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A B S T R A C T  
In many applications, local or remote sensors send in streams 
of data, and the system needs to monitor the streams to dis- 
cover relevant events/patterns and deliver instant reaction 
correspondingly. An important scenario is that the incom- 
ing stream is a continually appended time series, and the 
patterns are time series in a database. At each time when a 
new value arrives (called a time position), the system needs 
to find, from the database, the nearest or near neighbors of 
the incoming time series up to the time position. This paper 
attacks the problem by using Fast Fourier Transform (FFT) 
to efficiently find the cross correlations of time series, which 
yields, in a batch mode, the nearest and near neighbors of 
the incoming time series at many time positions. To take 
advantage of this batch processing in achieving fast response 
time, this paper uses prediction methods to predict future 
values. FFT  is used to compute the cross correlations of 
the predicted series (with the values that have already ar- 
rived) and the database patterns, and to obtain predicted 
distances between the incoming time series at many future 
time positions and the database patterns. When the actual 
data value arrives, the prediction error together with the 
predicted distances is used to filter out patterns that are 
not possible to be the nearest or near neighbors, which pro- 
vides fast responses. Experiments show that with reasonable 
prediction errors, the performance gain is significant. 

1. I N T R O D U C T I O N  
In many applications, data streams from various sensors ar- 
rive at a system, and the system must monitor the streams 
to discover relevant events or patterns, and to react corre- 
spondingly. The reaction often needs to be fast each time a 
new value arrives. Example applications include computer 
network monitoring, automated reconnaissance flight con- 
trol, and automated security trading. These applications 
call for a type of "continuous query" processing, emphasizing 
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on fast responses. It has been realized that  traditional data 
processing systems are not enough for continuous queries, 
and new techniques need to be developed [29, 7, 23, 3]. 

In this paper, we deal with an important  scenario where the 
incoming stream takes the form of a continually appended 
time series (the streaming series), and the patterns are rep- 
resented as a fixed set of time series in the database. The 
pattern series may be of various lengths. At each time when 
a new value arrives (called a time position), the system needs 
to find quickly, from the database, the nearest or near neigh- 
bors for the streaming series up to that  time position. For 
example, in an automated stock exchange/monitoring appli- 
cation, the system may be asked to monitor the stock prices 
and to respond in a particular manner  at any moment when 
the price trend shows a strong similarity (i.e., the distance 
is within a certain threshold) to one of the preselected price 
(pattern) series. 

In the above stock exchange/monitoring example, if the 
number of preselected price series is small and the new val- 
ues arrive at a slow rate, fast response may be achieved by 
a straightforward algorithm that scans all the preselected 
price series to match against the streaming series every time 
a new value arrives. However, when the number of pre- 
selected series is large and/or  new values arrive very fre- 
quently, more efficient algorithms are needed. Existing in- 
dexing strategies do not work well because pat tern series 
may have various lengths (see Section 5 for more details). 
The challenge is to develop a new strategy so that  the system 
can respond quickly once new values reach the system. 

We attack the problem by taking advantage of the fact 
that Fast Fourier Transform (FFT) can be used to effi- 
ciently find the cross correlations of the streaming series 
with the database patterns. These cross correlations are 
closely related to the similarity measure we choose, namely 
the weighted Euclidean distance. Using the cross correla- 
tions, we can directly derive the nearest and near neighbors 
of the streaming time series at many time positions con- 
tained in the streaming series, in a batch processing mode. 

The above batch processing, however, may not deliver fast 
response time. Indeed, batch processing only saves overall 
processing time, and does so by waiting for a number of 
values to arrive before launching the batch processing. Since 
the system does not immediately process the values as they 
arrive, response time suffers. 
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In order to obtain fast response time and yet take advantage 
of batch process, we use prediction methods to predict future 
values. We use FFT to compute the cross correlations of the 
predicted series (with the already arrived values) and the 
database patterns, and obtain predicted distances between 
the streaming time series at many future time positions and 
the database patterns. When the actual data value arrives, 
the prediction error, together with the predicted distances, 
is used to filter out patterns that  are not possible to be the 
nearest or near neighbors, and thus expedite the process at 
each time position. In some cases, we can even find out some 
or all answers directly using the prediction. 

The above strategy is similar to the blocked access idea in 
cache management where a block of data values is brought 
into the cache when any one value in the block is accessed. 
This is advantageous in cache management because access- 
ing a block costs much less than accessing all the values in 
the block individually and the other values in the block are 
likely to be useful in speeding up subsequent accesses. In 
our method, the "block" consists of predicted values to take 
advantage of batch processing and the predicted values in 
the "block" are useful for fast processing when new values 
arrive. 

The effectiveness of the above strategy obviously depends on 
the accuracy of the prediction model. In order to evaluate 
its effectiveness, we perform experiments under various pre- 
diction accuracy assumptions, instead of using some fixed 
prediction models. Specific applications may use their par- 
ticular prediction models to achieve accurate predictions [12, 
16, 24, 11, 30]. Our experiments show that  when the error 
between the predicted series and actual series is reasonably 
small, the performance gain of this strategy is significant. 

The contribution of the paper is threefold. Firstly, we in- 
troduce a new general effective strategy, based on predic- 
tion and batch processing, to achieve better response time 
for continuous queries. Secondly, we show in detail how 
the above strategy is used on streaming time series to find 
similarity-based patterns, i.e., the nearest neighbor or near 
neighbors. And lastly, we demonstrate through experiments 
the effectiveness of the method under various conditions. 

The remainder of the paper is organized as follows. In Sec- 
tion 2, we formally define our problem and show how FFT 
can be used to provide us with the batch processing ca- 
pability. We discuss in Section 3 the details of continuous 
query processing using the batch processing and prediction. 
In Section 4, we report our experiments and the effective- 
ness of our method. We discuss related work in Section 5 
and conclude the paper in Section 6 with some summary 
remarks and future research directions. 

2. PROBLEM FORMULATION AND BATCH 
PROCESSING USING FFT 

In this section, we start with introducing some basic notions, 
and defining precisely the continuous queries we are dealing 
with. We then present the batch processing technique based 
on FFT.  

