streaming time series arrives as fast as
we finish handling the previous value. Hence, the response
is about 1.5 to 3.3 milliseconds on average for the naive
method. The clock time of our method is much shorter
than this, and can be derived from Figure 9. These times
are real response times if the data values do not come faster
than the speed of the processing.

The C Q P algorithm will not be useful if the prediction er-
ror is too large. As the CPU cost of the nearest neighbor
query in Figure 9 with Err~q~a~ model shows, the perfor-
mance drops quickly when the prediction length increases.
So choosing a good prediction model as well as the predic-
tion length is critical to use this algorithm.

As mentioned above, the performance of C Q P mostly de-
pends on the accuracy of the prediction. The F F T batch
processing contributes to the performance as well, but is
not very sensitive to the accuracy of prediction. In order to
see the relationship of performance and prediction power,
we show the average percentage of pattern series in the can-
didate set over all the time positions. See Figure 10.

Note that for the nearest neighbor query, the answer of the
query is always one pattern at each time position. However,
for the near-neighbor queries, the patterns in the answer de-

pends on the threshold value. In our experiments, we used
threshold h ---- 30.0, and the average number of patterns in
the answer at each position is 14 out of 100 patterns. Note
that for the h-near neighbor query, the number of candidates
may be different from the number of patterns in the answer,
and is dependent on the prediction model used. For exam-
ple, the number of actual 30.0-near neighbors at all 20,000
time positions is totally 282,300, but C Q P algorithm only
verifies totally 64,938, 77,518, and 130,493, respectively, for
the three prediction models with a prediction length of 300.
Indeed, as discussed in Section 3, some patterns, category
(1), may already be in the answer without verification.

It should also be mentioned that the CPU cost of C Q P
algorithm to find the h-near neighbors is not sensitive to
the h value. Instead, it is more dependent on the distance
distribution of the patterns to the streaming series at each
position. For example, in Figure 8(c), if the maximum pre-
diction error is 10, then the number of candidates is 36 for
30.0-near neighbors, while only about 10 for 80.0-near neigh-
bors. There is no direct relationship between the number of
candidates (thus the CPU cost) and the query threshold h.

From Figure 9, we can also find that there exists a best pre-
diction length to best outperform the naive method for a
given pattern set. The averaged CPU cost at each position
to perform the batch processing may decrease as the predic-
tion length becomes longer, but the verification procedure
cost will increase at the same time due to the increased pre-
diction error. The existence of the best prediction length is
the trade-off between these two factors.

379

5. RELATED WORK
Long standing queries over a changing database have long
attracted the attention of researchers. Perhaps Terry et
al. [29] were the first ones who introduced the notion of "con-
tinuous queries" for a class of queries that are issued once
and then run "continuously" over databases. They proposed
an incremental approach to evaluate the queries on append-
only databases with only new results returned to the user.
Also, Parker et al. (e.g., [21]) worked on answering queries
on data streams. A similar concept, but termed "continual
query", was also presented and studied in the work of Liu
et al. [17, lS].

Recently, due to the ever growing use of information systems
in many new types of applications, continuous queries have
again become the focal point of several research projects.
Chen et al. reported, in [7, 6], the design of NiagraCQ
system in which incremental query evaluation method was
no longer restricted to append-only data sources. Babu and
Widom [3], and Madden and Franklin [19] also reported sys-
tem architecture and related issues for dealing with contin-
uous queries.

In this paper, we study a particular but important type of
continuous query, namely similarity-based pattern queries
on streaming time series. Instead of using the idea of incre-
mentally updating the query result, we use a new prediction-
based approach. We believe many continuous queries will be
able to take advantage of prediction and provide faster re-
sponse time.

Our work is also related to that on time series similarity
search. However, work has been concentrated on station-
ary data sources. Recent work in this area is categorized
into two general approaches [13]. The first is to map time
sequence into frequency domain [1, 9, 26, 15], generally
with a Discrete Wavelet Transform, and then use the sig-
nificant part of the coefficients to index the original time
series. The second approach [2, 28] performs the operation
in time domain directly. This work is also related to index-
ing high dimensional data. A recent survey can be found
in [4]. However, in the above approaches, the database se-
ries are supposed to have the same lengths. In contrast, we
deal with (pattern) time series with variable lengths. If the
database pattern series are all of the same length, we believe
our prediction-based method can be combined with the use
of indexing structures in the literature.

