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Abstract. Efficient query processing is one of the basic needs for data mining algorithms. Clustering al-
gorithms, association rule mining algorithms and OLAP tools all rely on efficient query processors being 
able to deal with high-dimensional data. Inside such a query processor, multidimensional index structures 
are used as a basic technique. As the implementation of such an index structure is a difficult and time-con-
suming task, we propose a new approach to implement an index structure on top of a commercial relational 
database system. In particular, we map the index structure to a relational database design and simulate the 
behavior of the index structure using triggers and stored procedures. This can be easily done for a very large 
class of multidimensional index structures. To demonstrate the feasibility and efficiency, we implemented 
an X-tree on top of Oracle 8. We ran several experiments on large databases and recorded a performance 
improvement up to a factor of 11.5 compared to a sequential scan of the database. 
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1. Introduction

Efficient query processing in high-dimensional data spaces is an important requirement for
many data analysis tools. Algorithms for knowledge discovery tasks such as clustering
(Ester, et al. 1996; Sander, et al. 1998), association rule mining (Agrawal & Srikant, 1994) or
OLAP (Ho, et al. 1997) are often based on range search or nearest neighbor search in multidi-
mensional feature spaces. For instance, the well-known DBSCAN algorithm for cluster analy-
sis performs a multidimensional range search for each point of the data set. Similarly, the algo-
rithm for outlier detection by Knorr and Ng (1998) is based on repeated range queries. Since
these applications deal with large amounts of usually high-dimensional point data, multidimen-
sional index structures must be applied for the data management in order to achieve a satisfying
performance.
Multidimensional index structures have been intensively investigated during the last decade.
Most of the approaches (Guttman, 1984; Lomet & Salzberg, 1989) were designed in the con-
text of geographical information systems where two-dimensional data spaces are prevalent. The
performance of query processing often deteriorates when the dimensionality increases. To over-



come this problem, several specialized index structures for high-dimensional query processing
have been proposed (Berchtold, et al. 1996; Berchtold, et al. 1998a; Berchtold, et al. 1998b).
See (Böhm, 1998) for a comprehensive survey on the relevant techniques. 

Recently, there is an increasing interest in integrating high-dimensional point data into commer-
cial database management systems. Data to be analyzed often stem from productive environ-
ments which are already based on relational database management systems. These systems
provide efficient data management for standard transactions such as billing and accounting as
well as powerful and adequate tools for reports, spreadsheets, charts and other simple visualiza-
tion and presentation tools. Relational databases, however, fail to manage high-dimensional
point data efficiently for advanced data mining algorithms. Therefore, it is common to store
productive data in a relational database system and to replicate the data for analysis purposes
outside the database in file-based multidimensional index structures. We call this approach the
hybrid solution.

The hybrid solution bears various disadvantages. Especially the integrity of data stored in two
ways, inside and outside the database system, is difficult to maintain. If an update operation
involving both, multidimensional and productive data fails in the relational database (e.g. due
to concurrency conflicts), the corresponding update in the multidimensional index must be
undone to guarantee consistency. Vice versa, if the multidimensional update fails, the corre-
sponding update to the relational database must be aborted. For this purpose, a two-phase com-
mit protocol for heterogeneous database systems must be implemented, a time-consuming task
which requires a deep knowledge of the participating systems. The hybrid solution involves
further problems. File systems and database systems usually have different concepts for data
security, backup and concurrent access. File-based storage does not guarantee physical and
logical data independence. Thus, schema evolution in “ running”  applications is difficult.

A promising approach to overcome these disadvantages is based on object-relational database
systems. Object-relational database systems are relational database systems which can be ex-
tended by application-specific data types (called data cartridges or data blades). The general
idea is to define data cartridges for multidimensional attributes and thus to manage them in the
database. For data-intensive applications, it is necessary to implement the multidimensional
index structures in the database. This requires the access to the block-manager of the database
system, which is not granted by most commercial database systems. The current universal serv-
ers by ORACLE, Informix, and DB2, for instance, do not provide any documentation of a
block-oriented interface to the database. Data cartridges (data blades) are only allowed to access
relations via the SQL interface. Thus, current object-relational database systems are thus not
very helpful for our integration problem.

We can summarize that using current object-relational database systems or pure relational data-
base systems, the only possible way to store multidimensional attributes inside the database is
to map them into the relational model. An early solution for the management of multidimen-
sional data in relations is based on space-filling curves. Space-filling curves map points of a
multidimensional space to one-dimensional values. This mapping is distance preserving in the
sense that points which are close to each other in the multidimensional space are likely to be
close to each other in the one-dimensional space. Although distance-preservation is not strict in



this concept, the search for matching objects is usually restricted to a limited area in the embed-
ding space. Unfortunately, space filling curves are not very efficient in high-dimensional data
spaces, particularly if the data points are highly skewed, correlated or clustered
(Berchtold, et al. 1998a; Berchtold, et al. 1997a).

Therefore, we propose in this paper a technique which allows a direct mapping of the concepts
of specialized index structures for high-dimensional data spaces into the relational model. For
concreteness, here we concentrate on a relational implementation of the X-tree on top of Oracle-
8. The X-tree, an R-tree variant for high-dimensional data spaces, is described in detail in
section 4.1. The presented techniques, however, can also be applied to other indexing approach-
es such as the TV-Tree (Lin, et al. 1995) or the SS-Tree (White& Jain, 1996). Similarly, the
underlying database system can be exchanged using the same concept we suggest.