We assume that all (one-dimensional) time series axe sam- 
pled at an equal time interval. Without  loss of general- 

Symbol I Meaning 

x, y, . . .  time series 
x[i, j] subseries of x between positions i and j ,  

inclusively 
Z8  streaming time series (query series) 
~ S  predicted time series 
F~ the i th pattern or feature series, li + 1 is 

its length. 

Ta b l e  1: Some  f r e q u e n t l y  u sed  s y m b o l s .  

ity, we take the interval as the unit and thus all time se- 
ries are represented as a sequence of real numbers, with 
the position of the sequence corresponding to the sampling 
time. We further assume that the first sample is always 
taken at time 0. Hence, a time series x takes the form of 
(x[0], x[1],. . .  , x[l],... ). A time series x is finite if it ends at 
certain I > 0, and we then say that the series has a length 
l + 1. A time series is infinite if no such I exists. If x is a 
time series, we use x[i, j] to denote the finite time (sub)series 
(x[i], x[i + 1],. . .  , x[j]), where 0 < i < j are integers with j 
less than the length of x if x is finite. 

There are situations where the values in time series are not 
sampled at a fixed interval. When this is the case, interpola- 
tion may be necessary to even define the notion of distance 
of a pair of time series. How the interpolation is done and 
other related issues are beyond the scope of this paper. 

Given two series of length I + 1, we use a weighted Eu- 
clidean distance to measure the distance between them and 
the weight is the square root of the length. More specifically, 
given two finite series x and y of length l + 1, the distance 
between x and y is defined as: 

D(x, y) = (x[s] - y[s])2/(l + 1). 

In our scenario, we assume that we have a (fixed) set of 
finite time series, called pattern series, Fi. The series Fi 
is of length li + 1. These are the pattern or feature series 
that the system needs to watch out for. In the stock ex- 
change/monitoring example mentioned in the introduction, 
the preselected historical price trends are these pattern se- 
ries. We also assume there is an infinite time series, which 
is our streaming series, denoted ZS; and at time position 
p > 0, the value ZS[p] comes into the system. Hence, at 
time position p > 0, the streaming series is a finite series of 
length p +  1. In the stock exchange/monitoring example, the 
stock prices of the market is this infinite streaming series. 
At time p, the stock price at the time arrives at the system. 

The continuous query we are dealing with is that  at each 
time p, find the nearest neighbor or near neighbors of the 
"current" ZS among the pattern series Fi. To precisely de- 
fine these neighbor concepts, we first have: 

D e f i n i t i o n  Let Fi be a pattern series in the database with 
length li + 1. For a given p _> li, the distance between ZS  and 
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pattern Fi at position p, is defined as D(ZS[p - li,p], Fi). If 
p < li, then this distance is defined as positive infinite. 

Intuitively, the distance of I S  and Fi at position p is from 
comparing Fi with the values of I S  at position p and looking 
backward for li steps. With the above distance definition, 
we define neighbors of the streaming series at position p. 

D e f i n i t i o n  Let p > 0 be an integer. Given a real number 
h > 0, a pattern Fi is the nearest neighbor of Z S  at position 
p if for all other patterns Fj( j  ~ i), D ( Z S [ p -  li,p],Fi) < 
D ( Z S [ p -  l j ,p],Fj);  and Fi is an h-near neighbor of I S  at 
position p if D(ZS[p - li,p],Fi) < h. 

In order to simplify the presentation, in the remainder of 
the paper, we assume that  no two finite distances (two reals) 
will ever be exactly the same. This assumption can be lifted 
without much problem, and is not pursued in this paper. 

D e f i n i t i o n  A continuous query on a streaming time series is 
one of the following standing requests: (1) For each position 
p, find the nearest neighbor of Z S  at position p; or (2) For 
each position p, find the h-near neighbors of 778 at position 
p, where h > 0 is a real number, called threshold. 

We assume we are interested only in position p such that  the 
distance between 27S and Fi at position p is defined for each 
Fi. In other words, we are only interested in time position 
p such that  p _> max{l i lFi} ,  where li -4- 1 is the length of 
Fi. This is not a severe restriction at all since the streaming 
time series at most of the time is much longer than any of 
the pattern series. Lifting this restriction is not difficult, 
either, but  is not pursued in this paper. 

It is possible that  at position p, the answer of the h-near 
neighbor query returns an empty set. This is when the dis- 
tance of I S  and Fi is greater than h for each Fi. 

The naive method of processing the query is to find the 
distance of I S  and Fi at each time position p for each Fi. 
As mentioned earlier, in many situations, this naive method 
may not be enough to derive sufficiently fast response. In 
the remainder of the section, we derive a batch processing 
method to calculate distance of I S  and Fi at multiple time 
positions. 

Consider the definition o fD(ZS[p- l i , p ] ,  Fi). We have ( l i+l  
is the length of Fi): 

(li -4- 1) * D2(ZS[p - li,p], Fi) 

I i l i  

=  zS[(p - l , )  + s] 2 + 
~=o 8=0 (1) 

l i  

- 2 ~ Z S [ ( p  - l l )  + s] * Fi[s] 
s=0  

Once the values are known for all three terms on the right 
hand side of the equation, D(ZS[p - li,p],F~) is easily ob- 
tained. The first term on the right hand side can be com- 
puted incrementally as p moves forward to the next position. 

The second does not change and can be pre-computed. As 
for the third, we can see that  each multiplicand z sq[ (p - l i )+  
s] will shift forward to the next value as p becomes p -4- 1, 
while the multiplier Fi Is] keeps the same. The sum of prod- 
ucts of current computation has little relationship with the 
last one; and is the most time-consuming item. Fortunately, 
as is shown below, this term is exactly double of the value 
of a cross correlation of Z S  and Fi, and Fast Fourier Trans- 
form(FFT) can serve to compute multiple cross correlations 
efficiently in a batch mode. 

Given an infinite time series x and a finite series y of length 
1 + 1, the cross correlation function of x and y is defined as 

l 

C C o r r ~ , ~ , [ d ] = ~ x [ d + s l * Y [ S ] ,  d = 0 ,1 ,2 , . . .  (2) 
8=0 

In the above, d is the number of shifts between the x and y, 
and is called the lag parameter. It follows from the above 
definition that only the values x[d], . . ,  x[d + l] are used in 
calculating the cross correlation of x and y of lag d. Consider 
equation (1), the third term is exactly 2*CCorrzs ,Fi  [p-li]. 

