
Modeling Multidimensional Databases

Rakesh Agrawal Ashish Gupta
�

Sunita Sarawagi

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract

We propose a data model and a few algebraic oper-
ations that provide semantic foundation to multidimen-
sional databases. The distinguishing feature of the pro-
posed model is the symmetric treatment not only of all
dimensions but also measures. The model provides sup-
port for multiple hierarchies along each dimension and
support for adhoc aggregates. The proposed operators
are composable, reorderable, and closed in application.
These operators are also minimal in the sense that none
can be expressed in terms of others nor can any one
be dropped without sacrificing functionality. They make
possible the declarative specification and optimization
of multidimensional database queries that are currently
specified operationally. The operators have been designed
to be translated to SQL and can be implemented either on
top of a relational database system or within a special
purpose multidimensional database engine. In effect, they
provide an algebraic application programming interface
(API) that allows the separation of the frontend from the
backend. Finally, the proposed model provides a frame-
work in which to study multidimensional databases and
opens several new research problems.

1 Introduction

Codd [CCS93] coined the phrase On-Line Analytical
Processing (OLAP) to characterize the requirements for
summarizing, consolidating, viewing, applying formulae
to, and synthesizing data according to multiple dimen-
sions. OLAP software enables analysts, managers, and
executives to gain insight into the performance of an en-
terprise through fast access to a wide variety of views of
data organized to reflect the multidimensional nature of
the enterprise data [Col95]. It has been said that current
relational database systems have been designed and tuned
for On-Line Transaction Processing (OLTP) and are in-

�
Current Affiliation: Junglee Corporation, Sunnyvale, CA 94086.

adequate for OLAP applications [Cod93] [Fin95] [KS94].
In response, several multidimensional database products
have appeared on the market (see [Rad95] for a survey).

The database research community, however, has so far
not played a major role in this market phenomenon. Gray
et al. [GBLP96] recently proposed an extension to SQL
with a Data Cube operator that generalizes the groupby
construct to support some of the multidimensional analy-
sis. Since then, techniques have been developed for com-
puting the data cube [AAD

�

96], for deciding what sub-
set of a data cube to pre-compute [HRU96] [GHRU97],
for estimating the size of multidimensional aggregates
[SDNR96], and for indexing pre-computed summaries
[SR96] [JS96]. The research in multidimensional index-
ing structures (see, for example, [Gut94] for an overview)
is relevant as well. Lastly, research in statistical databases
(see, for example, [Sho82] for an overview) also ad-
dressed some of the same concerns.

This paper presents a framework for research in multi-
dimensional databases. We first review concepts and ter-
minologies in vogue in multidimensional database prod-
ucts in Section 2. We also point out some of the deficien-
cies in the current products. We then propose in Section 3
a data model to provide semantic backing to the tech-
niques used by current multidimensional database prod-
ucts. The salient features of our model are:

� Our data model is a multidimensional cube with a set
of basic operations designed to unify the divergent
styles in use today and to extend the current func-
tionality.

� The proposed model provides symmetric treatment
to not only all dimensions but also to measures. The
model also is very flexible in providing support for
multiple hierarchies along each dimension and sup-
port for adhoc aggregates.

� Each of our operators are defined on the cube and
produce as output a new cube. Thus the operators are
closed and can be freely reordered. This free compo-
sition allows a user to form larger queries, thereby
replacing the relatively inefficient one-operation-at-

a-time approach of many existing products. The al-
gebraic nature of the cube also provides an opportu-
nity for optimizing multidimensional queries.

� The proposed operators are minimal. None can be
expressed in terms of others nor can any one be
dropped without sacrificing functionality.

� Our modeling framework provides the logical sepa-
ration of the frontend graphical user interface (GUI)
used by a business analyst from the backend storage
system used by the corporation. The operators thus
provide an algebraic application programming inter-
face (API) that allows the interchange of frontends
and backends.

We discuss in Section 4 some of our design choices and
show how currently popular multidimensional database
operations can be expressed in terms of the proposed oper-
ators. These operators have been designed to be translated
into SQL, albeit with some minor extensions. We refer the
reader to [AGS96] for these translations. Thus, our data
model can be implemented on either a general-purpose re-
lational system or a specialized engine. We conclude with
a summary in Section 5.

2 Current State of the Art

We begin with a brief overview of the current state of
art in multidimensional databases.

Example 2.1 Consider a database that contains point of
sale data about the sales price of products, the date of sale,
and the supplier who made the sale. The ��������� value is
functionally determined by the other three attributes. In-
tuitively, each of the other three attributes can “vary” and
accordingly determine the sales value. Figure 1 illustrates
this “multidimensional” view.

Date

Product
p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4
Sales

10

20

15

10

15

20 25

15

15 20

10

Supplier

s1
s2

s3
s4

Figure 1. Example data cube

2.1 Terminology

Determining attributes like �	��
������� , � � � � , � ����� ����� �
are referred to as dimensions while the determined at-

tributes like ��������� are referred to as measures. (Dimen-
sions are called categorical attributes and measures are
called numerical or summary attributes in the statistical
database literature [Sho82]). There is no formal way of
deciding which attributes should be made dimensions and
which attributes should be made measures. It is left as a
database design decision.

Dimensions usually have associated with them hierar-
chies that specify aggregation levels and hence granularity
of viewing data. Thus, � �������
����! �#" � � ��� � � �
�$��� � is a hierarchy on � � � � that specifies various ag-
gregation levels. Similarly, �%��
�������&� ���'�(� � � � �(�
� � � �*)
�� � is a hierarchy on the �%��
������� dimension.