The general idea is to model the structure of the relevant components of the index (such as data
pages, data items, directory pages etc.) in the relational model and to simulate the query pro-
cessing algorithms defined on these structures using corresponding SQL statements.

The rest of this paper is organized as follows: In the next section we explain the nature of
multidimensional search and the corresponding problems. In section 3 and 4, we show how to
implement the proposed solutions to multidimensional search in a commercial database system.
Section 5 contains experimental results supporting our technique and section 6 concludes the
paper.

2. Related Work

The problem of similarity search in a database can be stated as follows: We are given a large set
of N data objects, stored in a relational database systems. The objects belong to a specific
application domain such as multimedia, medical imaging etc. The objects are usually complex
and can be stored as binary large objects (BLOB), i.e. from the DBS point of view, a data object
is an uninterpreted sequence of bytes. The similarity of the objects is defined in an application-
specific way and is coded in the application program. For instance, the similarity of color imag-
es may be determined by comparing the color distributions. Several similarity measures for
various domains have been proposed in the past (Wallace& Wintz, 1980;
Mehrotra& Gary, 1993; Agrawal, et al. 1995). The (dis-)similarity between two objects is also
defined as an application-specific measure called object distance. The similarity search is de-
fined as the retrieval of all objects with a specified maximal object distance to a given query
object. A naive approach to this problem is to compare each object in the database with the
query object. As we assume the number of objects to be large and the comparison operation to
be expensive this naive approach lacks efficiency.

To handle similarity queries efficiently, usually a so-called feature transformation is applied.
This approach extracts important properties from the objects in the database and transforms
them into vectors of a d-dimensional vector space, the so-called feature space. Usually, the
feature transformation is defined such that the distance between the feature vectors (the feature
distance) either corresponds to the object distance or is, at least a lower bound thereof (“ lower
bounding property” ). This way, the similarity search is naturally translated into a range query
in the feature space. If the feature distance does not directly correspond to the object distance,



but is only a lower bound, the result of the range query is a set of candidates. It is guaranteed that
each object satisfying the query is contained in the candidate set (no false dismissals) but there
may be candidates which are not actual answers to the similarity query. As the candidates have
to be tested in a so-called refinement step, the corresponding paradigm is called multi-step
query processing. In case of color images, we might, for instance, use d-dimensional color
histograms as feature vectors. In a relational implementation, we will typically hold the feature
vectors in a separate table, the feature table. Figure 1 depicts this setup. Additionally, we will
have an index on the primary key of the data table in order to speed up the join between the
feature table and the data table. As this is self-evident, we omitted the index from the figure.

In order to search the database, we first query the feature table and produce a set of candidates
that is complete, however might be too large. Thus, in a refinement step, we have to remove all
the false hits from the answer set. This means that for each of the candidates we have to load the
corresponding data item from the data table and perform some domain-dependent operation to
test if the candidate is an actual hit. The performance of the whole search process is determined
by two factors: the performance of the search on the feature table and the performance of the test
for each candidate. As the second step is domain-dependent, the DBMS has only little influence
on its performance. However, the first step is identical for any application and therefore, should
be supported by the database system.

This allows us particularly to focus on the following problem: Given a set of N points in a d-
dimensional space, how can we quickly search for points that fulfill a given query condition.
The query condition could either be a multidimensional interval in which all points have to be
located (range query), or it could be a query point and we are looking for the nearest neighbor

Figure 1: The Problem of Multidimensional Search
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of this query point (nearest neighbor query). Both query types are useful for multimedia data-
bases and it depends on the specific application which one will be used. In the following, we
restrict our considerations to query processing on the feature table. The task we are focusing on
in this paper is to efficiently determine the candidate set for the refinement step. The refinement
step itself is ignored because it is too domain-specific.
Various solutions to the problem of multidimensional search have been proposed. First, we may
classify the solutions according to the value d. If d is sufficiently small, e.g. 3, we are able to use
index structures such as the grid file (Nievergelt, et al. 1984), the hB-tree
(Lomet & Salzberg, 1989), the kd-tree (Bentley, 1975; Bentley, 1979) or the R*-tree
(Beckmann, et al. 1990). However, if d is quite large, e.g. 16, these index structures do not
provide adequate performance. The reasons for this degeneration of performance are subsumed
by the term “curse of dimensionality” . The major problem in high-dimensional spaces is that
most of the measures one can define in a d-dimensional vector space such as volume, area, or
perimeter are exponentially depending on the dimensionality of the space. Thus, many tech-
niques work only in low-dimensional spaces where we still have an exponential dependency.
The exponent, however, is small enough. 
To overcome these problems, a variety of specialized new index structures have been proposed
in the past years, dealing with the problem of high-dimensional indexing. Examples are the TV-
tree (Lin, et al. 1995), the SS-tree (White& Jain, 1996), the SR-tree
(Katayama& Satoh, 1997), the X-tree (Berchtold, et al. 1996) or the Pyramid-tree
(Berchtold, et al. 1998a). 