There are a number of fast methods to calculate cross cor- 
relations via convolutions [31, 5]. Here, we use the Circular 
Correlation Theorem [25, 20], a property of the Discrete 
Fourier Transform (DFT), to perform the calculation. Be- 
fore stating the theorem, we need some auxiliary notation. 

D e f i n i t i o n  (1) Let x and X be two series of length N + 

1. Then x .(DFT~, X denotes the fact that  X is the (N + 
N + I  

1)-point DFT of x. Clearly, if this is the case, x is the 
( N +  1)-point inverse D F T o f  X .  (2) Given two finite series 
x and y of length N + 1, then CirCCorr~ ,~  denotes the 
unnormalized circular cross correlation sequence, defined as 

N 

CirCCorr~,u[d] = E x[(d + s) m o d  (N -4- 1)] * y[s], 
8=0 

d =  0 ,1 ,2 , . . .  , N  

We now give the Circular Correlation Theorem [25, 20]. 

T h e o r e m  Let x, X, y and Y be finite series of length N +  1. 

Assume x "tDFT~', , X and y ~ ' ~  Y. Then 
N + i  N + I  

CirCCorr=.~ ~ (X[0] * Y[0], . . .  , X[N] * Y[N]),  
N + I  

where Y[s] is the complex-conjugate of Y[s]. 

I f N  = 2k--1 for some positive integer k, then we may use the 
Fast Fourier Transform (FFT) algorithm to calculate DFT 
and inverse DFT, and hence the circular cross correlations. 
More specifically, given time series x and y of length N -4- 1, 
we first use F F T  to calculate X and Y. We then generate 
the sequence (X[0] * Y[0],. . .  , X[N] * Y[N]) and use inverse 
F F T  to obtain the circular cross correlations. 

By using the circular cross correlation function, we can now 
calculate the cross correlations of the streaming series Z S  
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and a pa t t e rn  series Fi.  Indeed,  assume the  length of Fi 
is li + l ,  and let N _> li. We define x = Z S [ p ,  - l i , p ,  - 
li + N] ,  and y as the t ime series ( F i [ 0 ] , . . . , F i [ l i ] , 0 , . . . , 0 ) ,  
where 0 appears  N - li t imes.  Since y[li + 1] . . . . .  
y[N]  = 0, it follows from the  definitions tha t  CCorr~ ,y[d]  = 
C i r C C o r r ~ , y [ d ]  for each d wi th  0 _< d _< N - li. This 
is because tha t  the  "last" circular cross correlat ion tha t  
is still the  same as the  cross correlat ion is when the last 
value of x "aligns" wi th  y[ll], i.e., when the  lag is up to 
N - li; and hence, we obtain  the  cross correlat ions from 
CCorr~ ,y[0]  up to C C o r r x , y  [ N -  li] from the  circular cross 
correlations.  By the  definition of x and y, we see tha t  we 
have the  cross correlat ions from C C o r r z s , F i  [p, -- li] up to 
C C o r r z s , F i  [ps - li ÷ N - li]. By the  commen t  after Equa-  
t ion (2), we can obtain  the  distances of Z S  and Fi at posi- 
t ions from p,  to ps + N - li in a ba tch  mode.  

For a set of pa t te rn  series Fi,  we will use a single t ime series 
x for all the  pa t te rn  series in the  ba tch  process described in 
the  previous paragraph.  In order to do so, we take Imax -- 
m a x { l i l l i  is the length of pa t t e rn  Fi},  and N = 2 k - 1 _> 
Ima~ for some integer k. For each pa t t e rn  series Fi,  we define 
yi as Fi  padded  with N - li zeros, and we let x = ZS[p~ - 
1 . . . .  p ,  - lma~ + N].  W i t h  the  same a rgument  as in the 
paragraph  above, we see tha t  the  ba tch  processing, applied 
to x and yl for each i, can give us the  dis tances between Z S  
and Fi  for each i at  positions p , , . . .  ,p ,  ÷ N - l~a~. 

In summary,  the  batch processing has the  following inputs  
and outputs :  

B a t c h  Process  
I n p u t :  Z S [ p s  - I . . . .  p~ - Ima~ + N]  and all pa t te rn  

series Fi,  where N ---- 2 k - 1 _> l m ~  for some 
k, and I m ~  + 1 is the  m a x i m u m  length of all 
the  pa t te rn  series. 

O u t p u t :  Distances between Z S  and Fi for each i at  
positions p ~ , . . .  ,ps + N - Imam. 

Exper imen t s  show tha t  such a ba tch  processing is much 
faster t han  a naive a lgor i thm tha t  calculates each single dis- 
tance  separately,  and fur thermore ,  the  greater  the value N 
is, the  more savings this batch m e t h o d  provides. 

3. CONTINUOUS QUERY WITH PREDIC- 
TION 

The  batch processing given in the  previous section saves 
overall  computa t ion  t ime, but  does not  direct ly give fast 
response time. In this section, we show how this batch pro- 
cessing s t ra tegy can be used to deliver fast responses. 

The  problem of the batch processing is t ha t  the response 
t ime  suffers since it waits for N -  lmaz values to come before 
launching the  batch process. If N is chosen so tha t  N -  lma~ 
is small,  the  batch processing does not  save too much t ime, 
and may  actual ly  be slower than  the  naive me thod  due to 
its overhead.  On the other  hand,  if N - Imax is large, then  
the  response t ime will be poor. 

We will use the predict ion to solve the  above slow response 
t ime  problem. In practical  applications,  most  t ime series 
have some t rends  or pa t te rns  tha t  can be used to successfully 
predict  future  values in a s t reaming t ime  series at most  of the 
t ime.  Much research has been dedica ted  to this subject  and 

provided  m a n y  predict ion models  and a lgor i thms for specific 
appl icat ions [12, 16, 24, 11, 30]. An n - s t e p  ahead  p r e d i c t i o n  
m o d e l  predicts  the  values for the  next  n t ime  positions. 

By using predic ted  values instead of actual  values from the  
s t reaming  series, we may  use the  F F T  batch m e t h o d  to cal- 
culate  the  pred i c t ed  d i s tances  between the  s t reaming  series 
and the  pa t t e rn  series at many  future  positions. (The  num-  
ber of the  future  positions to be used largely depends  on the  
accuracy of the  predict ion model  because the  far ther  into the  
future,  the  less accurate  the  predictions.)  W h e n  the  actual  
value arrives, the  predict ion error will be known, and will 
be used together  wi th  the  predicted distances to obta in  the  
neighbors  of the  s t reaming series. We call such a m e t h o d  
C o n t i n u o u s  Q u e r y i n g  wi th  P r e d i c t i o n  or C Q P  for short.  