An analyst might want to see only a subset of the data
and thus might view some attributes and within each se-
lected attribute might restrict the values of interest. In
multidimensional database parlance, the operations are
called pivoting (rotate the cube to show a particular face)
and slicing-dicing (select some subset of the cube). The
multidimensional view allows hierarchies associated with
each dimension also to be viewed in a logical manner.
Aggregating the product dimension from product name
to product type is expressed as a roll-up operation. The
converse of roll-up is drill-down that displays detail in-
formation for each aggregated point. Thus, drilling-down
the product dimension from product category to product
type gets the sales for each product type corresponding to
each product category. Further drill down will get sales for
individual products. Drill-down is essential because often
users want to see only aggregated data first and selectively
see more detailed data.

Example 2.2 We give below some queries to provide a
flavor of multidimensional queries. These queries use the
database from Example 2.1 and other necessary hierar-
chies on product and time dimensions.

� Give the total sales for each product in each quarter
of 1995. (Note that quarter is a function of date).

� For supplier “Ace” and for each product, give the
fractional increase in the sales in January 1995 rel-
ative to the sales in January 1994.

� For each product give its market share in its category
today minus its market share in its category in Octo-
ber 1994.

� Select top 5 suppliers for each product category for
last year, based on total sales.

� For each product category, select total sales this
month of the product that had highest sales in that
category last month.

� Select suppliers that currently sell the highest selling
product of last month.

� Select suppliers for which the total sale of every
product increased in each of last 5 years.

� Select suppliers for which the total sale of every
product category increased in each of last 5 years.

2.2 Implementation Architectures
There are two main approaches currently used to build

multidimensional databases. One approach maintains the
data as a

�
-dimensional matrix based on a non-relational

specialized storage structure. The database designer spec-
ifies all the aggregations they consider useful. While
building the storage structure, these aggregations associ-
ated with all possible roll-ups are precomputed and stored.
Thus, roll-ups and drill-downs are answered in interactive
time. Many products have adopted this approach – for in-
stance, Arbor Essbase [Arb] and IRI Express [IRI].

Another approach uses a relational backend wherein
operations on the data cube are translated to relational
queries (posed in a possibly enhanced dialect of SQL).
Indexes built on materialized views are heavily used in
such systems. This approach also manifests itself in many
products – for instance, Redbrick [Eri95] and Microstrat-
egy [Mic].

2.3 Additional Desired Functionality
We believe that multidimensional database systems

must provide the following additional functionality, which
is either missing or poorly supported in current products:

� Symmetric treatment not only of all dimensions
but also of measures. That is, selections and ag-
gregations should be allowed on all dimensions and
measures. For example, consider a query that finds
the total sales for each product for ranges of sales
price like 0-999, 1000-9999 and so on. Here the sales
price of a product, besides being treated as a measure,
is also the grouping attribute. Such queries that re-
quire categorizing on a “measure” are quite frequent.
Non-uniform treatment of dimensions and measures
makes such queries hard in current products. The
proposed OLAP council API [OLA96] provides for
all the measures to be put on one dimension of the
cube. However, this proposal maintains a sharp dis-
tinction between measures and dimensions and does
not solve the problem of being able to categorize on
a measure.

� Support for multiple hierarchies along each di-
mension. For instance, Example 2.1 illustrates the
type-category hierarchy on products (of interest to a
consumer analyst). An alternative hierarchy is one
based on which company manufactures the product
and who owns that company, namely, �	��
��� ��� �
�'� ����� � �!� � � � � � � � � � ��� �
 � � � � � (of interest to
a stock market analyst). Roll-ups/drill-downs can be
on either of the hierarchies.

� Support for computing ad-hoc aggregates. That
is, aggregates other than those originally prespecified
should be computable. For instance, for each product
both the total sales and the average sales are interest-
ing numbers.

� Support for a query model in place of one-
operation-at-a-time computation model. Cur-
rently, a user operates on a cube once and obtains
the resulting cube. Then the user makes the next
operation. However, not all the intermediate cubes
are of interest to the user. A set of basic operators
that have well defined semantics enable this compu-
tation to be replaced by a query model. Thus, having
tools to compose operators allows complex multidi-
mensional queries to be built and executed faster than
having the user specify each step. This approach is
also more declarative and less operational.

2.4 Related Research

Data models developed in the context of temporal, spa-
tial and statistical databases also incorporate dimensional-
ity and hence have similarities with our work.

In temporal databases [TCG
�

93], rows and columns of
a relational table are viewed as two dimensions and “time”
adds a third dimension forming what is called the “time
cube”. This cube is different from a cube in our model
where dimensions correspond to arbitrary attributes and
all dimensions are treated uniformly without attaching any
fixed connotation with any one of them.

The modeling efforts in spatial databases [Gut94]
mostly concentrate on representing arbitrary geometric
objects (points, lines, polygons, regions etc.) in mul-
tidimensional space. By viewing OLAP data as points
in the multidimensional space of attributes, one could
draw analogies between the two models. But the oper-
ations central to spatial databases (“overlap”, “contain-
ment”, etc.) are quite different from the common OLAP
operations (“roll-up”, “drill-down”, “joins” etc.). How-
ever, the multi-dimensional indexing structures developed
for spatial databases (see [Gut94]) may be useful in devel-
oping efficient implementations of OLAP databases.

