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Abstract

We consider an environment where distributed
data sources continuously stream updates to a
centralized processor that monitors continuous
queries over the distributed data. Significant com-
munication overhead is incurred in the presence of
rapid update streams, and we propose a hew tech-
nique for reducing the overhead. Users register
continuous queries with precision requirements at
the central stream processor, which installs filters
at remote data sources. The filters adapt to chang-
ing conditions to minimize stream rates while
guaranteeing that all continuous queries still re-
ceive the updates necessary to provide answers of
adequate precision at all times. Our approach en-
ables applications to trade precision for communi-
cation overhead at a fine granularity by individu-
ally adjusting the precision constraints of continu-
ous queries over streams in a multi-query work-
load. Through experiments performed on syn-
thetic data simulations and a real network moni-
toring implementation, we demonstrate the effec-
tiveness of our approach in achieving low com-
munication overhead compared with alternate ap-
proaches.

Introduction

Query processing overontinuous data streambas re-
ceived considerable attention recently,g, [CCCT02,

MF02, MWA*03]. We consider distributed environments the sensor is required [MF02]. Many applications that rely

the presence of rapid update streams. We offer an effective
method for reducing communication cost, taking advan-
tage of the fact that many applications do not require exact
precision for their continuous queries—examples are dis-
cussed shortly. When applications do not require exact pre-
cision and data values do not fluctuate wildly, approximate
answers of sufficient precision usually can be computed
from a small fraction of the input streams. In our approach,
users submit quantitatiyerecision constraintalong with
continuous queries to the stream processor, and the stream
processor installfilters at the remote data sources. The
filters adapt to changing conditions to minimize communi-
cation cost while guaranteeing that all continuous queries
still receive the updates necessary to provide answers of
adequate precision at all times. In this way, users are of-
fered fine-grained control over the tradeoff between query
answer precision and communication cost. Imprecision of
query results is bounded numerically so applications need
not deal with any uncertainty.

Many stream-oriented applications do not need exact
answers, yet require quantitative guarantees regarding the
precision of approximate answers [YV00]. For example,
consider wireless sensor networkgy, [EGPS01, KKP99,
MFO02, PK0O], which enable continuous monitoring of en-
vironmental conditions such as light, temperature, sound,
vibration, structural strain, etc. [MSHRO02]. Since the bat-
tery life of miniature sensors is severely limited, and ra-
dio usage is the dominant factor determining battery life
[MBC*01, PK0O], itis crucial to reduce the amount of data
transmitted, even if a small increase in local processing by

in which remote data sources continuously push updategn sensor data can tolerate approximate answers having a
to a centralstream processorwhose job is to evalu- controlled degree of imprecision [MB@1], making our

ate multiple continuous querieover the streamed data approach ideal for reducing data transmission. Other ex-
[BWO1, CDTWO0, LPT99, MSHRO2]. In these environ- gmples with continuous queries over distributed data that
ments, Significant communication overhead is incurred irban tolerate a bounded amount of imprecision include in-
dustrial process monitoring, stock quote services, online
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Next we focus on one particular application, network @1 Monitor the volume of remote login (telnet, ssh, ftp,
monitoring, and give examples of continuous queries that  etc.) requests received by hosts within the organiza-
arise in the context of that application to motivate our work. tion that originate from external hosts.

Then in the remainder of Section 1 we provide an overview(Q, Monitor the volume of incoming traffic received by all
of our approach. hosts within the organization.

@3 Monitor the volume of incoming SYN packets re-
1.1 Example Application: Network Monitoring ceived by all hosts within the organization.

Managing complex computer networks requires tools that, 0+ Monitor the volume of outgoing DNS lookup requests
among other things, continually report the status of net-  Originating from within the organization.

work elements in real time, for applications such as traffic @5 Monitor the volume of traffic between hosts within the
engineering, reliability, billing, and securitg,g, [DRO1, organization and external hosts.

vRBQl]. Network mon.|t<_)r|ng applications do not typically Queriesg; throughQ, are motivated by security con-
require absolute precision [vRBO1]. Thus, our approach . : o :
sdderatlons. One concern is illegitimate remote login at-

can be used to reduce monitoring communication overhea[em ts, which often occur in bursts that can be detected us-
between distributed network elements and a central mon- PIS,

itoring station, while still providing quantitative precision Ing queryQ; . Another concern is denial-of service (DOS)
. attacks. To detect the early onset of one form of incoming
guarantees for the approximate answers reported. o .
. Y . . DoS attacks, organizations can monitor the total volume
Real-time network monitoring workloads often consist __". . - . .
. . . of incoming traffic received by all hosts using quepy.
of a set of queries that perform aggregation across dis- . .
. Another form of DoS attack is characterized by a large vol-
tributed network elements [DR0O1, vRBO1]. The data to be . - .,

. . —ume of incoming “SYN" packets that can consume local
aggregated is most commonly selected or grouped by iden- o . X
9 o resources on hosts within the organization, which can be
tifiers such asource-addresand destination-addresor ; . T .