Lin, Jagadish and Faloutsos (1995) presented the TV-tree which is an R-tree-like index struc-
ture. The central concept of the TV-tree is the telescope vector (TV). Telescope vectors divide
attributes into three classes: attributes which are common to all data items in a subtree, at-
tributes which are ignored and attributes which are used for branching in the directory. The
major drawback of the TV-tree is that information about the behavior of single attributes, e.g.
their selectivity, is required.
Another R-tree-like high-dimensional index structure is the SS-tree (White& Jain, 1996)
which uses spheres instead of bounding boxes in the directory. Although the SS-tree clearly
outperforms the R*-tree, spheres tend to overlap in high-dimensional spaces. 
The SR-tree, a variant of the SS-tree has been proposed by Katayama and Satoh (1997). The
basic idea of the SR-tree is to use both hyperrectangles and hyperspheres as an approximation
in the directory. Thus, a page region is described by the intersection of both objects. 
Jain and White (1996) introduced the VAM-Split R-tree and the VAM-Split kD-tree. VAM-Split
trees are rather similar to kD-trees, however in contrast to kD-trees, split dimensions are not
chosen in a round robin fashion but depending on the maximum variance. VAM Split trees are
constructed in main memory and then stored on secondary storage. Therefore, the size of a
VAM-Split tree is limited by the available main memory.

In (Berchtold, et al. 1996), the X-tree has been proposed which is an index structure adapting
the algorithms of R*-trees to high-dimensional data using two techniques: First, the X-tree
introduces an overlap-free split algorithm which is based on the split history of the tree. Second,
if the overlap-free split algorithm would lead to an unbalanced directory, the X-tree omits the



split and the corresponding directory node becomes a so-called supernode. Supernodes are
directory nodes which are enlarged by a multiple of the block size. A detailed description of the
X-tree will be provided in section 4.

Most of those indexing techniques still are affected by the curse of dimensionality, but they
allow to shift the edge of efficient indexing towards higher dimensions. In other words, al-
though a low-dimensional index structure such as the R*-tree only works efficiently up to 6-
dimensions a high-dimensional index structure such as the X-tree works fine up to 12 dimen-
sions. Only the Pyramid-tree (described below) is able to provide indexing power for an arbi-
trary dimensionality of space because its performance is independent of the dimension. Howev-
er, this is only true for uniform data and fully specified range queries. For nearest neighbor
queries, so far, no index structure has been proposed the performance of which is independent
from the dimensionality of space. Rather, there seems to be analytical and experimental evi-
dence (Berchtold, et al. 1997b) that, at least in the case of uniform data, there cannot exist an
index structure that works equally well in all dimensions. 

As a result, most recently, the VA-file (Weber, et al. 1998) was developed, an index structure
that actually is not an index structure. The authors prove in the paper that under certain assump-
tions, above a certain dimensionality no index structure can process a nearest neighbor query
efficiently. Thus, they suggest to speed-up the sequential scan rather than trying to fight a war
that already is lost. The basic idea of the VA-file is to keep two files: a bit-compressed (quan-
tized) version of the points and the exact representation of the points. Both files are unsorted,
however, the ordering of the points in the two files is identical. Query processing is equivalent
to a sequential scan of the compressed file with some look-ups to the second file whenever this
is necessary. In particular, a look-up occurs if a point cannot be pruned from the nearest neigh-
bor search which is only based on the compressed representation. 

The idea of quantization based compression has also been integrated to index based query
processing. The IQ-tree (Berchtold, et al. 2000) combines the ideas of a tree, a scan, and the
quantization. The technique performs an I/O optimizing scan through the data pages if the index
selectivity is not high enough to compensate for the cost of seek operations. In contrast to the
VA-file, the quantization grid of the IQ tree is related to the data page regions and its resolution
is automatically optimized during index construction and maintenance.

The Pyramid-Tree (Berchtold, et al. 1998a) is an index structure that, similarly to the Hilbert-
technique (Faloutsos & Roseman, 1989; Jagadish, 1990), maps a d-dimensional point into a
one-dimensional point and uses a B+-tree to index the one-dimensional points. Obviously, que-
ries have to be translated in the same way. In the data pages of the B+-tree, the Pyramid-tree
stores both, the d-dimensional points and the one-dimensional key. Thus, no inverse transfor-
mation is required and the refinement step can be done without look-ups to another file. The
specific mapping used by the Pyramid-tree is called Pyramid-mapping. It is based on a special
partitioning strategy that is optimized for range queries on high-dimensional data. The basic
idea is to divide the data space such that the resulting partitions are shaped like peels of an
onion. Such partitions cannot be efficiently stored by R-tree-like or kD-tree-like index struc-
tures. However, the Pyramid-tree achieves the partitioning by first dividing the d-dimensional
space into 2d pyramids having the center point of the space as their top. In a second step, the



single pyramids are cut into slices parallel to the basis of the pyramid forming the data pages.
Figure 2 depicts this partitioning technique.