Statistical databases also address some of the same
concerns as OLAP databases. However, models in the
statistical database literature [Mic92] [CL94] have been
primarily concerned with extending existing data models
(mostly relational) for representing summaries and sup-
porting operations for statistical data analysis. In contrast,
our objective has been to develop a model and a set of
basic operations that abstract the analysts view of enter-
prise data. In statistical databases, category (dimensions)
and summaries (measures) are treated quite differently,
whereas we have strived to treat dimensions and mea-
sures uniformly. For instance, [MERS92] describes an

S-algebra with operations like “S-union”, “S-selections”,
“S-aggregation” that are similar to some of the operators
that we define. However, since we treat measures and
dimensions symmetrically, we have additional operators
that are unique to our model. Irrespective of these differ-
ences, OLAP databases will benefit from implementation
techniques developed in statistical databases, particularly
related to aggregation views (see [Sho82] [STL89]).

Concurrent to our work, [GLS96] proposed a model for
tabular data that embeds both the relational and the mul-
tidimensional data model. Their model also allows mea-
sures and dimensions to be interchanged like our model.
However, their model does not state how to handle ag-
gregations, an operation that is fundamental to OLAP
databases.

3 Data Model
We now outline our proposed multidimensional data

model and operations that capture the functionality cur-
rently provided by multidimensional database products
and the additional desired functionality listed above. Our
design was driven by the following key considerations:

� Treat dimensions and measures symmetrically.
� Strive for flexibility (multiple hierarchies, adhoc ag-

gregates).
� Keep the number of operators small.
� Stay as close to relational algebra as possible. Make

operators translatable to SQL.
In our logical model, data is organized in one or more

multidimensional cubes. A cube has the following com-
ponents:

�
�

dimensions, and for each dimension a name
���

, a
domain ��
 � � from which values are taken.

� Elements defined as a mapping �����	� from �$
 ��
�
����� � �$
 ��� to either an � -tuple, 0, or 1. Thus,
�����	�����
�� ����� � � � � refers to the element at “position”
�
�� ����� � � � of cube C. Note, the � � s refer to values
not positions per se. Therefore, our model does not
require the dimensions to have a ranked, discrete do-
main.

� An � -tuple of names that describes the � -tuple ele-
ment of the cube.

The elements of a cube can be either 0, 1, or an � -
tuple ���
 � ����� � �	��� . If the element corresponding to
�����	�����
�� ����� � � � � is 0 then that combination of dimen-
sion values does not exist in the database. A 1 indicates
the existence of that particular combination. Finally, an
� -tuple indicates that additional information is available
for that combination of dimension values. If any of the
elements of a cube is a 1 then none of the elements can
be a � -tuple and vice-versa. We represent only those val-
ues along a dimension of a cube for which at least one of

the elements of the cube is not 0. If all the elements of a
cube are 0 then the cube is empty. Additionally, if domain
�$
 � � of dimension

� �
has no values then too the cube is

considered to be empty.
In our model, no distinction is made between measures

and dimensions. Thus, in Example 2.1, sales is just an-
other dimension. Note that this is a logical model and does
not force any storage mechanism. Thus, a cube in our data
model may have more logical dimensions than the num-
ber of dimensions used to physically store the cube in a
multidimensional storage system.

3.1 Operators

We now discuss our multidimensional operators. We
illustrate the operators using a 2-D subset of the cube in-
troduced in Example 2.1. We omit the supplier dimension
and display in Figure 2 only the product, date, and sales
dimensions. Note, sales is not a measure but another di-
mension, albeit only logical, in the model.

Date

Productp1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

Sales

25

15
20

10

Figure 2. Logical cube wherein sales is a di-
mension (omitting the 1/0’s)

To operate on the logical cube, the sales dimension
may have to be folded into the cube such that sales val-
ues seem determined by the product and date dimensions.
We describe later how this is achieved. For now, we will
use the cube with sales values as the sole member of
the elements of the cube. Thus, the value ������� for
“ � � � �! � � ��" ” and “�	��
��� ��� �#� ” in Figure 3 in-
dicates that in the logical cube of Figure 2 the element
corresponding to “ � � � �	 �'� �$" ”, “�	��
��� ��� �#� ”, and
“ ��������� ��� ” is “ � ”. We show the metadata description of
the elements as an annotation in the cube. Thus, � sales �
in Figure 3 indicates that each element in the cube is a
sales value.
Notation We define the operators using a cube � with�

dimensions. We refer to the dimensions as
�
%� ����� � � � .

We use
� �

to refer also to the domain of dimension
� �

if
the context makes the usage clear; otherwise we refer to
the domain of dimension

� �
as ��
 � � ���	� . We use lower

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4
<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

product

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales,Product>

<10,p1>

<20,p1>

<15,p1>

<10,p2>

<10,p3>

<15,p3>

<15,p3>
<15,p2> <20,p4>

<20,p3> <25,p4>

Figure 3. The push operation on dimension product

Pull 1st member
of each element
as the new
dimension "Sales"

Product

p1 p2 p3

<10,d1> <20,d3> <10,d4>
10

20

Productp1 p2 p3

<d1>

<d3>

<d4>

Sales

Figure 4. Pull first member of each element as dimension sales

case letters like � � � � � to refer to constants.
Dimension values in our data model functionally de-

termine elements of the cube. As a result of an applica-
tion of an operation, more than one element value may be
mapped to the same element (i.e. the same combination of
values of dimension attributes) of the answer cube. These
element values are combined into one value to maintain
functional dependency by specifying what we call an ele-
ment combining function, denoted as ��������� .

We also sometime merge values along a dimension.
We call functions used for this purpose dimension merg-
ing functions, denoted as ���	��
��� .
Push

The push operation (see Figure 3) is used to convert di-
mensions into elements that can then be manipulated us-
ing function ��������� . This operator is needed to allow di-
mensions and measures to be treated uniformly.