. . monitored using quer§s. Organizations also may wish to
by attributes such as packet type. We now give two con- gy . T .
. detect suspicious behavior originating from inside the orga-
crete examples of continuous query workloads for network™.” "~ ° . .
S o hization, such as users launching DoS attacks, which may
monitoring applications.

entail sending an unusually large number of DNS lookup
Example 1: Network path latencies are of interest for requests detectable using quely. In all of these exam-

infrastructure applications such as manual or automateﬂles’ curre_nt results of the contmuo_us query can be com-
traffic engineeringe.g, [VGLAOO], or quality of service pared against data previously monitored at similar times

(QoS) monitoring. Path latencies are computed by monitorpf day or calendar periods that represents “typical” behav-
jor, and the detection of atypical or unexpected behavior

ing the queuing latency of each router along the path, antf

summing the current queue latencies together with knowrSan be followed by more detailed and costly investigation

static transmission latencies. Since the queue latency ﬁf tf?e dalta. Fl_nally,dorg?nlfz?rt]lons can_m?mtor t_he overall
each router generally changes every time a packet enteFr Ic voiume in and out ot the organization using query
or leaves the router, a naive approach could generate mon§®’ to help plan |_nfrastructure gpgrade; or track the cost of
toring traffic whose volume far exceeds the volume of nor_netl\f/vtorléfpsage .tt"”.Gd t.)y a stervuf:e progj/lder. full f
mal traffic, a situation that is clearly unacceptable. Fortu- raflic monitoring IS hot periormed caretufly, many o

nately, path latency applications can generally tolerate a these queries may be disruptive to the communication in-

proximate answers with bounded absolute numerical errofrr astructure of the organization [HMPWO1]. Fortunately,

(such as latency withif ms of accuracy), so using our ap- these applications also do not re_qgire_ exact precision in
proach obtrusive exact monitoring is avoided. guery answers as long as the precision is bounded by a pre-
specified amount. Note that precision requirements may

change over time. For example, during periods of height-
I@ned suspicion about DoS attacks, the organization may
wish to obtain higher precision for queri€s andQs; even

at the cost of increased communication overhead.

Example 2: Network traffic volumes are of interest to or-

ganizations such as internet service providers (ISP’s), co
porations, or universities, for a number of applications in-
cluding security, billing, and infrastructure planning. Since
it is often inconvenient or infeasible for individual organi-

zations to configure routers to perform monitoring, a sim-
ple alternative is to instead monitor end hosts within theWe focus on continuous queries such as the network mon-
organization. We list several traffic monitoring queries thatitoring examples above. All of these queries compute ag-

can be performed in this manner, and then motivate theigregate values over streams of updates to numeric (real)
usefulness. These queries form the basis of performanatata objects, which may originate from many remote data

experiments on a real network monitoring system we haveources. The conventional answer to an aggregation query
implemented; see Section 5. is a single real value. We defineb@unded approximate

1.2 Overview of Approach



answer(hereaftebounded answgto be a pair of real val- 1.2.1 Effects of Filter Bound Width

uesL and H that define an intervalL, H] in which the . _ . _

precise answer is guaranteed to lie. Precision is quantifie@ filter bound that is narrowi.e, H — L is small, en-

as the width of the ranged — L), with 0 corresponding ables_con_tlnuo_us queries to maintain more precise answers,
to exact precision ando representing unbounded impre- but will fail to filter out a significant portion of the update
cision. A precision constrainfor a continuous query is a Stream, leading to high communication cost. Conversely,

user-specified constaft> 0 denoting a maximum accept- @ bound that is wide.e, H — L is large, can reduce the
able interval width for the answeire., 0 < H — I, < § at  Stream rate substantially due to a more restrictive filter, but

all times. consequently results in more imprecision in query answers.
Uniform allocation can perform poorly for the following