~T Actual Streaming Time Series Predict.e..d..VaJues 

~ 1  /r-q [~ Required Length of One Batch Process (=FFT Length: N +1) ~[ 

/ 
.~ . . . .  (. 5 "'" - - i  " T = II- 

Ps-l~ Ps p +n ps-lm~+N Position 

F i g u r e  1: P r e d i c t i o n  and batch process ing.  

Figure  1 i l lustrates the  C Q P  process. Assume current ly  we 
are considering t ime  posit ion p , ,  i.e., the  cont inuous query  
has been answered for up to and including t ime  posit ion 
p~ - 1, and the  value at posit ion ps has not  arr ived yet. At  
this momen t ,  we obtain  n-s tep ahead predict ion,  and de- 
pict  the  s i tua t ion  in the  figure. We use p r e d i c t i o n  length  
to denote  the  m a x i m u m  predict ion step achieved. At  t ime 
before ps, the  predict ion model  provides n looking forward 
predic ted  values for t ime posit ions p~, p8 + 1, ...,p8 + n - 1 
(the do t t ed  curve).  We use P S  to denote  the  t ime series 
formed by the  values of Z 8  up to p,  - 1, and take the  n pre- 
dicted values, and pad the  series wi th  infinite number  zeros 
towards the  end. We call P S  the  pred ic t ed  ser ies .  More 
precisely, 

p s  = ( z s [ o ] , . . . ,  z s [ p ~  - 1], P o , . . . ,  P ~ - l ,  o , . . . ,  o , . . .  ), 

where Pi,  i = 0 , . . .  , n -  1, are the predicted values. 

We can now use the  batch processing described at the  end 
of Sect ion 2 to calculate the  predicted distances. In the  
batch process, instead of using Z S ,  we use T 'S  as the  input .  
Also, we choose a value N tha t  is no less than  n ÷ 1 . . . .  as 
i l lustrated in Figure  1. We use 7aS[p,  - l . . . .  p~ - lma~ + N] 
aS the  input  (along with the  pa t t e rn  series) to the  batch 
process, and we will obta in  the  distances between P,5 and 
Fi for posit ions p~, . . .  , p ,  + N - I . . . .  Since values after 
p~ + n - 1 are not  really predicted values ( they are padded  
zeros), we actual ly  obta in  the (predicted) dis tances be tween 
P S  and Fi for posit ions p , ,  . . .  , ps + n - 1. 
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Step Action 
1. 
2. 

3. 

4. 

From the next position p,,  generate n predicted values, and form the predicted series 79S. 
Use the b a t c h  process  on 'PS with all pattern series Fi to generate predicted distances 
for positions p,, . . .  , p~ + n - 1. 
For each time position p, within the range from ps to p~ + n - 1, when the actual value 
arrives, do: 

3.1. Use the prediction error, i.e., the distance between the predicted values and actual 
values, and the predicted distances to partition the patterns Fi into three categories: 
Category (1): those that  satisfy the query, 
Category (2): those that  cannot satisfy the query, and 
Category (3): those that  are in neither category (1) nor category (2). 
We call the patterns in category (3) as candidate patterns. 
(See two subsections below for details on these two types of queries.) 

3.2. Verify among the candidate patterns to find (further) answers to the query 
(This is done directly using the formula in Equation (1).) 

Change p~ to be p, + n, and perform steps 1-4 repeatedly. 

F i g u r e  2: C o n t i n u o u s  q u e r y i n g  w i th  p r e d i c t i o n  ( C Q P ) .  

Once the actual value at a time position from p, to ps + 
n - 1 arrives for the streaming time series, we can use the 
prediction error to find the neighbors of the streaming time 
series. This can be done very efficiently if the prediction 
errors are small. This step of the process depends on the 
type of query we are considering, namely whether it is the 
nearest neighbor or the h-near neighbor query; and we will 
illustrate the details in the following two subsections. Once 
we use up the predicted values, we launch another batch 
process. 

We summarize the C Q P  algorithm with n-step prediction 
in Figure 2. 

The verification procedure, Step 3.2 in Figure 2, can be done 
with a direct application of the distance definition. The cost 
of this step is in proportion to the number of the candidates. 
If the candidate list has many patterns, then this step will 
be costly. On the other hand, if the candidate list is small, 
verification can be fast, and sometime can even be skipped. 
(Indeed, if the query is asking for the nearest neighbor and 
the candidate list only consists of one pattern, then this 
pattern has to be the nearest neighbor and no verification 
is necessary.) Experiments show that the verification step is 
the main cost of C Q P  algorithm. 

li + 1, i.e., D(79S[p - l i ,p] ,ZS[p - li,p]) is known once the 
data values of ZS up to position p have arrived. 

With the above predicted distances and prediction errors, we 
may derive upper and lower bounds for the distance of the 
actual streaming series with each pattern series at position p. 
Indeed, because we use a variation of the Euclidean distance, 
the following triangular relationship holds: 

ID(x, F~) - D(x, Y)I -< D(y, F~) _< ID(x, F~) + D(x, y)] (3) 

where x = 7 )S ip -  l,, p] and y = Z S [ p -  l,, p]. This triangular 
relationship is depicted in Figure 4. 

Predicted Series 
x=PS~t,,pl 

~Prediction Error 
/ D(x.y) 
/ ~ A c t u a l  time Series 
I u y=lS[p-I~,p] 

Predicted Distance 
D(x .F ) 

Actual Distance 
o(r ,~) 

Pattern Series 
15 

3.1 CQP for the nearest neighbor 
In this subsection, we develop the details for Step 3.1 in 
Figure 2 for the case of finding the nearest neighbor at each 
time position p. The basic task is to find the "candidate" 
pattern or feature series that must be considered. In other 
words, we want to filter out all the pattern series that  cannot 
be the nearest neighbor based on the predicted distances and 
the prediction errors. 