Work has also been done in dealing with variable lengths
and subseries, which may be adapted to deal with series
with various lengths. Subseries matching [9, 14] in time-
series databases is a more difficult problem. The time se-
ries stored in databases have variable length and are longer
than the query sequences. The query is to find the subse-
quences in the database that have a similar pattern in the
same length as the query series. Generally, the approach
is to split the series into shorter ones and to index these
shorter ones to answer queries. In general, splitting long se-
ries into shorter ones works only for near-neighbor queries,
not for nearest neighbors. In this paper, we deals with both
nearest neighbor and near neighbor queries on time series
with different lengths.

6. CONCLUSION
In this paper, we introduced a new strategy of processing
continuous queries, namely continuous query with predic-
tion. We showed this strategy works well in the scenario
where we need to quickly find similarity-based patterns from
a streaming time series. We detailed the algorithms and ex-
periments used for this scenario. The experiments are done
using synthetic data to control the environment and to see
when the strategy works.

For the scenario we consider, we may easily extend the
queries to find nearest k neighbors. Another improvement
we may consider is that the time to launch the batch pro-
cess can be adjusted based on the size of the candidate pat-
terns. Indeed, if the prediction model is not good enough,
the number of candidates will increase dramatically at the
positions of the tail end of one prediction period. In this
case, we should consider re-predict the time series and re-
launch the batch processing. In this paper, we only con-
sidered the launch of the prediction and batch processing at
fixed time positions. An additional extension to our scenario
we may consider in the future is the case when the number
of patterns is large, and when disk accesses are necessary.
In this case, we believe prediction can be helpful as well.

In our algorithm, at certain time positions, the F F T batch
process is launched. At these positions, the response t ime
will be slower than the other time positions, where no batch
process is used. For a faster response time at these positions,
we may consider to perform the batch process before all the
predicted values are exhausted. That is, we may overlap
batch process with the normal steps. How well this strategy
works is an interesting future research direction.

The approach in our work follows the traditional similarity
models that rely on pointwise Euclidean distance [1, 9, 26,
8]. Non-Euclidean metrics have also been used to compute
the similarity for time series. Perng [22] proposed "Land-
marks Similarity" as a general model to measure the sim-
ilarity among time series. Rafiei [27] proposed a class of
linear transforms on the Fourier transformations of original
series. Several important notions of similarity can be ex-
pressed with this class and the corresponding queries can be
efficiently implemented on top of R-tree index. Huang [13]
proposed another approach that transforms time series into
symbol strings and then builds a suffix tree to index all suf-
fixes of the symbol strings. As a future research direction, it
will be interesting to incorporate prediction-based method
with these non-Euclidean distances.

It will be most interesting to extend our strategy to other
kinds of continuous queries. The critical ingredients for this
strategy to work is the prediction capability and the use of
prediction to increase the speed of processing when actual
values arrive. However, it should be noted that the predic-
tion need not be precise all the time. If the prediction is
not good at certain period of time, the strategy may still
work well. Indeed, we only need the have the predictions
relatively precise at relatively most of the time. How these
"relativities" are measured and how much is sufficient de-
pends on the particular application considered.

3 8 0

7. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. In Proceedings
of the 4th FODO, pages 69-84, 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In The
VLDB Journal, pages 490-501, 1995.

[3] S. Babu and J. Widom. Continuous queries over data
streams. In SIGMOD Record, Sept. 2001.

[4] S. Berchtold and D. A. Keim. High-dimensional index
structures, database support for next decade's
applications (tutorial). In SIGMOD Conference, 1998.

[5] C. Burrus and T. Parks. D F T / F F T and Convolution
Algorithms. John Wiley and Sons, 1985.