Our goal is to provide guaranteed bourifisH] as an-  tWO reasons:

swers to continuous queries at all times, while filtering up-
date streams at the sources as much as possible. For each_ |f mu|t|p|e continuous queries are issued on over|ap-
remote data obje@ whose updates are sent to the central ping sets of objects, different bound widths may be

stream processor for continuous query evaluatitieam assigned to the same object. While we could simply
filter is installed atO’s source. Each filter maintains a nu- choose to use the smallest bound width for the filter,
meric bound Lo, Ho] of width W, centered around the the higher update stream rate may be wasted on all but
most recent numeric updaté (whereV is the new value a few queries.

for O) that passed the filtei,e, Lo = V — % and
Ho =V + % The filter eliminates from the stream
all updatesV’ that lie insideO’s bound,i.e., that satisfy
Lo <V < Hp. Each time an updatg passes the filter
and is transmitted to the central processor the filter recen-
ters the bound around by settingLp (= V — % and
Ho =V + % The central stream processor knows
each objectO’s bound widthWo, and uses it to main- _ _
tain a cached copy of its bourfl,, Ho) based on filtered Our performance experiments (Section 5) that compare
updates received fro®’s source. The stream processor uniform against nonuniform bound allocation policies pro-
can be assured that the source (master) val@ @mains vide strong empirical confirmation of these observations.
within the bound until the next update 6f is received. Reason 2 above indicates that a good nonuniform bound
(Message latency is addressed in Section 4.) width allocation policy depends heavily on the data update
rates and magnitudes, which are likely to vary over time,
Continuous queries are registered at the stream procegspecially during the long lifespan of continuous queries
sor and whenever a relevant update is received on an inp{MSHRO2]. In Example 1 from Section 1.1, a router may
stream query results are updated accordingly. Each contirlternate between periods of rapidly fluctuating queue sizes
uous query (CQJQ has an associated precision constraint(@nd therefore queue latencies) and steady state behavior,
5o. We assume any number of arbitrary CQ’s with arbi- depending on packet arrival characteristics. Therefore, in
trary individual precision constraints. The challenge is toaddition to nonuniformity, we propose aaaptivepolicy,
ensure that at all times the bounded answer to every cord Which bound widths are adjusted continually to match
tinuous queryQ is of adequate precisioie., has width ~ current conditions.
at mostdg, while filtering streams as much as possible to  Determining the best bound width allocation at each
minimize total communication cost. As a simple example,point in time without incurring excessive communication
consider a single CQ requesting the current average of overhead is challenging, since it would seem to require a
data values whose update streams are transmitted from di$ingle site to have continual knowledge of data update rates
ferent sources, with a precision constraintVe can show and magnitudes across potentially hundreds of distributed
arithmetically that the width of the answer bound is the av-sources. Moreover, the problem is complicated by Rea-
erage of the widths of the individual bounds. Thus, one son 1 above: we may have many continuous queries with
obvious way to guarantee the precision constraint is to usdifferent precision constraints involving overlapping sets of
filters with a bound of width$ for each of then objects.  data objects. In Example 1 from Section 1.1, multiple paths
Although this simple policy, which we caliniform alloca-  whose latencies are monitored will not generally be dis-
tion, is correct (the answer bound is guaranteed to satisfyoint, i.e., they may share routers, and precision constraints
the precision constraint at all times), it is not generally themay differ due to differences in path lengths (humber of
best policy. To see why, it is important to understand therouters) as well as discrepancies in user precision require-
effects of update filter bound width [OLWO01]. ments for different paths.

2. Uniform bound allocation does not account for data
values that change at different rates due to different
rates and magnitudes of updates. In this case, we pre-
fer to allocate wider bounds to data values that change
rapidly, and narrower bounds to the rest.
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Figure 1: Our approach to stream filtering for continuous queries.

1.2.2 Adaptive Bound Width Adjustment

We have developed a low-overhead algorithm for setting
bound widths for stream filters adaptively to reduce com-
munication costs while always guaranteeing to meet the ®
precision constraints of an arbitrary set of registered CQ’s.
The basic idea is as follows. Each source filter for an ob-
ject’'s update stream shrinks the bound width periodically,

at a predefined rate. Assuming the bounds begin in a state
where all CQ precision constraints are satisfied (we will
guarantee this to be the case), shrinking bounds only im- o
proves precision, So no precision constraint can become vi-
olated due to shrinking. The central stream processor main-
tains a mirrored copy of the periodically shrinking bound

width for each object.

object.

width of each object. Each time the bound width of each

object shrinks, the stream processor reallocates the “left-

It reallocates width as de-
scribed earlier and notifies the corresponding sources
via growth messages.