Consider a time position p, which is between ps and p~ + n -  1 
(see Figure 1). Through the batch processing of Step 2, 
the predicted distance D ( P S [ p -  li, p], Fi) is already known 
for each Fi. Also, it is easy to incrementally calculate the 
prediction error between the predicted series and the actual 
streaming time series I S  at position p with the length of 

F i g u r e  4: T r i a n g u l a r  r e l a t i o n s h i p  a m o n g  d i s t a n c e s .  

Inequality (3) holds for each pattern Fi at position p. To 
simplify our algorithm, we take the maximum prediction er- 
ror to calculate the above bounds, i.e., let m a x D ( P S p ,  ZSp)  
= m a x { D ( P S [ p  - l i ,p] ,ZS[p - li,p])] for all li}. Given pat- 
tern Fi , D(  79 S [ p - l i  , p], Fi ) + rnax D( 79 Sp, ZSp  ) is the derived 
upper bound, and D ( P S [ p  - li,p], Fi) - m a x D ( ~ S p , Z S p )  is 
the derived lower bound. Note that  we can use this derived 
lower bound partly because a - b < la - b[ for all numbers 
a and b. 

Figure 5 shows the derived upper bound and the lower bound 
at time position p in the increasing order of the predicted 
distances D(7)S[p - li,p], Fi), i -- 0 , . . .  , m. To simplify the 
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INPUT D(79S[p-  li,p], F~) for all pattern F~ 
O U T P U T  Candidate pattern list. 

METHOD: Step 1 

Step 2 

Step 3 

Qu ickSor t  the list of Fi based on the values 
D(7~S[p-l~,p],F~), i = 0, 1, 2, . . . ,m. 
Assume the list obtained is Fso, . . .  , F~m. 
Let rnaxD(7)Sp,ZSv)  = max{D(79S[p - li,p],ZS[p - / i ,p])[for all li}, 
and let minUp = maxD(79Sp , ISp)  + D(PS[p  - lso,p], Fso). 
Find the last pattern F~i in the list obtained in Step 1 such that  
D(795[p-  l~i,p], F~i) - m a x D ( 7 9 S p , I S v )  is less than or equal to minUp. 
Call this pattern rsL and R e t u r n  Fso, . . .  , F~L. 

Figure 3: Find the c a n d i d a t e  p a t t e r n s  for t he  n e a r e s t  n e i g h b o r  a t  p o s i t i o n  p. 

Predicted Distance Upper Bound 

• . . . . . . . ° ' "  

/~ & @ sL Minimum Upper Bound: minUp 

/ ! Candidate Patterns 

~ Fiiternd Out Patterns 

b 
F~ F= F~ Pattenns 

Figure 5: C a n d i d a t e s  for t he  n e a r e s t  n e i g h b o r .  

illustration, we reassign the subscripts of pattern series in 
the order of these distances with (sO, s l , . . .  , sm). Hence, 
D(7)S[p-18i,p],F~i) < D ( P S [ p - I s j , p ] , F s j )  for all si < sj.  
(Again note we assume that no two distances can be exactly 
the same.) The actual distances of.~S and Fi at position p 
must be between the corresponding lower and upper bounds 
(inclusively). 

Our goal is to find the nearest neighbor at position p. Since 
Fs0 has the smallest predicted distance, it has the smallest 
derived upper bound among all patterns since the derived 
upper bounds are the predicted distances for all Fi plus the 
same number rnaxD(TJSp,ISp).  Note that if the derived 
lower bound of the distance from I S  and a feature Fsi is 
greater than this smallest upper bound, then Fsl cannot be 
the nearest neighbor since definitely F~o must be closer to 
Z S  than Fsi. On the other hand, if the derived lower bound 
of the distance from Fsi is not greater than this smallest 
upper bound, then we cannot be sure which of the two, Fs0 
or FFsi, is closer to I S .  In this case, F~0 and F~i both need 
to be considered further, and we call them candidate pat- 
terns. Figure 5 illustrates the candidate list for the nearest 
neighbor at position p. 

The procedure to find the candidate list of the nearest neigh- 
bor is given in Figure 3. Consider the three categories in 
Figure 2. If sL = O, then we know that Fso is the only an- 
swer, thus in category (1). Otherwise, category (1) is empty, 

and Fs(L_4_l), . . .  ,Fsr n are in category (2) and FF,0,... , F s L  

are the candidate patterns in category (3). 

Note that the Q u i c k S o r t  step does not involve the actual 
time series value ZS[p] and can be performed before ~S[p] 
comes. The computation of the upper bound and lower 
bound will involve the error distance from actual time se- 
ries to the predicted series at each position. It 's easy to 
see that this computation can be implemented incremen- 
tally and can be done very efficiently. So this procedure of 
finding the candidate patterns needs very little CPU time. 

P r o p o s i t i o n  Algorithm C Q P  in Figure 2 with Step 3.1 as 
implemented in Figure 3 correctly processes the continuous 
query for the nearest neighbor. 

3.2 CQP for the h-near neighbors 
The batch process on evaluating this query is exactly as 
what we discussed earlier and summarized in Figure 2. In 
this subsection, we develop Step 3.1 of Figure 2 for the h- 
near neighbor query. Unlike the query of finding the nearest 
neighbor that has exactly one pattern series as the output, 
the h-near neighbor query may have 0 or any number of 
patterns as the output. 

We observe that the triangular relationship in Inequation (3), 
as well as shown in Figure 4, among the three distances still 
holds for each position p. We will use the same derived upper 
bound and lower bound as those in Subsection 3.1. We sort 
the patterns Fi based on their distances to the predicted se- 
ries T'S, and illustrate the derived upper and lower bounds 
derived from the triangular relationship in Figure 6. 

Unlike the nearest neighbor query where the derived upper 
bound can be used to filter out patterns that cannot be the 
answer, the threshold h for the h-near neighbor query can 
be any real number that is no less than 0. 

In order to find the h-near neighbors, we classify pattern 
series into three categories: a pattern series Fi is in category 
(1) if the threshold h is greater than or equal to its derived 
upper bound, Fi is in category (2) if the threshold h is less 
than its derived lower bound, and Fi is in category (3) if the 
threshold is between its derived lower bound (inclusive) and 
derived upper bound (exclusive). 
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INPUT D(PS[p  - li,p], Fi) for all pa t te rn  Fi 
OUTPUT Candidate  pa t te rn  list and some h-near neighbors. 