Input: � ,
�	�

.

Output: � with each non-0 element extended by an ad-
ditional member, the value of dimension

���
for that ele-

ment.

Mathematically: push ��� � �	� � = ��� .
����� � ��� �
 � ����� � � � �) � � � where)
�����	�����
 � ����� � � � � . The operator � is defined to be�

if) �
, it is � � � � if) � , and in all other cases it

concatenates) and � � � � .

Pull

This operation is the converse of the push operator. Pull
creates a new dimension for a specified member of the
elements. The operator is useful to convert an element into
a dimension so that the element can be used for merging
or joining. This operator too is needed for the symmetric
treatment of dimensions and measures.

Input: � , new dimension name
�

, integer � .

Output: ��� with an additional dimension
�

that is ob-
tained by pulling out the ����� element of each element of
the matrix.

Constraint: all non-0 elements of � are � -tuples because
each non-0 element need at least one member to enable
the creation of a new dimension.

Mathematically: pull ��� � � � � � ��� , ��� � ��� .�
becomes the

��� ��� � dimension of the cube.
�$
 � � �
 ��� � � = � ��� � ��� ����� � � � � � �
 � �
 �'�

�����	�����
 � ����� � � � �! .
� �����%�����
�� ����� � � � �!� � � � �%
%� ����� �!� ��"
�� � � �
�� ����� � � � �

if � ���	� � �
�� ����� � � � � � �
%� ����� � � � � ����� � � � � ,
� ��� � �����
 � ����� � � � �!� � � �

, otherwise.
Note, if � � then elements of � � are ‘1’s or ’0’s.

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>
prod in {p1,p3}

Product

Date

p1 p3

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<20>

<15>

<15>

<10>

Figure 5. The restriction operation

Destroy Dimension

Often the dimensionality of a cube needs to be reduced.
This operator removes a dimension

�
that has in its do-

main a single value. The presence of a single value im-
plies that for the remaining

� � � dimensions, there is a
unique

� � � dimensional cube. Thus, if dimension
�

is
eliminated then the resulting

� � � dimensional space is
occupied by this unique cube.

Input: � , dimension name
�	�

.

Output: � � with dimension
� �

absent.

Constraint:
� �

has only one value, say �
Mathematically: destroy ��� � � � � = � � .
� � has

� � � dimensions,
�
 ����� � ��"
 � � � �
 � ����� � � � ,

�������%��� �
 ����� � ��"
�� � � �
�� ����� � � � � �����	�����
 � ����� � � � � .
A dimension that has multiple values cannot be di-
rectly destroyed because then elements would no longer
be functionally determined by dimension values. A
multi-valued dimension is destroyed by first applying a
merge operation (described later) and then applying the
above operation. Note that, if

� � we will get a zero
dimensional cube or a scalar as a result of the destroy
operation.

Restriction

The restrict operator operates on a dimension of a cube
and removes the cube values of the dimension that do not
satisfy a stated condition. Figure 5 illustrates an appli-
cation of restriction. Note that this operator realizes slic-
ing/dicing of a cube in multidimensional database termi-
nology.

Input: Cube � and predicate
�

defined on
���

.

Output: New cube � � obtained by removing from � those
values of dimension

� �
that do not satisfy the predicate

�
.

We have a more general notion of predicate
�

that can be

evaluated on a set of values and not on just a single value.
Thus,

�
can be either of the form “greater than 5” that

is evaluated on single values at-a-time or be of the form
“top 5 values” that is evaluated on the entire domain

� �
and outputs a set of values. If no element of dimension

���
satisfies

�
then ��� is an empty cube.

Mathematically: restrict(� � � � � �) = � � .
�$
 ��� �����%� ��
 ��� ����� if ����� � ��� �	� �

 � � �$
 � � ���	� � , otherwise.
� �����%�����
�� ����� � � � � �����	�����
�� ����� � � � � .
Join

The join operation is used to relate information in two
cubes. The result of joining a � -dimensional cube � with
an � -dimensional cube � � on

�
dimensions, called join-

ing dimensions, is cube � � with �
� � � �

dimensions.
Each joining dimension

� �
of � combines with exactly

one dimension
��
�

of � � to get resulting dimension
� �

of ��� as follows: For each joined dimension, two mapping
functions are used for mapping the corresponding joining
dimension of � and � � to the resulting dimension of ��� .
The elements of ��� are then formed via a function ���������
that combines all elements of � and � � that get mapped
to the same element of ��� .

Figure 6 illustrates cube � joining with cube � � on
dimension

�
 (mapping function is identity). Dimension�
 of the resulting cube has only two values. The func-
tion � � ����� divides the element value from cube � by the
element value from � � ; if either element is 0 then the
resulting element is also 0. Values of result dimension
that have only 0 elements corresponding to them are elim-
inated from � � (like values 0 and 3 for dimension

�
).
Input: � with dimensions

�
 ����� � � and � � with
dimensions

� � " � �
 ����� � � .
� � " � �
%� ����� � � � are

the join dimensions (without loss of generality).�
mapping functions, � � " � �
 � ����� � � � defined over

dimensions
� � " � �
 � ����� � � � of � and

�
map-

D1
1 2 4 5

<3> <2>

D1

D2

0 1 2 3

d

c

b

a <4>

<8>

<6>

<12>

<14>

<8>

<7>

<9>

<9>

D1

D2

d

c

b

a

1 2

<3>

<2>

<7>

<6>

C

map dimension
D using the
identify mapping

f divideselem
the element from
C by the element
from C1 if both
elements exist. Else
it returns 0

C1

1

Figure 6. Joining two cubes

ping function � �� " � �
 � ����� � � �� defined over dimensions� � " � �
 � ����� � � � of � � . Mapping � � applied to value��� �$
 � � ���	� produces values for dimension
���

in ��� .
Similarly � �� applied to � � � �$
 � � ��� ��� produces values
for dimension

�	�
in ��� . Also needed is a function ��� �����

that combines sets of elements from � and � � to output
elements of ��� .