[6] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In ICDE
Conference, 2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: a scalable continuous query system for
Internet databases. In Proc. of the ACM SIGMOD
Conference, pages 379-390, 2000.

[8] K. K. W. Chu and M. H. Wong. Fast time-series
searching with scaling and shifting. In Proc. of the 18
th ACM PODS 1999, Philadelphia, pages 237-248,
1999.

[9] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In ACM SIGMOD Conference, pages 419-429, 1994.

[10] M. Frigo and S. G. Johnson. FFTW: C subroutine
library for computing the Discrete Fourier Transform
(DFT). On-line. http://www.fftw.org/, 2001.

[11] T. V. Gestel, J. Suykens, D.-E. Baestaens,
A. Lambrechts, G. Lanckriet, B. Vandaele, D. B.
Moor, and J. Vandewalle. Financial time series
prediction using least squares support vector machines
within the evidence framework. IEEE Transactions on
Neural Networks, 12(4):809-821, 2001.

[12] L. Gyorfi, G. Lugosi, and G. Morvai. A simple
randomized algorithm for sequential prediction of
ergodic time series. IEEE Transactions on
Information Theory, 45(7):2642-2650, 1999.

[13] Y.-W. Huang and P. S. Yu. Adaptive query processing
for time-series data. In Proceedings of the 5th
International Conference of Knowledge Discovery and
Data Mining, pages 282-286, 1999.

[14] T. Kahveci and A. K. Singh. Variable length queries
for time series data. In ICDE 01, pages 273-282, 2001.

[15] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J.
Pazzani. Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings of
ACM SIGMOD Conference on Management of Data,
pages 151-162, 2001.

[16] I. Kim and S.-R. Lee. A fuzzy time series prediction
method based on consecutive values. In Fuzzy Systems
Conference Proceedings, volume 2, pages 703-707,
1999.

[17] L. Liu, C. Pu, R. S. Barga, and T. Zhou. Differential
evaluation of continual queries. In International
Conference on Distributed Computing Systems, pages
458-465, 1996.

[18] L. Liu, C. Pu, and W. Tang. Continual queries for
Internet scale event-driven information delivery. IEEE
TKDE, 11(4):610-628, 1999.

[19] S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. In ICDE Conference, 2002.

[20] A. Oppenheim and R. Schafer. Digital Signal
Processing. Prentice-Hall, Inc., 1975.

[21] D. S. Parker, R. R. Muntz, and H. L. Chau. The
tangram stream query processing system. In ICDE
Conference, 1989.

[22] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker.
Landmarks: a new model for similarity-based pattern
querying in time series databases. In ICDE, pages
33-42, 2000.

[23] B. Plale and K. Schwan. Optimizations enabled by a
relational data model view to querying data streams.
In Proc. of 15th International Parallel and Distributed
Processing Symposium, 2001.

[24] S. Policker and A. Geva. A new algorithm for time
series prediction by temporal fuzzy clustering. In
Proceedings. 15th International Conference on Pattern
Recognition, volume 2, pages 728-731, 2000.

[25] A. D. Poularikas, editor. The transforms and
applications handbook. CRC Press LLC, 2000.

[26] D. Rafiei and A. Mendelzon. Similarity-based queries
for time series data. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 13-25, 1997.

[27] D. Rafiei and A. O. Mendelzon. Querying time series
data based on similarity. IEEE TKDE, 12(5):675-693,
2000.

[28] H. Shatkay and S. B. Zdonik. Approximate queries
and representations for large data sequences. In ICDE,
pages 536-545, 1996.

[29] D. Terry, D. Goldberg, D. Nichols, and B. Oki.
Continuous queries over append-only databases. In
Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 321-330, 1992.

[30] L. Wang, K. K. Teo, and Z. Lin. Predicting time series
with Wavelet packet neural networks. Proc.
International Joint Conference on Neural Networks,
3:1593-1597, 2001.

[31] S. Winograd. Some bilinear forms whose multiplicative
complexity depends on the field of constants.
Mathematical Systems Theory, 10:169-180, 1977.

381