METHOD: Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Q u i c k S o r t  the list of Fi based on the values 
D(7~S[p - li,p], Fi),  i = 0, 1, 2, ..., m. 
Assume the list obtained is F~0, . . .  , F,m. 
Let maxD(7~Sp, 1$p)  = max{D(7~S[p - li, p], Z S [ p  - li, p])Ifor all l, }, 
and let maxUp = m a x D ( P S p , Z S p )  + D(7~S[p -/sin,p], Fsm), 
minLow = D (PS  [p - l~ m, P], F~ m) -- m a x D  (7)8p, I 8 p ) .  

Find the first pa t te rn  F~i in the list obtained in Step 1 such tha t  
D(PS[p - Isi,p], F~i) + maxD(P,Sn ,ZSp)  > h. 
Call this pat tern  F~u. 
If F~u does not exist, then R e t u r n  (all pat terns  as near neighbors). 
Find the last pa t te rn  Fsi in the list obtained in Step 1 such tha t  
D(PS[p - l~i,p], F~i) - m a x D ( P S p , Z $ , )  <_ h. 
Call this pa t te rn  F~L. 
If F~L does not exists, then R e t u r n  (no h-near neighbors). 
R e t u r n  candidate list: F~u, . . .  , Fsn, and 
h-near neighbors: F~0, . . .  , F~(u- D if s U ¢  sO. 

F i g u r e  7: F i n d  t h e  h - n e a r  n e i g h b o r s  a n d  candidate patterns  for the  near neighbors a t  pos i t ion p. 
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Waximum Prediction Error O 9 ? ~ 4 
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Figure 6: The  h - n e a r  n e i g h b o r s  a n d  candidates.  

Clearly, pat terns  in category (1) are those that  are definitely 
h-near neighbors since the actual  distance cannot be greater 
than h. Likewise, pat terns  in category (2) are those tha t  are 
definitely not h-near neighbors (the "filtered out" pat terns)  
since the actual distance must  be greater than h. Pat terns  
in category (3) are those we are not sure; these are what  we 
call candidate patterns, and need to be verified by computing 
their actual distance to find out which of the candidates 
are indeed h-near neighbors. These categories correspond 
exactly to the categories in Figure 2. 

It is not difficult to find the above three categories as shown 
in Figure 7. We first sort the pa t te rn  series in the increas- 
ing order by their distances to the predicted series. We 
then t ry  to find the first pa t te rn  series (call it F,u)  that  
has the derived upper bound greater than h. If no such 
pa t te rn  exists, then all pa t te rn  series are in category (1), 
i.e., all pat terns  axe h-near neighbors. It is easily seen that  
this is the case when h is in the range hi in Figure 6, i.e., 
h is greater than or equal to the maximum upper bound 
maxUp : maxD(7~Sp, ZSp) + D(PS[p  - lain, p], Fsm). 

We then t ry  to find the last pa t te rn  series (call it  F,L) tha t  
has the derived lower bound less than  or equal to h. If no 
such pa t te rn  exists, then all pa t te rn  series are in category 
(2), i.e., no pa t te rn  series are h-near neighbors. I t  is eas- 
ily seen tha t  this is the case when h is in the range h2 in 
Figure 6, i.e., h is less than rninLow, defined as D ( P S [ p -  
l~o, p], F~o) - maxD(7~Sn, ZSp). 

If F,u and F,L both exist, then we have the case minLow < 
h < maxUp. This corresponds to the case when h is in the 
range h3 in Figure 6. In this case, the  pa t t e rn  series F,0, 
• . . ,  Fs(v-z)  are in category (1), i.e., they are definitely 
h-near neighbors, the pat terns  F,(L+I), . . .  , Fsm are in cat- 
egory (2), i.e., the filtered out pat terns,  and pa t te rns  Fsv, 
• . .  , FsL are the candidate patterns.  Whether  a candidate  
pa t te rn  is an h-near neighbor or not needs to be verified. 
The verification uses the distance formula directly in our 
algorithm. 

Figure 7 summarizes all the above steps in locating the pat-  
terns in the three categories. 

Note tha t  in the case of h-near neighbor query, the number 
of candidates to be verified is unrelated to the  number of 
answers. Indeed, in the above, the numbers of pa t te rns  in 
category (1) and category (3) are not related. 

P r o p o s i t i o n  Algori thm C Q P  in Figure 2 with Step 3.1 as 
implemented in Figure 7 correctly processes the continuous 
query for the h-near neighbors. 

4. P E R F O R M A N C E  EVALUATION 
In this section we s tudy the performance of C Q P  algori thm 
through experiments. The experiments are coded with the 
programming language C + +  and the F F T  algori thm used 
is F F T W  [10]. Experiments axe performed on a dedicated 
desktop computer  (Dell Dimension 4100 with 256 MB mem- 
ory and Pent iumIII  766 CPU). 
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F i g u r e  8: S y n t h e t i c  d a t a  a n d  p r e d i c t i o n  e r r o r  m o d e l s  u s e d  in t h e  e x p e r i m e n t .  

In order to control the test environment, we use synthetic 
data. We generate the streaming time series with a func- 
tion of the random-walk series, defined as I S [ i ]  = 100 * 
(s in(O.1 * R a n d o m W a l k [ i ] )  + 1 + i/20000), i = 0 , . . .  , 19999, 
where R a n d o m W a l k [ O  : 19999] is a random-walk series. The 
streaming time series generated and used in the experiment 
is shown as Figure 8(a). 

Four sets of pattern series with length ranges of 300 ~ 400, 
500 ~ 600, 700 ~ 800 and 300 ~ 800, respectively, are 
tested in the experiments. These patterns are also syntheti- 
cally generated and each is made similar to a portion of the 
streaming time series. Specifically, pattern series are gen- 
erated by taking random positions in the streaming series 
and obtaining subsequences of given lengths from those po- 
sitions. Each pattern set consists of 100 patterns with their 
lengths being uniformly distributed, i.e., for pattern series 
set 300 ~ 800, the lengths are (300,305,310,. . .  , 795). A 
sample pattern series is shown in Figure 8(b). In Figure 8(c), 
we show the distances of the I S  with each of the pattern se- 
ries in the set 300 ~ 400 at a sample position. The patterns 
are ordered by the distance to I S  at the position. 