A bound cachénside the stream coordinator receives
all bound width changes (growth and shrinks) from
the precision manager, along with all value updates
streamed from the data sources via the filters. The
bound cache maintains a copy of the bound for each

A CQ evaluatorin the central stream processor re-

ceives updates to bounds from the bound cache and
provides updated continuous query answer bounds to
the user.

Two aspects of our approach are key to achieving low

over” width to the objects at the central processor it benecommunication cost. First, width shrinking is performed
fits the most, ensuring all precision constraints will remainsimultaneously at both the stream processor and the sources
without explicit coordination. Second, the precision man-
ager uses selective growth to tune the width allocation

satisfied.

1.2.3 Overall Approach

Our approach is illustrated in Figure 1:

updates to those values.
e Filters intercept update streams from sources and

adaptively.

constraints.
In addition to the overall approach, specific contribu-

Informally, we minimize the overall cost to
guarantee individual precision constraints over arbitrary
overlapping CQ’s by assigning the widest bounds to the
e Data sourceson the right, each store master valuesdata values that currently are updated most rapidly and are
for one or more objects, and they generate streams dfivolved in the fewest queries with the largest precision

maintain periodically-shrinking bounds for the ob- tions of this paper are as follows:

jects. Each filter forwards updates that fall outside its
bound to the central stream processor, shown on the

left, and recenters that bound.

e A stream coordinatoin the central stream processor
receives all streamed updates from the filters.

e A precision manageinside the stream coordinator
maintains a copy of the periodically shrinking bound

e In Section 3 we specify the core of our approach:
a low-overhead, adaptive algorithm for assigning fil-

ters to data sources to reduce update stream rates. To

guarantee adequate precision for multiple overlapping
CQ'’s while minimizing communication, the precision

manager (Figure 1) uses an optimization technique
based on systems of linear equations.



e In Section 4 we describe mechanisms in the boundieal with the optimization problem we address for mini-
cache (Figure 1) to handle replica consistency issuemizing communication.
that arise due to nonnegligible stream message laten- Recent work on reactive network monitoring [DRO1]
cies. addresses scenarios where users wish to be notified when-
e In Section 5 we describe our implementation of a real®Ve! the sum of a set of values from distributed sources
network traffic monitoring system based on Examp|eexceeds a _p_respecmed critical value. In their s_olut|on each
2 in Section 1.1. We provide experimental evidenceSOUrce notn‘le_s a central processor whengver its yalue ex-
that our approach significantly reduces overall Com_ceeds a certain thre§hold, WhIC.h can be elth_er a fixed con-
munication cost compared to a uniform allocation po|_stant or a value that increases Ilnearly over time. The IocaI.
icy for a workload of multiple continuous queries with t_hresholds are set to guarantee that in the absence of noti-
precision constraints. fications, the central processor knows that the sum of the
source values is less than the critical value. The thresh-
olds in [DRO1], which are related to the bounds in our al-
gorithm, are set uniformly across all sources. Similarly,
2 Related Work in [YVO0OQ], which focuses on bounded approximate val-

