
OLAP, Relational, and Multidimensional
Database Systems

George Colliat
Arbor Software Corporation
1325 Chcseapeakc Terrace,

Sunnyvale, CA 94089

Introduction
Many people ask about the difference between implementing On-Line Analytical Processing (OLAP) with
a Relational Database Management System (ROLAP) versus a Mutidimensional Database (MDD). In this
paper, we will show that an MDD provides significant advantages over a ROLAP such as several orders of
magnitude faster data retrieval, several orders of magnitude faster calculation, much less disk space, and
le,~ programming effort.

Characteristics of On-Line Analytical Processing
OLAP software enables analysts, managers, and executives to gain insight into an enterprise performance
through fast interactive access to a wide variety of views of data organized to reflect the multidimensional
aspect of the enterprise data. An OLAP service must meet the following fundamental requirements:

• The base level of data is summary data (e.g., total sales of a product in a region in a given period)
• Historical, current, and projected data
• Aggregation of data and the ability to navigate interactively to various level of aggregation (drill

down)
• Derived data which is computed from input data (performance rados, variance Actual/Budget,...)
• Multidimensional views of the data (sales per product, per region, per channel, per period,..)
• Ad hoc fast interactive analysis (response in seconds)
• Medium to large data sets (1 to 500 Gigabytes)
• Frequently changing business model (Weekly)

As an iUustration we will use the six dimension business model of a hypothetical beverage company. Each
dimension is composed of a hierarchy of members: for instance the time dimension has months (January,
February,..) as the leaf members of the hierarchy, Quarters (Quarter 1, Quarter 2,..) as the next level
members, and Year as the top member of the hierarchy. We will assume the following number of
members for each dimension:
• C "hannel 6 members
• Product 1500 members
• Market 100 members
• Time 17 members
• Scenario 8 members
• Measures 50 members

A simple OLAP scenario consists of getting the actual profit of the company for the current month and
comparing it with the budget, then drilling down per market region and product family. Further drilling
may be necessary in case of a large variation between Budget and Actual.

64 S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996

Multidimensional Model

I

I J= t Y e ~ Acnu~
L ~ Y e ~ B ~
F o r e c ~
Nex t yell Fotec~tll

Relat ional Approach
Given the popularity of relational DBMS's, it is tempting to implement the OLAP facility as a semantic
layer on top of a relational store. This layer would provide a multidimensional view, calculation of
derived data, drill down intelligence, and generation of the appropriate SQL to access the relational
storage. The typical 3rd-normal form representation of data is completely inapplicable in this environment
because of the overhead of processing joins and restrictions across a very large number of tables [3,4].
Instead a denonnalized Star Schema is used to give acceptable performance.

The relational schema consists of a Fact table and one table per dimension. The Fact table contains one
row for each set of measures and a dimension-id column for each dimension. Rollup summaries, such as
East region, are precalculated and stored in the Fact table. Each dimension table represents the hierarchy
of its dimension and contains the full name of the members of the dimension. The number of potential
rows in the fact "able is the cross product of the dimensions: Channels(6) * Products(1500) *
Markets(100) * Time(17) * Scenario(8) = 122 million, With 80% sparsity, which is typical, the number
of rows is about 24 million. With 50 columns in the Measure dimension the row size is about 500 bytes
a~d the Fact table amounts to about 13 Gigabytes. Each column will need an index to execute the joins
and restrictions with reasonable efficiency. If we assume a 4K block size, and a 30 byte average index
entry, each index would require about 800 megabytes; 5 indexed dimensions correspond to about 4
Gigabytes of indexes. The total database size is about 17 Gigabytes.

Fact Table
"C,han-id Prod-id Mkt-id 'Time-id iScen-id

1 2 11 1 1
3 2 21 1 1

. I ..

. i . .

2 105 11 1 1

3 105 1001 1 1
I

S~es
$245
$123

COGS Mar~in
$100 $145

$85 $58

Mkt. Exp. Payroll Misc Tot. Exp.
$23 i $45 $12 $80
$121 $23 $12 $47

I '"
I

i ii ii

Profit i
$65
$11

Market "1 able
rollup Imember
East lNew York
Eas, ro.da

[Market East
Iaarket IWest
~Market [South
IMarket] Central

JMarket IMarket

Mkt-id
1

1(
101
1C
1(

Product Table
[rollup member
Fruit Soda Grape
Fruit Soda Orange
Colas cola

Product Fruit Soda
Product Root Beer
Product Cream Soda
Product Diet drinks

, Product Colas

Product Product

Prod-id
1
3
2

101
102
103
10~
105

50(3

SIGMOD Record, Vol. 25, No. 3, September 1996 65

Retrieving all Measures for Actual and Budget, for each Month of the year at the corporate level (total
products, total channels, total markets) can be expressed as:

SELECT Scenario.member, Tilae.mcmbcr, Sales, COGS, Margin Profit
FROM Fact, Channel, Pr,Muct, Market, Time, Scenario

WHERE Fact.Chan-id = ChanneI.Chan-id ,and Ch~umel.member ='Channel"
Fact.Prod-id = Product.Prod-id and Product.member = "Product"
and Fact.Mkt-id = Markct.Mkt-id and Market.member = "Market"
and Fact.Time-id = Time.Time-id and Thne.rollup = 'Year"
and Fact.Scen-id = Scenario.Scen-id and Scenario.member = 'Actual"

UNION SELECT Scenario.member, Time.member, Sales, COGS, Margin Profit
FROM Fact, Channel, Product, Market, Time, Scenario

WHERE Fact.Chan-id = Channel.Chan-id and ChaPmel.member ='Channel"
Fact.Prod-id = Froduct.Prod-id and Product.member = 'product"
and Fact.Mkt-id = Market.Mkt-id and Market.member = 'Market"
and Fact.Time-id = Time.Time-id and Time.rollup = 'Year"
and Fact.Scen-id = Scenario.Scen-id and Scenario.member = "Budget"

It is reasonable to expect that at most one fo,mh of the top three levels of indexes (365 Megabytes) will
stay in memory. In this case the 6 way join will result in an average about 10 I/O's per retrieved row or
about 240 I/O's for this query.

Calculation
We will now examine the calculation of derived data using SQL and a 3GL. The roll-up columns are
trivial to generate by using the column expression facility of SQL. As an example the following SQL
statement computes the Margin. Tot Exp, and Profit columns:

UPDATE Fact SET Margin = Sales - COGS,
Tot Exp = Mkt Exp + Payroll + Misc
Profit = Sales - COGS - (Mkt Exp + Payroll + Misc)

The roll up rows can be generated by SQL INSERT statements similar to the following ones that generate
the roli-up's for the E~st region:

INSERT INTO Market (Market, East, "100")

INSERT INTO Fact (Chan-id, Prod-id, Mkt-id, Time-id, Scen-id. Sales, COGS Profit)
SELECT Chan-id, Prod-id, "100", Time-id, Scen-id, SUM(Sales), SUM(COGS) SUM(Profit)

FROM Fact, Market
WHERE Fact.Mkt-id = Market.Mkt-id and Market.roUup = "East"
GROUP BY Chan-id, Prod-id, Time-id, Scen-id

This roll up technique can only be applied for simple aggregations. Any computation which is not
commutative and associative will require a 3GL program with cursors. For instance the computation of
Variance as Actual - Budget will require a SELECT of an Actual row, a SELECT of the matching Budget
row, a computation of the variance, and an INSERT of the Variance row. This will cost on the average of
17 llO's per row. To calculate and store all the Variance rows would take: 20% * Product* Market *
Channel * Time * 17=52 million l/O's (about 237 hours of l/O time)!

This process would have to be repeated for all derived values. It is clearly impractical to do this via SQL.
The only practical solution is to write a special 3GL program which will do all the computation at the
time the relational database is loaded witll the base data. When all the base and derived data has been
loaded the indexes can be built to provide acceptable efficiency.

66 S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996

In spite of relational databases popularity in OLTP applications, this an,-dysis shows that the relational
model is not ideally suited for OLAP because of the large number of l/O',s necessary to perform simple
drill downs and computation. An alternative is to stage the OLAP data in a storage wifich is designed for
multidimensional analysis.

Multidimensional Database Approach
We will use the ,same OLAP model with a server that is based upon a Multidimensional database such as
Essbase. The data relevant to the analysis is extracted from a relational Data Warehouse or other
datasources and loaded in a multidimensional database which looks like a hypercube with 6 dimensions
(in this example). The following implementation of this hypercube is specific to the Essbase product. It is
patenled [7] and some of the advantages described may not apply to other multidimensional database
implementations.

The dimensions which usually have data in every cell, such as
Time, Scenario, and Measure are represented by a dense block
symbolized in the following picture by a cube. The other
dimensions are called sparse dimensions and for every
combination of sparse dimensions where data exists (Retail-
>Cola->New York, Retail->Cola->Florida, Retail->Cola ->
East, etc..), there is an entry in the index pointing to a dense
block on disk. In the beverage company example, a block
would consist of Time members * Scenario members *
Measure members * 8bytes per cell=55K bytes, with 80%
sparsity all the blocks would occupy 10 Gigabytes. The index
would occupy 6 Megabytes,because of its small size it wouM
renutin in memory. The total database would occupy/0 Gigabytes.