In order to control the experiments in terms of prediction 
errors, we also generate predicted series based on the stream- 
ing series. Suppose at the position p~ - 1, we need to launch 
batch process. Assume we use an n-step prediction model, 
and for each integer k (1 < k < n), we denote as 6[k] the 

absolute error between the streaming time series I S  and the 
predicted series ~ S  at position ps - 1 + k.  This error 6[k] 
tends to be bigger when the looking forward step k becomes 
larger up to n. In order to simulate this, we assume that  
6[k] is a uniformly distributed variable at each prediction 
step k with the range of this variable growing increasingly 
as k becomes greater. 

Three kinds of prediction error models are implemented in 
the experiment. The absolute error of the first one increases 
in the order of O(x/~), which is defined as Errsqr t [k ]  = 

a . R A N D * x / E ;  the second follows the linear increasing trend 
with the form of E r r t i  . . . .  [k] = a * R A N D  * k; and the third 
error model is E r r s q  . . . .  [k] = a . R A N D . k  2, which increases 
in the order of O(k2). In these functions, k is the prediction 
step, R A N D  is a uniformly distributed random variable and 
its values are within -0 .5  to 0.5, and a is named the error  
contro l  which can scale up the prediction error as needed. In 
the experiments we report here, we fix a = 1 in the E r r s q r t  
model, and a = 0.1 in the Err t inea~ and E r r s q  . . . .  models. 
Figure 8(d) shows a sample linear prediction error function 
with a = 0.1 and prediction steps from 50 to 800. Intuitively, 
with the same a value and prediction step k, Er r~qr t  model 
gives the best prediction accuracy, meaning "PS is very close 
to the actual streaming time series I S ;  E r r l i  . . . .  gives a 
moderate prediction accuracy and Errsq~a~e yields the worst 
prediction accuracy. 
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FFT Length 
Pat tern Set 

(lengths) 

300 ~ 400 
500 ~ 600 
700 ~ 800 
300 ~ 800 

Prediction Length 
50 100 200 300 400 500 600 700 800 

512 512 1024 1024 1024 1024 1024 2048 2048 
1024 1024 1024 1024 1024 2048 2048 2048 2048 
1024 1024 1024 2048 2048 2048 2048 2048 2048 
1024 1024 1024 2048 2048 2048 2048 2048 2048 

Table  2: P a t t e r n  set ,  p r e d i c t i o n  l e n g t h  an d  F F T  l e n g t h  used  in t h e  e x p e r i m e n t s .  
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F i g u r e  9: R e l a t i v e  C P U  cost  to  e v a l u a t e  q u e r y  w i t h  d i f ferent  p r e d i c t i o n  error m o d e l s .  

The following queries are evaluated in the experiments: 

• QI: Find the nearest neighbor of the incoming stream 
time series at each time position. 

• Q2: Find the 30.0-near neighbors of the streaming 
time series at each position p. 

We define the CPU cost as the averaged computation time at 
each time position (hence this is the average response time). 
We show the relative CPU cost as the above CPU cost rela- 
tive to the CPU cost of the naive method, which computes 
the distances at each time position directly using the dis- 
tance formula. Note the C Q P  algorithm favors the query 
at the beginning positions in one prediction period, while 
the query at the tail end may need more time to perform 
the verification because of the larger prediction errors. 

In our experiments with a given prediction error model, the 
relative CPU cost is a function of two parameters: the choice 

of the pattern sets and the prediction length. The FFT  
length is picked as the value 2 k, for some k such that 2 k is 
the least value no less than the maximum length of pattern 
series plus the prediction length. All combinations tested in 
the experiments are shown in Table 2. Each combination 
is also done with each of the three prediction error models 
Err~qrt, E r r .  . . . .  and Err~q . . . . .  

Figure 9 shows the performance of C Q P .  Efficiency is mostly 
dependent on prediction models. As long as the error of 
the n-step prediction is small enough, the C Q P  algorithm 
can achieve good performance and outperform the naive 
method. Compared with the naive method, with the given 
prediction model and the prediction length, C Q P  algorithm 
works better as the pattern series lengths get longer. This 
is because that only a little more time is needed to per- 
form the F F T  on a longer time series, while the cost of the 
naive method is proportional to the length of the patterns. 
However, if the prediction model and the pattern set are 
fixed, the relative cost grows as the prediction length be- 
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Figure  10: P e r c e n t a g e  o f  p a t t e r n s  in t h e  c a n d i d a t e  set .  

comes longer due to the increasing prediction error between 
the actual and predicted time series. 

The wall clock time for the whole process (with all the time 
positions) takes approximately 29 to 65 seconds with the 
naive method depending on the data sets. Here we assume 
that a value in the streaming time series arrives as fast as 
we finish handling the previous value. Hence, the response 
is about 1.5 to 3.3 milliseconds on average for the naive 
method. The clock time of our method is much shorter 
than this, and can be derived from Figure 9. These times 
are real response times if the data values do not come faster 
than the speed of the processing. 

The C Q P  algorithm will not be useful if the prediction er- 
ror is too large. As the CPU cost of the nearest neighbor 
query in Figure 9 with Err~q~a~ model shows, the perfor- 
mance drops quickly when the prediction length increases. 
So choosing a good prediction model as well as the predic- 
tion length is critical to use this algorithm. 

As mentioned above, the performance of C Q P  mostly de- 
pends on the accuracy of the prediction. The F F T  batch 
processing contributes to the performance as well, but is 
not very sensitive to the accuracy of prediction. In order to 
see the relationship of performance and prediction power, 
we show the average percentage of pattern series in the can- 
didate set over all the time positions. See Figure 10. 

Note that for the nearest neighbor query, the answer of the 
query is always one pattern at each time position. However, 
for the near-neighbor queries, the patterns in the answer de- 

pends on the threshold value. In our experiments, we used 
threshold h ---- 30.0, and the average number of patterns in 
the answer at each position is 14 out of 100 patterns. Note 
that for the h-near neighbor query, the number of candidates 
may be different from the number of patterns in the answer, 
and is dependent on the prediction model used. For exam- 
ple, the number of actual 30.0-near neighbors at all 20,000 
time positions is totally 282,300, but  C Q P  algorithm only 
verifies totally 64,938, 77,518, and 130,493, respectively, for 
the three prediction models with a prediction length of 300. 
Indeed, as discussed in Section 3, some patterns, category 
(1), may already be in the answer without verification. 