Summarizing all this work, there are two general approaches to multidimensional indexing:
One can either solve the d-dimensional problem by designing a d-dimensional index. We refer
to this class of indexing techniques as multidimensional indexes. Alternatively, one can map the
d-dimensional problem to an equivalent one-dimensional problem and then make use of an
existing one-dimensional index such as a B+-tree. Thus, we provide a mapping that maps each
d-dimensional data point into a one-dimensional value (key). We refer to this class of indexing
techniques as mapping techniques.

All the above high-dimensional index structures except for the Pyramid-tree belong to the first
category. Examples for the second category are the Z-order (Finkel & Bentley, 1974), the Hil-
bert-curve (Faloutsos & Roseman, 1989; Jagadish, 1990), Gray-Codes (Faloutsos, 1985) or the
Pyramid-tree (Berchtold, et al. 1998a). Usually, the performance of the d-dimensional ap-
proach is slightly better, however, as the second category makes use of existing and proven
technology, there exist some advantages, too: The mapping techniques can be implemented
much easier and important issues such as recovery or concurrency control can be considered
solved problems, as the techniques make use of existing B+-tree indexes. The decision which
index structure is appropriate for a given application is very complex and depends on the data
distribution, the query mix, the size and dimensionality of the database. Therefore, this decision
is not addressed in this paper. 

3. Simulation of Mapping Techniques

In this chapter, we describe how to implement a multidimensional index structure based on a
mapping to a one-dimensional space. The basic idea is to simulate the index structure by simply
adding a new field for the key to the feature table and maintaining an index on this field. In order
to process a query, we first determine a set of candidates based on the one-dimensional key.
Then, we have an additional filter step based on the feature table. Finally, we consult the data
table to compute the exact answer. 

Figure 2: Partitioning the Data Space into Pyramids
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3.1 The Principle of Mapping Techniques

Mathematically, there are two classes of mappings from a d-dimensional point to a one-dimen-

sional key: bijective and non-bijective mappings. Bijective means that given a d-dimensional

point it is possible to uniquely determine the corresponding one-dimensional value and vice

versa. Examples for bijective mappings are the Z-order, the Hilbert-curve, and Gray codes. An

example for a non-bijective mapping is the Pyramid mapping. A non-bijective mapping is a

mapping that allows us to uniquely determine the one-dimensional key of a d-dimensional

point, however, each key is shared by a set of d-dimensional points and thus, the inverse map-

ping is not unique. 

In practice, this difference between bijective and non-bijective does not exist because bijective

mappings are only bijective if infinite precision is applied. For practical reasons, the one-di-

mensional key is always restricted to a precision manageable by a single CPU command i.e. 64

bit maximum. To optimize query processing, the precision is further restricted. Therefore, keys

are shared by a set of d-dimensional points and thus, all mentioned mappings are not invertible.

As an implication, we cannot process a given query only using the one-dimensional key. But

fortunately, one can at least guarantee that all the correct answers to any query are contained in

the computed answers based on the one-dimensional keys although this answer set of candi-

dates may be larger. Therefore, we have to refine the candidate set by taking the d-dimensional

feature vectors into account. 

Thus, the whole query process, also depicted in Figure3, is done in three steps: 

1. compute a set of candidates based on the one-dimensional key (1st filter step)

2. reduce this set of candidates based on the d-dimensional feature vectors 

 (2nd filter step)

3. refine this set of candidates by looking up the actual data items (refinement step)

Figure 3: Query Processing using a Mapping Technique
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3.1 Relational Architecture

As shown in Figure3, the only change we have to do in addition to the setup shown in Figure1
is to add a single field “key”  to the feature table. Furthermore, we have to add a trigger to the
feature table such that whenever a tuple is added to (or updated in) the feature table, the corre-
sponding key value will be set correctly. The complexity of this function is index-specific.
Typically, the mappings can be implemented rather easily. As a second step, we add an (B+-tree)
index to the key field of the feature table to accelerate the access. 
In order to process a range query, we first translate the query into a set of range queries on the
key domain. Then, we are able to formulate the whole query processing in a single SQL state-
ment:

select “data fields”
from “data table”  d, “ feature table”  f
where f.ptr=d.key and 

( (f.key ≥ lb1 and f.key ≤ ub1) or
...
(f.key ≥ lbk and f.key ≤ ubk) )

In order to maintain the index structure in case of insert, update and delete operations, we
simply add a trigger to the table that fires if any of these operations appears. The stored proce-
dure invoked by the trigger simply computes the mapping and stores the result in the key field
of the tuple. Thus, the implementation of the index structure is reduced to the pure implementa-
tion of the mapping itself. All the mappings proposed so far are simple bitmap operations or
consist of only a few statements in a high-level programming language. Thus, they can easily
be implemented using an functional extension of SQL such as PL/SQL in case of Oracle 8.

4. Simulation of Hierarchical Index Structures

The implementation of hierarchical index structures is much more complex than the implemen-
tation of mapping techniques. This applies to any implementation strategy. The reason for this
is that hierarchical index structures have a complex structure that dynamically changes when
inserting new data items. Thus, algorithms do not run on a previously given structure and have
to be implemented recursively. To demonstrate that even in this complex scenario, an imple-
mentation of an index structure on top of a commercial database system can be done relatively
easy and is preferable compared to a legacy implementation, we implemented the X-tree, a
high-dimensional R-tree-based index structure. In the next section of this chapter we describe
the most relevant details of the X-tree. Then, we show how an implementation can be done
using a relational database system.