Output: ��� with � dimensions,
�
 ����� � � . Multi-

ple elements in � and � � could get mapped to the
same element in ��� . All elements of � and � � that
get mapped to the same point in �	� are combined by
function ��������� to produce the output element of �	� .
If for some value � of dimension

���
, the elements

�������%�����
%� ����� � � � � � �
�� ����� � � � � is 0 for all values of the
other dimensions, then � is not included in dimension

� �
of ��� .

Mathematically:
join ��� � � � ��� � � " � �
 � ����� � � � � � �� " � �
 � ����� � � ���� � � ������� � � �
�$
 � � ��� � � ��
 � � ���	� if � � � � � � �

. �$
 � � ��� ��� if � � ��� � � � . ��� � � � � � � � � � � � � � �$
 � � ����� OR
� � � � �� � � � � � � � � �$
 � � ��� ���! .

�������%��� �
�� ����� � � �� " � � ����� � � �� � ����� � � � � � ������� ������� � � �
	� �
such that
��� ��������� �
�� ����� � � � " � � ����� � � � � ,
�
	 ����� ������� �� " � � ����� � � �� � � � �
 � ����� � � � � ,
� �� � � � � � � � OR � �� � � �� � � �� �

We defined above a general notion of the join operator that
covers several important special cases. Notable amongst
these are: cartesian product, natural join, union, merge

and associate. In the case of cartesian product, the two
cubes have no common joining dimension. In the case
of natural join the mapping function is identity and the
� � ����� function returns “0” whenever one of the elements
is ’0”. The sub-cases union and merge are discussed later.

Associate is an especially useful sub case in OLAP
applications for computations like “express each month’s
sale as a percentage of the quarterly sale.” Associate is
asymmetric and requires that each dimension of � � be
joined with some dimension of � . Figure 7 illustrates
associating cube � � with � where month dimension of
� � and date dimension of � are joined by mapping them
to the date dimension of ��� . Similarly, category and
product are joined by mapping them to product of � � .
For dimension month, each month is mapped to all the
dates in that month. For dimension category, value � � ���
is mapped to products � � and ��	 , and � � �
	 is mapped to
�� and � " . For dimensions date and product the identity
mapping is used. Function ��������� divides the element
value from cube � by the element value from � � ; if
either element is 0 then the resulting element is also 0.
Note, value mar4 is eliminated from �	� because all its
corresponding elements are 0.

Merge

The merge operation is an aggregation operation. We
illustrate it in Figure 8. The figure shows how hierarchies
in a multidimensional database are implemented using the
merge operator. Intuitively, a dimension merging function
is used to map multiple product names into one or more
categories and another function is used to map individ-
ual dates into their corresponding month. Thus, multiple
elements on each dimension are merged to produce a di-

Date

Product

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

Category

Month

cat1 cat2

jan

feb

<Total Sales>

<10>

<45>

<45>

<50>

Date

Product

p1 p2 p3 p4

jan 1

feb 2

feb 3

<Fraction
 of total>

<1>

<4/9>

<2/9>

<1/3>

<4/9> <5/9>

<0.3>

<0.3>
<0.4>

p1 p2 p3 p4

C1

C

map month to
each date in that
month

map category to
each product in
that category

from C by the element from
C1 if both exist. Else it
returns 0

elemf divides the element

Figure 7. Associating two cubes

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

f :
 {p1,p2} in cat1
 {p3,p4} in cat2

f :
 date by month

Category

Month

cat1 cat2

jan

feb

mar

<Total Sales>

<10>

<45>

<15>

<45>

<50>

<10>

f : SUM

merge1

merge2

elem

Figure 8. Merging dimensions date and product using � ������� � � �

mension with a possibly smaller domain. As a result of
merging each dimension, multiple elements in the original
cube get mapped to the same element in the new cube. An
element combining function is used to specify how these
multiple elements are aggregated into one. In the example
in Figure 8, the aggregation function ��� ����� is sum.

In general, the dimension merging function might be a
one-to-many mapping that takes an element in the lower
level into multiple elements in the higher level of hierar-
chies. For instance, a � � � mapping can be used to
merge a product belonging to � categories to handle mul-
tiple hierarchies.

Input: � , function � � ����� for merging elements and � (di-
mension, function) pairs. Without loss of generality, as-

sume that the � pairs are � �
�� �
 � � ����� � � � � � � � �
Output: Cube ��� of same dimensionality as � . Dimen-
sion

� �
is merged as per function � � . An element cor-

responding to the merged elements is aggregated as per
� � ����� .

Mathematically:
merge(� � � � �
�� �
 � � ����� � � � � � � � � � � �������)= ��� .
�$
 � � �����%� � � � � � � � � � �$
 � � �����! if �	� � � � , ��
 � � ���	� , otherwise.
� �����%�����
�� ����� � � � � � � ����� ��� � � � � ���	� � � �
 � ����� � � �� �

where for � � � � �� � � � if � � � � � else �
�� � � � .