It should also be mentioned that  the CPU cost of C Q P  
algorithm to find the h-near neighbors is not sensitive to 
the h value. Instead, it is more dependent on the distance 
distribution of the patterns to the streaming series at each 
position. For example, in Figure 8(c), if the maximum pre- 
diction error is 10, then the number of candidates is 36 for 
30.0-near neighbors, while only about 10 for 80.0-near neigh- 
bors. There is no direct relationship between the number of 
candidates (thus the CPU cost) and the query threshold h. 

From Figure 9, we can also find that  there exists a best pre- 
diction length to best outperform the naive method for a 
given pattern set. The averaged CPU cost at each position 
to perform the batch processing may decrease as the predic- 
tion length becomes longer, but the verification procedure 
cost will increase at the same time due to the increased pre- 
diction error. The existence of the best prediction length is 
the trade-off between these two factors. 
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5. RELATED WORK 
Long standing queries over a changing database have long 
attracted the attention of researchers. Perhaps Terry et 
al. [29] were the first ones who introduced the notion of "con- 
tinuous queries" for a class of queries that  are issued once 
and then run "continuously" over databases. They proposed 
an incremental approach to evaluate the queries on append- 
only databases with only new results returned to the user. 
Also, Parker et al. (e.g., [21]) worked on answering queries 
on data streams. A similar concept, but  termed "continual 
query", was also presented and studied in the work of Liu 
et al. [17, lS]. 

Recently, due to the ever growing use of information systems 
in many new types of applications, continuous queries have 
again become the focal point of several research projects. 
Chen et al. reported, in [7, 6], the design of NiagraCQ 
system in which incremental query evaluation method was 
no longer restricted to append-only data sources. Babu and 
Widom [3], and Madden and Franklin [19] also reported sys- 
tem architecture and related issues for dealing with contin- 
uous queries. 

In this paper, we study a particular but  important  type of 
continuous query, namely similarity-based pattern queries 
on streaming time series. Instead of using the idea of incre- 
mentally updating the query result, we use a new prediction- 
based approach. We believe many continuous queries will be 
able to take advantage of prediction and provide faster re- 
sponse time. 

Our work is also related to that on time series similarity 
search. However, work has been concentrated on station- 
ary data sources. Recent work in this area is categorized 
into two general approaches [13]. The first is to map time 
sequence into frequency domain [1, 9, 26, 15], generally 
with a Discrete Wavelet Transform, and then use the sig- 
nificant part of the coefficients to index the original time 
series. The second approach [2, 28] performs the operation 
in time domain directly. This work is also related to index- 
ing high dimensional data. A recent survey can be found 
in [4]. However, in the above approaches, the database se- 
ries are supposed to have the same lengths. In contrast, we 
deal with (pattern) time series with variable lengths. If the 
database pattern series are all of the same length, we believe 
our prediction-based method can be combined with the use 
of indexing structures in the literature. 

Work has also been done in dealing with variable lengths 
and subseries, which may be adapted to deal with series 
with various lengths. Subseries matching [9, 14] in time- 
series databases is a more difficult problem. The time se- 
ries stored in databases have variable length and are longer 
than the query sequences. The query is to find the subse- 
quences in the database that have a similar pattern in the 
same length as the query series. Generally, the approach 
is to split the series into shorter ones and to index these 
shorter ones to answer queries. In general, splitting long se- 
ries into shorter ones works only for near-neighbor queries, 
not for nearest neighbors. In this paper, we deals with both 
nearest neighbor and near neighbor queries on time series 
with different lengths. 

6. CONCLUSION 
In this paper, we introduced a new strategy of processing 
continuous queries, namely continuous query with predic- 
tion. We showed this strategy works well in the scenario 
where we need to quickly find similarity-based patterns from 
a streaming time series. We detailed the algorithms and ex- 
periments used for this scenario. The experiments are done 
using synthetic data to control the environment and to see 
when the strategy works. 

For the scenario we consider, we may easily extend the 
queries to find nearest k neighbors. Another improvement 
we may consider is that  the time to launch the batch pro- 
cess can be adjusted based on the size of the candidate pat- 
terns. Indeed, if the prediction model is not good enough, 
the number of candidates will increase dramatically at the 
positions of the tail end of one prediction period. In this 
case, we should consider re-predict the time series and re- 
launch the batch processing. In this paper, we only con- 
sidered the launch of the prediction and batch processing at 
fixed time positions. An additional extension to our scenario 
we may consider in the future is the case when the number  
of patterns is large, and when disk accesses are necessary. 
In this case, we believe prediction can be helpful as well. 

In our algorithm, at certain time positions, the F F T  batch 
process is launched. At these positions, the response t ime 
will be slower than the other time positions, where no batch 
process is used. For a faster response time at these positions, 
we may consider to perform the batch process before all the 
predicted values are exhausted. That  is, we may overlap 
batch process with the normal steps. How well this strategy 
works is an interesting future research direction. 

The approach in our work follows the traditional similarity 
models that  rely on pointwise Euclidean distance [1, 9, 26, 
8]. Non-Euclidean metrics have also been used to compute 
the similarity for time series. Perng [22] proposed "Land- 
marks Similarity" as a general model to measure the sim- 
ilarity among time series. Rafiei [27] proposed a class of 
linear transforms on the Fourier transformations of original 
series. Several important  notions of similarity can be ex- 
pressed with this class and the corresponding queries can be 
efficiently implemented on top of R-tree index. Huang [13] 
proposed another approach that  transforms time series into 
symbol strings and then builds a suffix tree to index all suf- 
fixes of the symbol strings. As a future research direction, it 
will be interesting to incorporate prediction-based method 
with these non-Euclidean distances. 

It will be most interesting to extend our strategy to other 
kinds of continuous queries. The critical ingredients for this 
strategy to work is the prediction capability and the use of 
prediction to increase the speed of processing when actual 
values arrive. However, it should be noted that the predic- 
tion need not be precise all the time. If the prediction is 
not good at certain period of time, the strategy may still 
work well. Indeed, we only need the have the predictions 
relatively precise at relatively most of the time. How these 
"relativities" are measured and how much is sufficient de- 
pends on the particular application considered. 
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