4.1 The X-Tree

The X-tree (Berchtold, et al. 1996) is structurally very similar to the family of R-trees
(Guttman, 1984). As with R-trees, the directory of an X-tree is hierarchically organized. Each
directory node contains a set of minimum bounding rectangles and a set of pointers to sub-
nodes. The lowest level of the hierarchy consists of data pages. The data pages contain the
actual data, in our case the data points. The minimum bounding rectangles are allowed to over-



lap in general, however, all rectangles in a subtree must be totally contained in the minimum
bounding rectangle of the root node of this subtree. Thus, in order to process a query, say a range
query, one simply follows all paths for which the minimum bounding rectangles intersect the
range. In order to insert a data item, a specific strategy is used, depending on the type of the
index structures. The problem thereby is that as the minimum bounding rectangles do not cover
the whole space and are allowed to overlap, there exists some degree of freedom into which
node a given new data item should be inserted. Another important algorithm for an R-tree-like
index structure is the so-called split algorithm. The split algorithm is invoked, whenever a node
overflows. In this case, we have to create a new node and we have to decide which entries of the
old node stay in the node and which entries are transformed to the newly created node. 
During the last years, a variety of R-tree-based index structures such as the R-tree, the R*-tree,
the R+-tree, and others have been proposed. All these index structures have primarily been
designed for the management of spatially extended, 2-dimensional objects, but have also been
used for high-dimensional point data. Empirical studies (Berchtold, et al. 1996;
Wallace& Wintz, 1980), however, showed a deteriorated performance of R*-trees (the best
index structure for 2-dimensional data) for high-dimensional data. The major problem of R-
tree-based index structures in high-dimensional data spaces is overlap. In contrast to low-di-
mensional spaces, there exist only few degrees of freedom for splits in the directory. In fact, in
most situations there exists only a single “good”  split axis. An index structure that does not use
this split axis will produce highly overlapping MBRs in the directory and thus show a deterio-
rated performance in high-dimensional spaces. Unfortunately, this specific split axis might lead
to unbalanced partitions. In this cases, a split should be prevented in order to avoid underfilled
nodes. 
The X-tree is an extension of the R*-tree which is particularly designed for the management of
high-dimensional objects and based on the analysis of problems arising in high-dimensional
data spaces. It extends the R*-tree by two concepts:

• overlap-free split according to a split-history
• supernodes with an enlarged page capacity

The X-tree shows a high performance gain compared to R*-trees for all query types in medium-
dimensional spaces. For small dimensions, the X-Tree shows a behavior almost identical to R*-
trees, for higher dimensions the X-tree also has to visit such a large number of nodes that a linear
scan is less expensive. It is impossible to provide exact values here because many factors such
as the number of data items, the dimensionality, the distribution, and the query type have a high
influence on the performance of an index structure. 



4.2 Simulation

The basic idea of our technique is to simulate the X-tree within the relational schema. Thus, we
keep a separate table for each level of the tree. One of those tables stores the data points (simu-
lating the data pages), the other tables store minimum bounding boxes and pointers (simulating
the directory pages). Figure4 depicts this scenario. In order to insert a data item, we first deter-
mine the data page in which the item has to be inserted. Then, we check if the data page over-
flows and if so, we split the page according to the X-tree split strategy. Note that a split might
also cause the parent page in the directory to overflow. If we have to split the root node of the
tree, i.e. the tree has to grow in height, we have to introduce an additional table and thus change
the schema. A practical alternative is to pre-define tables for a three or four level directory. As
only in case of very large databases, an X-tree grows beyond height four. By doing so, we can
handle a split of the root node as an exception that has to be handled separately. Thus, the
schema of the tree becomes static. All these actions are implemented in stored procedures. 

In order to search the tree, we have to join all tables and generate a single SQL statement that
queries the entire tree. This statement has to be created dynamically whenever the schema of the
X-tree changes due to tree growth. If we process range queries, the statement is rather simple.
The details are provided in section 4.4.

Relational Schema

All information usually held in the data pages of the X-tree is modeled in a relation called
DATA. A tuple in DATA contains a d-dimensional data vector which is held in a set of d numer-
ical attributes x0, x1, ..., xd-1, a unique tuple identifier (tid), and the page number (pn) of the data
page. Thus, DATA has the scheme “DATA (x0 FLOAT, x1 FLOAT, ..., xd-1 FLOAT, tid NUM-

Figure 4: Relational Simulation of an X-tree
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BER NOT NULL, pn NUMBER NOT NULL)” . Intuitively, all data items located in the same
data page of the X-Tree share the same value pn. 