A special case of the merge operator is when all the

merging functions are identity. In this case, the merge op-
erator can be used to apply a function � ������� to each ele-
ment of a cube.
Remark The merge operator is strictly not part of our
basic set of operators. It can be expressed as a special
case of the self-join of a cube using ������
 � � transforma-
tion functions on dimensions being merged and identity
transformation functions for other dimensions. We chose
to separately define merge because it is a unary operator
unlike the binary join and also for performance reasons.

4 Discussion

The reader may have noticed similarities in the oper-
ators proposed and relational algebra [Cod70]. It is by
design. One of our goals was to explore how much of the
functionality of current multidimensional products can be
abstracted in terms of relational algebra. By developing
operators that can be translated into SQL (see [AGS96]
for translations), our hope was to create a fast path for
providing OLAP capability on top of relational database
systems. We must hasten to add that we are not arguing
against specialized OLAP engines—we believe the design
and prototyping of such engines is a fruitful research di-
rection. We are also not suggesting that simply translat-
ing these operators into SQL would be sufficient for pro-
viding OLAP capabilities in relational database systems.
However, it does point to directions in which optimization
techniques and storage structures in relational database
systems need to evolve.

The goal of treating dimensions and measures symmet-
rically had a permeating influence in our design. It is
a functionality either not present or poorly supported in
current multidimensional database products. Its absence
causes expensive schema redesign when an unanticipated
need arises for aggregation along an attribute that was ini-
tially thought to be a measure. In hindsight, the push and
pull operations may appear trivial. However, their intro-
duction was the key that made the symmetric treatment of
dimensions and measures possible.

The reader may argue with the way we have chosen to
incorporate order-based information into our algebra. We
rely on functions for this purpose, which implies that the
system may not be able to use this information in opti-
mizing queries. We debated about allowing a native order
to be specified with each dimension and providing order-
ing operators. We decided against it because of the large
number of such operators and because the semantics gets
quite complex when there are multiple hierarchies along
a dimension. In a practical implementation of our model,
it will be worthwhile to allow a default order to be speci-
fied with each dimension and make system aware of some
built-in ordering functions such as “first � ”. The same
holds for providing the knowledge of some built-in aggre-

gate functions.
The reader may also notice the absence of direct

analogs of relational projection, union, intersection, and
difference. These operations can be expressed in terms of
our proposed operators as follows:
Projection The projection of a cube is computed by
merging each dimension not included in the projection and
then destroying the dimension. A ��������� function specify-
ing how multiple elements are combined is needed as part
of the specification of the projection.
Union Two cubes are union-compatible if (i) they have
the same number of dimensions; and (ii) for each dimen-
sion

� �
in � , dimension

�	�
in � � is of the same domain

type. Union is computed by joining the two cubes using
the identity transformation functions for each dimension
of each cube and by choosing a function ��� ����� that pro-
duces a non-empty element for element � in � � whenever
an element from either of the two cubes is mapped into � .
Dimension

� �
in the resulting cube has as its values the

union of the values in �$
 � � ���	� and in ��
 � � ��� ��� .
Intersect The intersection of two union-compatible
cubes is computed by joining the cubes through the iden-
tity mapping that effectively retains only those dimension
values that are present in both cubes. Thus, function � �������
makes non-0 an element for point � in � � only if elements
from both cubes are mapped into � .
Difference The difference of two union-compatible
cubes � � and � 	 is expressed as an intersection of
� � and � 	 followed by a union of the result with � � .
The � � ����� function for combining two elements for the
intersection steps discards the value of the element for
� � and retains � 	 ’s element. The � ������� function for
combining two elements for the union step saves the
value of � � ’s element if the two elements are different
and makes the result 0 if they are identical1.

4.1 Expressive Power

Our algebra can be seen to be at least as powerful as re-
lational algebra [Cod70]. A precise circumscription of the
expressive power of the proposed data model is an open
problem. A related interesting open question pertains to
defining a formal notion of completeness for multidimen-
sional database queries and evaluating how complete our
algebra is with respect to that metric. We take an empiri-
cal approach and discuss below how the current high-level
multidimensional operations can be built using our pro-
posed operators.

1This implementation corresponds to the following semantics for���������
: �
	 ���� 	������������������

equals 0 if ��	 ���� 	������������������
=

�
	 ���� 	 ���!���������"� �
; it is ��	 �#�! 	���������������� �

otherwise. Another
alternative semantics could be that ��	 � � 	���������������� �

equals 0 if
�
	 ���� 	 ���!���������"��� %$& 0, and ��	 ���� 	������������������

otherwise. This se-
mantics can be implemented by a small change in the '!(�)*("+ function
used in the union step.

Roll-up Roll-up is a merge operation that needs one di-
mension merging function and one element combining
function. If a hierarchy is specified on a dimension then
the dimension merging function is defined implicitly by
the hierarchy. The elements corresponding to merged
values on the dimension are combined using the user-
specified element combining function like SUM.
Drill-down This operator is actually a binary opera-
tion even though most current multidimensional database
products make it seem like a unary operation. Consider
computing the sum � of 10 values. Drill-down from �
to the underlying 10 values is possible in infinite ways.
Thus, the underlying 10 values have to be known. That is,
the aggregate cube has to be joined (actually associated)
with the cube that has detailed information. Continuing
with our analogy, to drill down from � to its constituents
the database has to keep track of how � was obtained and
then associate � with these values. Thus, if users merge
cubes along stored paths and there are unique path down
the merging tree, then drill down is uniquely specified. By
storing hierarchy information and by restricting single el-
ement merging functions to be used along each hierarchy,
drill-down can be provided as a high-level operation on
top of associate.
Star Join In a star join [Eri95], a large detail “mother”
table