The idea of using numeric bounds and queries with preU€s under symmetric replication, error bounds are allocated
cision constraints to offer a smooth tradeoff between preuniformly across all sites that can perform updates. In
cision and performance in distributed data processing erontrast to these approaches, we propose a technique in
vironments was introduced originally in [OLW01, owo0]. Which bound widths are allocated nonuniformly and ad-
However, that work addressede-timerather than contin-  justed adaptively based on stream transmission costs and
uous queries, resulting in a very different approach. Specifdata change rates.
ically, [OWO00] developed algorithms for optimally com- ~ Maintaining numeric bounds on aggregated values from
bining approximate cached data with exact source data tBultiple sources can be thought of as ensuring the contin-
meet the precision requirement for a single query at a singlgal validity of distributed constraints. Most work on dis-
time. Follow-on work [OLWO1] proposed a technique for tributed constraint checking,g, [BBC80, GW93, Huy97]
adjusting cached approximations to minimize the overallonly considers insertions and deletions from sets, not up-
communication cost under a workload of one-time querieglates to data values. We are aware of three proposals in
like those in [OWO00]. The precision level of each data ob-Which sources communicate among themselves to verify
ject is adjusted in isolation, independent of the precisiornumerical consistency constraints across sources contain-
levels of other objects. Both [OLWO01, OWO00] exploit the ing changing valuesdata-value partitioningSS90], the
property that for many one-time queries, answer precisioflemarcation protocolBGM92], and recent work by Ya-
can be improved to acceptable levels by accessing remot@ashita [Yam02]. The approach of these proposals could
sources at query-time. In contrast, we focus on application# principle be applied to our setting: sources could rene-
that require continuous answers to queries. For these appigotiate bound widths in a peer-to-peer manner with the
cations, an answer of adequate precision for each contini@oal of reducing stream rates. However, in many sce-
ous query must be maintained by the central stream procearios it may be impractical for sources to keep track of
sor at all times. the other sources involved in a continuous query (or many
In quasi copieSABGMA88], centrally maintained ap- continuous queries) and communicate with them directly,
proximations are permitted to deviate from exact sourcédnd even if practical it may be necessary to contact multi-
values by constrained amounts, thereby providing preciPle peers before finding one with adequate “spare” bound
sion guarantees. Recent work [SB®] extends the ideas Width to share. It seems unlikely that the overhead of inter-
of [ABGMAG88], proposing an architecture in which a net- source communication is warranted to potentially save a
work of repositories cooperate to deliver data with pre-Single stream message. Furthermore, the algorithms in
cision guarantees to a large population of remote user$BGM92, SS90, YamO02] are not designed for the purpose
In an environment with multiple cooperating repositories,of minimizing communication cost, and they do not accom-
data may be propagated through several nodes before ulfitodate multiple queries with overlapping query sets.
mately reaching the end-user application, so latency can be Some work on real-time databases, [LLSY91], fo-
a significant concern. The work in [SB82] focuses on cuses on scheduling multiple complex, time-consuming
selecting topologies and policies for cooperating repositocomputation tasks that yield imprecise results that improve
ries to minimize the degree to which latency causes preover time. In contrast, our work does not focus on how best
cision guarantees to be violated. However, the work into schedule computations, but rather on how to filter data
[ABGMAS8] and [SBS"02] does not address queries over update streams in a distributed environment while bound-
multiple data values, whose answer precision is a functioing the resulting imprecision.
of the precision of the input values, so they do not need to Finally, [OW02] addresses the problem of maximizing



data precision subject to constraints on the availability of Symbol | Meaning
communication resources. That work considers the invers

[¢

fth bl dd i thi ¢ rinimizi n number of data objects across all sources
oft e prp em \_/ve al rgss In this pqpero minimizing po_m- 0, data object{= 1 ...n)
munication while meeting constraints on data precision -
Vi exact source value of obje€y;

The choice of which of these complementary approaches
is more appropriate in a given scenario depends on charac{Li, #1:] | bound for object;
teristics of the environment and application. An interesting W width of bound for objecO; (W; = H; — L)
topic for future work is to consider policies for automati- C; update/growth msg. communication cost €y
C
A
m

cally choosing or switching between the two approaches, overall communication cost
possibly at a per-source granularity.

stream message latency tolerance
number of registered continuous queries

3 Algorithm Description Q,; registered queryj(=1...m)
In this section we provide more details of our approach| set of objects queried b,
then we describe our algorithm for adjusting stream filter__ 9% precision constraint of query;
bound widths adaptivelyi,e., we focus on theprecision 7 adjustment period (algorithm parameter)
managerin Figure 1 which is the core of our approach. S shrink percentage (algorithm parameter)
Recall that our goal is to minimize communication cost P streamed update period 6% (last7 time units)
whi!e satisfying thg precisi_on constrair_ns of all queries af ™ g, burden score oD; (computed everg time units)
all tlmes. We consider continuous queries that operate over T, burden target o, (computed everg time units)
any fixed subset of the remote data values. (We do not corj — - —