The k levels of the X-tree directory are modeled using k relations DIRECTORY0, ..., DIREC-
TORYk-1. Each tuple in a relation DIRECTORYi belongs to one entry of a directory node in
level i consisting of a bounding box and a pointer to a child node. Therefore, DIRECTORYi
follows the scheme “DIRECTORYi (lb0 FLOAT, ub0 FLOAT, ...., lbd-1 FLOAT, ubd-1 FLOAT,
child NUMBER NOT NULL, pn NUMBER NOT NULL)” . The additional attribute child rep-
resents the pointer to the child node which, in case of DIRECTORYk-1, references a data page
and pn identifies the directory node the entry belongs to. Thus, the two relations DIRECTORYk-

1 and DATA can be joined via the attributes child and pn which actually form a 1:n-relationship
between DIRECTORYk-1 and DATA. The same relationship exists for two subsequent directo-
ry levels DIRECTORYi and DIRECTORYi+1. Obviously, it is important to make the join be-
tween two subsequent levels of the directory efficient. To facilitate index-based join methods,
we create indexes using the pn attribute as the ordering criterion. The same observation holds
for the join between DIRECTORYk-1 and DATA. To save table accesses, we also added the
quantized version of the feature vectors to the index. The resulting relational schema of the X-
Tree enhanced by the required indexes (triangles) is depicted in Figure5.

Compressed Attributes

If we assume a high-dimensional data space, the location of a point in this space is defined in
terms of d floating point values. If d increases, the amount of information, we are keeping, also
increases linearly. Intuitively however, it should be possible to keep the amount of information
stored for a single data item almost constant for any dimension. An obvious way to achieve this
is to reduce the number of bits used for storing a single coordinate linearly if the number of
coordinates increases. In other words, because in a high-dimensional space, we have so much
information about the location of a point, it should be sufficient to use a coarser resolution to
represent the data space. This technique successfully has been applied in the VA-file
(Weber, et al. 1998) to compute nearest neighbors. In the VA-file, a compressed version of the
data points is stored in one file and the exact data is stored in another file. Both files are unsort-
ed, however, the ordering of the points in the two files is identical. Query processing is equiva-
lent to a sequential scan of the compressed file with some look-ups to the second file whenever
this is necessary. In particular, a look-up occurs if a point cannot be pruned from the nearest
neighbor search based on the compressed representation, only. 

child

ub0, ub1, ..., ubd-1

lb0, lb1, ..., lbd-1pn

child

ub0, ub1, ..., ubd-1

lb0, lb1, ..., lbd-1

child

ub0, ub1, ..., ubd-1

lb0, lb1, ..., lbd-1
x0, x1, ..., xd-1

tid
compr
pn

DIRECTORY0 DIRECTORY1 DIRECTORYk-1 DATA

pn

...

Figure 5: Relational Schema of the X-Tree



In our implementation of the X-tree, we suggest a similar technique of compressed attributes.
A compressed attribute summarizes the d-dimensional information of an entry in the DATA
table in a single-value representation. Thus, the resolution of the data space is reduced to 1 byte
per coordinate. Then, the 1-byte coordinates are concatenated and stored in a single attribute
called comp. Thus the scheme of DATA changes to DATA (REAL x0, REAL x1, REAL xd-1,
RAW[d] comp, INT tid, INT pn). To guarantee an efficient access to the compressed attributes,
we store comp in the index assigned to DATA. Thus, in order to exclude a data item from the
search, we first can use the compressed representation of the data item stored in the index and
only if this is not sufficient, we have to make a look-up to the actual DATA table. This further
reduces the number of accesses to the DATA table because most accesses are only to the index. 

4.3 Index Creation 

There are two situations for inserting new data into an index structure: Inserting a single data
item, and building an index from scratch given a large amount of data (bulk-load). We will
handle these two situations separately due to efficiency considerations. The reason for this is
that a dynamic insert of a single data item is usually relatively slow, however, knowing all the
data items to be inserted in advance, we are able to pre-process the data (e.g. sort) such that an
index can be built immediately. This applies to almost all multidimensional index structures and
their implementations. 
The dynamic insertion of a single data item involves two steps: determining an insertion path
and, possibly, a local restructuring of the tree. There are basically two alternatives for the imple-
mentation: An implementation of the complete insertion algorithm (e.g. using embedded SQL),
or directly inserting the data point into the DATA relation and then raising triggers which per-
form the restructuring operation. 
In any implementation, first we have to determine an appropriate data page to insert the data
item into. Therefore, we recursively look-up the directory tables as we would do it in a legacy
implementation. Using a stored procedure, we load all affected node entries into main memory
and process them as described above. Then, we insert the data item into the page. In case of an
overflow, we recursively update the directory, according to (Berchtold, et al. 1996). 
If an X-Tree has to be created from scratch for a large data set, it is more efficient to provide a
bulk-load operation, as proposed in (Berchtold, et al. 1998b). This technique can also be imple-
mented in embedded SQL or stored procedures. 

4.4 Processing Range Queries

Processing a range query using our X-Tree implementation with a k-level-directory involves
(k + 2) steps. The first step reads the root level of the directory (DIRECTORY0) and determines
all pages of the next deeper level (DIRECTORY1) which are intersected by the query window.
These pages are loaded in the second step and used for determining the qualifying pages in the
subsequent level. The following steps read all k levels of the directory in the same way, each
filtering between pages which are affected or not. When the bottom level of the directory has
been processed, the page numbers of all qualifying data pages are known. The data pages in our
implementation contain the compressed (i.e. quantized) versions of the data vectors. Step num-
ber (k + 1), the last filter step loads these data pages and determines candidates (a candidate is a



point whose quantized approximation is contained in the query window). In the refinement step

(k + 2), the candidates are directly accessed (the position in the data file is known) and tested for

containment in the query window.