�
is joined with several small “daughter” tables that

describe join keys in the mother table. A star join denor-
malizes the mother table by joining it with its daughter
tables after applying selection conditions to their descrip-
tive attributes. We describe how our operators capture a
star join when

�
has one daughter table �
 that describes

the join key field
�

of
�

. Table �
 can be viewed as a
one-dimensional cube, �
 with the join key field

�
as the

dimension and all the description fields pulled in as ele-
ments. A restriction on a description attribute � of table
�
 corresponds to a function application to the elements
of �
 . Restrictions on the join key attribute translate to
restrictions on dimension

�
of �
 . The join between

�
and �
 is achieved by associating the mother cube with
the daughter cube on the key dimension

�
using the iden-

tity mapping function. The description of each key value
is pulled in from the daughter cube into the mother cube
via the ��������� function.
Expressing a dimension as a function of other dimen-
sions This functionality is basic in spread sheets. We
can create a new dimension

�
expressed as a function, �

of another dimension
� �

by first pushing
� �

into the cube
elements, then modifying the cube elements by applying
function � and finally pulling out the corresponding mem-
ber of the cube element as a new dimension

�
.

4.2 Example queries

This section illustrates how to express some of the
queries of Example 2.2 using our operators. Assume we

have a cube � with dimensions product, month, supplier
and element sales.

For supplier “Ace” and for each product, give the frac-
tional increase in the sales in January 1995 relative to the
sales in January 1994.

Restrict supplier to “Ace” and dates to “January 1994
or January 1995”. Merge date dimension using an � �������
that combines sales as ��� � � ����� where � is the sale in
Jan 1994 and � is the sale in Jan 1995.

For each product give its market share in its category this
month minus its market share in its category in October
1994.

Restrict date to “October 1994 or current month”.
Merge supplier to a single point using sum of sales as
the � ������� function to get � � . Merge product dimension
to category using sum as the � ������� function to get in � 	
the total sale for the two months of interest. Associate � �
and � 	 , mapping a category in � 	 to each of its products
in � � . The identity mapping is used for the Month dimen-
sion. Function ��� ����� divides the element from � � by the
element from � 	 to get the market share. For the result-
ing cube, Merge dimension month to a single point using
a � ������� function ��� � � � where � is the market share for
“this” month and � is the market share in October 1994.

For each product category, select total sales this month
of the product that had highest sales in that category last
month.

Restrict dimension month to “last” month. Merge
supplier to a single point using sum of sales as the � �������
function. Push product dimension resulting in 2-tuple el-
ements with � Sale and product � . Merge product to cate-
gory using ��������� function that retains an element if it has
the “maximum” sales. Pull product into the category di-
mension (over-riding the category dimension, this can be
easily done using our basic operators). Let the resulting
cube be � � . This cube has the highest sales value for each
element for “last” month. Restrict � on dimension date
to “this” month, Merge supplier to a single point using
sum of sales as the � � ����� function and associate it with
� � on the product dimension using � � ����� function that
only outputs the element of � when it is the same as the
corresponding elements from � � (otherwise returns 0).

Select suppliers for which the total sale of every product
increased in each of last 5 years.

Restrict to months of last 6 years. Merge month to
year. Merge years to a single point using a ��� ����� function
that maps the six sales values to “1” if sales values are in-
creasing, “0” otherwise. Merge product to a point where
� � ����� function is “1” if and only if all its arguments are
“1”.

5 Conclusions and Future Work

This paper introduced a data model and a set of al-
gebraic operations that unify and extend the functional-
ity provided by current multidimensional database prod-
ucts. As illustrated in Section 4.1, the proposed operators
can be composed to build OLAP operators like roll-up,
drill-down, star-join and many others. In addition, the
model provides symmetric treatment to dimensions and
measures. The model also provides support for multiple
hierarchies along each dimension and support for adhoc
aggregates. Absence of these features in current products
results in expensive schema redesign when an unantici-
pated need arises for a new aggregation or aggregation
along an attribute that was initially thought to be a mea-
sure.

The proposed operators have several desirable proper-
ties. They have well-defined semantics. They are minimal
in the sense that none can be expressed in terms of others
nor can any one be dropped without sacrificing function-
ality. Every operator is defined on cubes and produces as
output a cube. That is, the operators are closed and can be
freely composed and reordered. This allows the inefficient
one-operation-at-a-time approach currently in vogue to be
replaced by a query model and makes multidimensional
queries amenable to optimization.

The proposed operators enable the logical separation
of the frontend user interface from the backend that stores
and executes queries. They thus provide an algebraic
API that allows the interchange of frontends and back-
ends. The operators are designed to be translated into
SQL. Thus, they can be implemented on either a relational
system or a specialized engine.

For future, on the modeling side, work is needed to in-
corporate duplicates and NULL values in our model. We
believe that the duplicates can be handled by treating el-
ements of the cube as pairs consisting of an arity and a
tuple of values. The arity gives the number of occurrences
of the corresponding combination of dimensional values.
NULLs can be represented by allowing for a NULL value
for each dimension. Details of these extensions and other
possible alternatives require further investigation.