Intk::t ¢t spame

Retail->Ccla->East

:~,enda

4"*°F2
Jan

Sales
COGS
Margin
Mkt exp.
Payroll

~ Misc.
Tot. Exp
Profit

Actual Budget Vat. VarY,

Scenario

A typical OLAP retrieve proceeds top down, i.e.
starting from the higlaest level of aggregation in
each dimension (Channel-> Market->Product-
>Year->Actual>Profit). The block corresponding
to the combination of the top level members of the
sparse dimensions is located via an index search
and brought into memory with a single I/0) and
the data is located by offset computation inside the
block.

In summary the following conclusions can be
drawn from this example:

1. Retrieval is very fast because
• The data corresponding to any combination of dimension members can be retrieved with a

single I/O.
• Data is clustered compactly in a multidimensional array.
• Values are calculated ahead of time (see Calculation below).
• The index is small and can therefore usually reside completely in memory

2. Storage is very efficient because
The blocks contain only d,ata
A single index locates the block corresponding to a combination of sparse dimension
numbers.

S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996 67

• A single small index usually resides completely in memory.

Calculation
The Essbasc provides a default calculation which is optimized for efficient roll-up and to take advantage
of the clustering described previously. Typically all cells of a block containing input data such as Retail-
>Cola->Florida are calculated at once within the block, then a roll up block, such as Retail->Cola->East,
is computed by summing the cells of all children blocks.

The calculation of the variance between Actual and Budget can be accomplished with 2 I/O's per block
(Read & Write) for a total of 20% * Product * Market * Channel * 2 = 360.000 l/O's (about 2 hours of
I/0 time)for the whole database compared to 237 hours in the relational approach. All other derived
data can be rolled up at the same time without requiring any more l/O's'.

Thc calculation is very efficient because:

• Only one read and one write I/O per block are necessary to roll-up a whole database
• The memory representation of a block is an array with efficient relative offset addressing.
• Roll-up's can be done by benefitting from the isomorphic nature of the multidimensional

array representation of the data.

Comparison between the Relational and the Multidimensional
models
The analysis of our example illustrates the following differences between the best Relational alternative
and the Multidimensional approach.

Relational Multidimensional Improvement
Disk space requirement 17 10 1.7
(Gigabytes)

Retrieve the corporate measures, Actual vs 240 1 240
Budget, by month (l/O's)
Calculation of Variance Budget/Actual for 237 2* 110"
the whole database 41/O time in hours)
* This may include the calculation of many other derived data without any additional I/O.

The Multidimensional database in our example uses almost half the disk space, retrieves Jam between 8
and 200 times faster, and calculates the derived data at least 2 orders of magnitude faster than Relational.
We have also seen that, when the best relational alternative was used, the generation and calculation of
the Fact table and Dimension tables were a serious programming and maintenance challenge, requiring a
complicated 3GL program for the calculation of the derived values and a sophisticated query processor to
generate the proper SQL.

Thc fundamental reason for the large difference in performance comes from the data models. The
Relational model assumes a table model where the only way to address a row is via the contents of one of
its fields, requiring massive indexing. The Multidimensional model uses array addressing, with relative
offsets. The contents addressing of the Relational model was created in the early 1970"s to provide
flexibility in data restructuring which did not exist in the popular databases of the time, IMS and
CODASYL. It has proven over the years to be a very successful model for OLTP. However for OLAP
applications, the Relational cursor that navigates through a multitude of indexes cannot compete with the
Multidimensional array cursor that operates via relative offsets.

68 S I G M O D Record , Vol. 25, No. 3, Sep t ember 1996

References
I. Beyond Decision Support, Edgar F. Codd, Sharon B.Codd, Clynch T. Salley, Computerwor!d July 26,

93
2. Slrucluring databases fi~r analysis, Jeffrey P. Stamen, IEEE SPECTRUM, Oct. 1993
3. Two Steps Forward, One Step Back, David Vaskevitch, BYTE, May 1992
4. Why Decision Support Fails and How to Fix it, Ralph Kimball and Kevin Strehlo, Datamation June 1,

94
5. Multidimensional Databases, John Xcnakis, Application Development Strategies, April 1994
6. Understanding the need for On line Analytical Servers, Richard Finkeistein
7. Arlx~r Software Corporation, Robert J. Earle, U.S. Patent # 5359724
8. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.

Jim Gray, Adam Bosworth, Andrew Layman, Hamid Piranesh, Microsoft Research Technical Report
MSR-TR-95-22, July 17, 1995

S I G M O D Record , Vol. 25, No. 3, S e p t e m b e r 1996 69