In our relational implementation, all these steps are comprised in a single SQL statement (cf.

Figure 6 for a 2-level directory). It forms an equi-join between each pair of subsequent directory

levels (DIRECTORYj and DIRECTORYj + 1, 0 ≤ j ≤ k – 2) and an additional equi-join between

the last directory level DIRECTORYi and the DATA relation. The SQL statement consists of

(k + 2) AND-connected blocks in the WHERE-clause. The blocks refer to the steps of range

query processing as described above. For example, the first block filters all page numbers of the

second directory level qualifying for the query. Block number (k + 1) contains various sub-

string-operations. The reason is that we had to pack the compressed attributes into a string due

to restrictions on the number of attributes which can be stored in an index. The last block forms

the refinement step. Note that it is important to translate the query into a single SQL statement,

because client-/server communication involving costly context switches or round-trip delays

can be clearly reduced.

Figure 6: An Example for an SQL Statement Processing a Range Query

SELECT data.*
FROM directory0 dir0, directory1 dir1, data
WHERE

/* JOIN */
dir0.child = dir1.pn

AND dir1.child = data.pn
/* 1st step*/

AND dir0.lb0 ≤ qub0 AND qlb0 ≤ dir0.ub0
AND ...
AND dir0.lbd-1 ≤ qubd-1 AND qlbd-1 ≤ dir0.ubd-1

/* 2nd step */
AND dir1.lb0 ≤ qub0 AND qlb0 ≤ dir1.ub0
AND ...
AND dir1.lbd-1 ≤ qubd-1 AND qlbd-1 ≤ dir1.ubd-1

/* 3rd step */
AND ASCII(SUBSTR(data.comp,1,1)) BETWEEN qclb0 and qcub0
AND ...
AND ASCII(SUBSTR(data.comp,1,1)) BETWEEN qclbd-1 and qcubd-1

/* 4th step */
AND data.x0 BETWEEN qlb0 AND qub0
AND ...
AND data.xd-1 BETWEEN qlbd-1 AND qubd-1



The particularity of our approach is that processing of joins between (k + 1) tables is even more
efficient than a single scan of the data relation provided that the SQL statement is transformed
in a suitable query evaluation plan (QEP). This can be guaranteed by hints to the query optimiz-
er. The QEP for our 2-level example is depicted in figure7. For clarity, the information flow is
marked by grey arrows. Query processing starts with a table scan of the root table. The page
regions intersecting the query window are selected and the result is projected to the foreign key
attribute child. The value of this result is used in the index join to efficiently search for the
entries in DIRECTORY1 contained in the corresponding page region. For this purpose, an index
range scan is performed. The corresponding directory entries are retrieved by internal-key-
accesses in the corresponding base table DIRECTORY1. The qualifying data page numbers are
again determined by selection and projection to the child-attribute. An index range scan similar
to the index scan above is performed on the index of the DATA-table containing the page
number, and the quantized version of the data points. Before accessing the exact representation
of the data points, a selection based on the compressed attribute is performed to determine a
suitable candidate set. The last step is the selection based on the exact geometry of the data
points. 

As it can be seen, the query evaluation plan is very similar to that for range query processing in
the standard X-tree. In particular, each page access in the standard algorithm corresponds to the
access of a sequence of tuples which is contiguously ordered in an index. The only difference is
that a single page access to the X-tree does not correspond to a single page access in the rela-
tional index for two reasons: First, the assumed effective capacity of the X-tree may not be

◊◊ INDEX JOIN
directory0.child = directory1.pn

π PROJECTION
directory0.child

σ SELECTION
lb0 ≤ qub0 ∧ qlb0 ≤ ub0 ∧ ...

TABLE SCAN
directory0

π PROJECTION
directory1.child

σ SELECTION
lb0 ≤ qub0 ∧ qlb0 ≤ ub0 ∧ ...

I.K.-ACCESS
directory1

INDEX SCAN
directory1.pn = directory0.child 

◊◊ INDEX JOIN
directory0.child = data.pn

σ SELECTION
qlb0 ≤ x0 ≤ qub0 ∧ ...

I.K.-ACCESS
data

σ SELECTION
qclb0 ≤ cx0 ≤ qcub0 ∧ ...

INDEX SCAN
data.pn = directory1.child 

Figure 7: Sample Query Evaluation Plan for a Range Query



identical to the effective capacity of the relational index. Second, even if the capacities are

identical, the information on one X-tree page may be distributed among two pages of the rela-

tional index because we have no means to control the assignment of tuples to pages. Generally,

one page access in the X-tree corresponds to m page accesses in the relational implementation,

where 

.

A relatively new feature of the used database system, clusters, should enable us to tackle this

problem. First experimental results, however, did not yield substantial improvements over non-

cluster indexes. In spite of this disadvantage, our technique outperforms standard query pro-

cessing techniques such as the sequential table scan or the inverted list approach by an order of

magnitude, as our experiments show. 