On the implementation side, there are interesting re-
search problems for implementing our model on top of a
relational system as well as within a specialized engine.
Although each of the proposed operators can be translated
into a SQL query, simply executing this translated SQL on
a relational engine is likely to be quite inefficient. Corre-
sponding to a multidimensional query composed of sev-
eral of these operators, we will get a sequence of SQL
queries that offers opportunity for multi-query optimiza-
tion. It needs to be investigated whether the known tech-
niques (e.g. [SG90]) will suffice or do we need to de-
velop new techniques. Similarly, there is opportunity for

research in storage and access structures and materialized
views.
Acknowledgments We wish to thank Mike Carey,
Piyush Goel, Bala Iyer, and Eugene Shekita for stimulat-
ing discussions and probing questions.
References

[AAD
�

96] S. Agarwal, R. Agrawal, P.M. Deshpande,
A. Gupta, J.F. Naughton, R. Ramakrishnan,
and S. Sarawagi. On the computation of
multidimensional aggregates. In Proc. of
the 22nd Int’l Conference on Very Large
Databases, pages 506–521, Mumbai (Bom-
bay), India, September 1996.

[AGS96] Rakesh Agrawal, Ashish Gupta, and
Sunita Sarawagi. Modeling multidi-
mensional databases. Research Report,
IBM Almaden Research Center, San
Jose, California, 1996. Available from
http://www.almaden.ibm.com/cs/quest.

[Arb] Arbor Software Corporation, Sunnyvale,
CA. Multidimensional Analysis: Converting
Corporate Data into Strategic Information.
http://www.arborsoft.com.

[CCS93] E. F. Codd, S. B. Codd, and C. T. Salley.
Beyond decision support. Computerworld,
27(30), July 1993.

[CL94] R. Cicchetti and L. Lakhal. Matrix relation
for statistical database management. In Proc.
of the Fourth Int’l Conference on Extending
Database Technology (EDBT), March 1994.

[Cod70] E.F. Codd. A relational model for large
shared data banks. Comm. ACM, 13(6):377–
387, 1970.

[Cod93] E. F. Codd. Providing OLAP (on-line analyt-
ical processing) to user-analysts: An IT man-
date. Technical report, E. F. Codd and Asso-
ciates, 1993.

[Col95] George Colliat. OLAP, relational, and mul-
tidimensional database systems. Technical
report, Arbor Software Corporation, Sunny-
vale, CA, 1995.

[Eri95] Christopher G. Erickson. Multidimensional-
ism and the data warehouse. In The Data
Warehousing Conference, Orlando, Florida,
February 1995.

[Fin95] Richard Finkelstein. MDD: Database reaches
the next dimension. Database Programming
and Design, pages 27–38, April 1995.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Data cube: A relational aggrega-
tion operator generalizing group-by, cross-

tabs and sub-totals. In Proc. of the 12th Int’l
Conference on Data Engineering, pages 152–
159, 1996.

[GHRU97] Himanshu Gupta, Venky Harinarayan, Anand
Rajaraman, and Jeffrey D. Ullman. Index se-
lection for OLAP. In Proc. of the 13th Int’l
Conference on Data Engineering, Birming-
ham, U.K., April 1997.

[GLS96] M. Gyssens, L.V.S. Lakshmanan, and I.N.
Subramanian. Tables as a paradigm for
querying and restructuring. In Proceedings
of the ACM Symposium on Principles of
Database Systems (PODS), 1996.

[Gut94] R. H. Guting. An introduction to spatial
database systems. VLDB Journal, 3(4):357–
399, 1994.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ull-
man. Implementing data cubes efficiently. In
Proc. of the ACM SIGMOD Conference on
Management of Data, June 1996.

[IRI] IRI Software, Information Resources Inc.,
Waltham, MA. OLAP: Turning Cor-
porate Data into Business Intelligence.
http://www.infores.com.

[JS96] T. Johnson and D. Shasha. Hierarchically
split cube forests for decision support: de-
scription and tuned design, 1996. Working
Paper.

[KS94] R. Kimball and K. Strehlo. What’s wrong
with SQL. Datamation, June 1994.

[MERS92] L. Meo-Evoli, F.L. Ricci, and A. Shoshani.
On the semantic completeness of macro-data
operators for statistical aggregations. In Pro-
ceedings of the Sixth International Work-
ing Conference on Scientific and Statistical
Database Management, 1992.

[Mic] Microstrategy Inc., Vienna, VA
22182. True Relational OLAP.
http://www.microstrategy.com.

[Mic92] Z. Michalewicz. Statistical and Scientific
Databases. Ellis Horwood, 1992.

[OLA96] The OLAP Council. MD-API the OLAP
Application Program Interface Version 0.5
Specification, September 1996.

[Rad95] Neil Raden. Data, data everywhere. Informa-
tion Week, pages 60–65, October 30 1995.

[SDNR96] A. Shukla, P.M. Deshpande, J.F. Naughton,
and K. Ramasamy. Storage estimation for
multidimensional aggregates in the presence
of hierarchies. In Proc. of the 22nd Int’l
Conference on Very Large Databases, pages

522–531, Mumbai (Bombay), India, Septem-
ber 1996.

[SG90] T. Sellis and S. Ghosh. On the multiple-query
optimization problem. IEEE Transactions on
Knowledge and Data Engineering, 2(2):262–
266, 1990.

[Sho82] A. Shoshani. Statistical databases: Character-
istics, problems and some solutions. In Pro-
ceedings of the Eighth International Confer-
ence on Very Large Databases (VLDB), pages
208–213, Mexico City, Mexico, September
1982.

[SR96] B. Salzberg and A. Reuter. Indexing for ag-
gregation, 1996. Working Paper.

[STL89] J. Srivastava, J.S.E. Tan, and V.Y. Lum. TB-
SAM: An access method for efficient pro-
cessing of statistical queries. IEEE Transac-
tions on Knowledge and Data Engineering,
1(4), 1989.

[TCG
�

93] A.U. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev, and R. Snodgrass. Temporal
Databases: Theory, Design, and Implemen-
tation. Benjamin/Cummings, 1993.