4.5 Limitations

Our solution implements a multidimensional index by modelling it in a relational way. It is

necessary to make assumptions about the physical organization of the relational model, i.e.

certain order-preserving (one-dimensional) indexes must be created. The multidimensional

query is transformed into an SQL query on that model. To perform efficiently, it is necessary

that the appropriate indexes are used. To immitate the behavior of the multidimensional index,

the join between the tables modelling the directory and the table modelling the data pages also

must be evaluated using a particular join algorithm, the indexed nested loop join in an appropri-

ate join order. In our experiments, the query optimizer generated a suitable query evaluation

plan. Other optimizers, for instance rule-based query optimizers, could easily fail to generate

good plans, since they could apply the push-selection rule. In such cases, the optimizer must be

forced to generate a suitable plan by the use of optimizer-hints. These steps, however, destroy

the principle of physical and logical data independence which is an important principle for

database modeling. The corresponding code must be integrated into the application program,

i.e. the use of the multidimensional index cannot be hidden from the user in the same way as the

use of relational indexes is hidden from the user/application programmer.

A second limitation regards the efficiency of update operations which is out of the scope of the

current paper. The use of triggers to update directory relations after insertion of new points or

deletion of database points introduces a substantial overhead which makes the database appli-

cation slow in the presence of a heavy update load. These problems can be tackled by collecting

updates into separate relations or into separate areas of the current relations (a default data

page). Then, the index could be reorganized from time to time.

m
Ceff,X-tree

Ceff,RelIndex
-------------------------- 1+=



5. Experimental Evaluation 

In order to verify our claims that an implementation of multidimensional index structures does
not only provide advantages from a software engineering point of view but also in terms of
performance, we actually implemented the X-tree on top of Oracle 8 and performed a compre-
hensive experimental evaluation on both, synthetic and real data. Therefore, we compared var-
ious query processing techniques for high-dimensional range queries in relational databases: 

1. sequential scan on the data relation, 

1. sequential scan on the data relation using the COMPRESSED attributes technique

1. standard index (B-tree) on the first attribute

1. standard index on all attributes concatenated in a single index

1. standard indexes on each attribute (also known as inverted-lists-approach)

1. X-tree-simulation with and without COMPRESSED attributes technique

As first experimental results showed, the variants 4. and 5. have a performance much worse
than all other variants. We will therefore not show detailed results for these techniques. 

In a first experiment, we determined the times for creating an X-tree on a large database. There-
fore, we bulk-loaded the index using different techniques. The results of this experiment are
shown in figure 8. Depending on the dimensionality of the data set, the relational implementa-
tion required, between one and five minutes to build an index on a 100,000 record 16-dimen-
sional database. For this experiment, we used the algorithms described in
(Berchtold, et al. 1998b) in order to bulk-load the X-tree caching intermediate results in a oper-
ating system file. The series “X-tree netto”  shows the time consumed for the pre-processing of
the bulk-loaded X-tree. The times for the standard B-tree approach and the X-tree approach
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showed that a standard B-tree can be built about 2.5 times faster. However, both techniques
showed a good overall performance. 

In the next experiment, we compared the query performance of the different implementations
on synthetic data. The result of an experiment on 100,000 data items of varying dimensionality
is presented in figure 9 for a selectivity of s=0.01% (i.e. 10 results). Again, the total elapsed
times of the inverted lists approach and the standard index on a single attribute are not presented
due to their bad performance. It can be seen, that both, the compressed attributes technique
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(denoted by compression) and the X-tree simulation (denoted by directory) yield high perfor-
mance gains over all experiments. Moreover, the combination of both outperforms the sequen-
tial scan and the standard index for all types of data over all dimensions. It can also be seen that
the combination of the directory and the compressed attributes technique yields a much better
improvement factor than each single technique. The factor even improves for higher dimen-
sions, the best observed improvement factor in our experiments was 11.46.
In the experiment depicted in figure 10, we investigated the performance of the implementa-
tions when varying the size of the database. Again, the relational implementation of the X-tree
with compressed attributes (denoted by compr.+dir.) outperformed all other techniques by far.
The acceleration even improves with growing database size.
In a last experiment on real data, we looked at the performance for varying selectivities. The
results of this experiment on 1,000,000 16-dimensional feature vectors are shown in figure 11.
We used data from a similarity search system of a car manufacturer where each feature vector
describes the shape of a part used in one of the cars of the manufacturer. As we can see from the
chart, our technique outperformed all other techniques, however, the effect of the compressed
attributes was almost negligible. Thus, the performance of the X-tree with and without com-
pressed attributes was almost identical. Summarizing, this confirms our assumption that imple-
menting index structures on top of a commercial relational database system shows very good
performance for both, synthetic and real data. 
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6. Conclusions

In this paper, we proposed a new approach to implement an index structure on top of a commer-
cial relational database system. We map the particular index structure to a relational database
design and simulate the behavior of the index structure using triggers and stored procedures. We
showed that this can be done easily for a very large class of multidimensional index structures.
To demonstrate the feasibility and efficiency, we implemented an X-tree on top of Oracle 8. We
ran several experiments on large databases and recorded a performance improvement of up to a
factor of 11.46 compared to a sequential scan of the database. 
In addition to the performance gain, our approach has all the advantages of using a fully-fledged
database system including recovery, multi-user support and transactions. Furthermore, the de-
velopment times are significantly shorter than in a legacy implementation of an index.
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