D; deviation ofO; (determines growth priority)

sider selection predicates over remote values [OWO00], an
we assume that all insertions and deletions of new objects
into the data set are propagated immediately to the central

stream processor via special streams.) values only. For the aggregation functions we consider, if
Queries can perform any of the five standard relationahn aggregate value is continuously computed to meet a cer-
aggregation functions: COUNT, MIN, MAX, SUM, and tain precision constraint, then the result of further aggre-
AVG. Of these, COUNT can always be computed ex-gating over time using any type of window also meets that
actly in our setting, SUM can be computed from AVG and same precision constraint. However, our algorithm does
COUNT, and MIN and MAX are symmetric. It also turns not necessarily minimize cost for sliding window queries,
out, as we show in Appendix A, that for the purposes ofpecause sliding windows offer some leniency in the way
bound width setting MIN queries can be treated as a colprecision bounds are set: bounds wider thare accept-
lection of AVG queries. Therefore, from this point forward able as long as they are compensated for by bounds nar-
we discuss primarily the AVG function. Note that queries rower thans within the same time-averaged window. Our
can request the value of an individual data object by posinglgorithm would need to be modified to take advantage of
an AVG query over a single object. For flexibility we also this additional leniency in precision, which is a topic of fu-
allow objects to be weighted in SUM and AVG queries, ture work.
formalized in Appendix B. Let us assume that all messages (including update
Each registered continuous quepy specifies ajuery  streams) are transmitted instantaneously and all computa-
setS; of objects and @recision constraind;. (Users may tion is instantaneous, for now. In Section 4 we discuss how
later alter the precision constraifit of any currently reg-  we handle realistic, non-negligible latencies. When the pre-
istered continuous quer§;; see Section 3.4.) The query cision manager sends a bound growth message for object
setS; is a subset of a set efdata object$);, Oz, ...,0,. O, to its source, or an update is transmitted along the data
Each data objeaD; has an exact valug; stored at a re-  stream from the source to the stream processor (recall Fig-
mote source that streams updates after filtering to the cemrre 1), we model the cost as a known numerical constant
tral stream processor. Say there ameregistered con- (;. (Considering the possibility of batching stream updates
tinuous AVG queries@y, Qs, ..., Qn, With query sets from the same source is a topic of future work.) For conve-
S1,8,...,Sn, respectively. Then the exact answer to nience, the symbols we have introduced and others we will
AVG queryQ; is ﬁ'zlgi§n70ie$j V;. Ourgoalistobe introduce later in this section are summarized in Table 1.
able to compute an approximate answer continuously that Before presenting our general adaptive algorithm for
is within @;’s precision constrain;, using cached bounds adjusting bound widths, we describe two simple cases in
maintained by the central stream processor. which the bound width of certain objects should remain
Note that this goal handlesliding window queries fixed. First, consider an obje@ that is involved only in
[MWA *03] as well as queries over the most recent datajueries that request a bound on the valu®aflone (AVG

Table 1: Model and algorithm symbols.



gueries over one value). Then it suffices to fix the boundmnust re-apply the filter to the current data valge If V;

width of O to be the smallest of the precision constraints:passes the new filter and has not already been streamed
Wo = min(d;) for queriesQ); with S; = {O}. Second, as an update, the source must genelaten the update

for objects that are not included in any currently registeredstream.

query, the bound width should be fixedoatso that all up-

dates are filtered from its update stream and none are trans:2 Bound Growing

mitted to the central stream processor. The remainder o

the objects, namely those that are involved in at least ontéven:_T ﬂme u(;uts, \{\k/)h%n_ altlhthe bOL.md W'dﬂt].s Shtrr']nk au-
guery over multiple objects, pose our real challenge. omatically as described in the previous section, the preci-

To guarantee that all precision constraints are met, thgion.manager selects ce_rtain bound yvidths to grow iqstgad,
following constraint must hold for each quety: makmg the correqundlng stream filters more restrictive.
Selecting bounds to increase (and how much) is one of the
Z W, < 6 -|S;] most intricate parts of our approach.
1<i<n,0; €8, The first step is to assign a numeribarden scoreB; to

In other words, the sum of bound widths for each queryeaCh queried objed;. Conceptually, the burden score em-

must not exceed the product of the precision constraint anHOdIes the degree to which an object is contributing to the

the number of objects queried. Initially, the bounds can beﬁ\s/:?r”e;?nme;ngnéciggnr:f%srttg?ﬁogoei[;?gzlegaﬁggﬂzf' ;\S/\ée
set in any way that meets the precision constraint of ev- b P P

ery query,e.g, by performing uniform allocation for each their filter and are sent to the stream processor.) The bur-

. C,
guery, and for objects assigned multiple bound widths, tak?s etr;]:ccc())r:t It?) Cs%rgglges?rgr:e gidgaggizeort;;i‘:%algj

ing the minimum. Then, as discussed in Section 1.2.3 . . ) . ’

our general strategy is to reallocate bound width adaptivel)r{JS t(;]aetguZﬁggggﬁhﬁ'dt&lzéig&? df;t;n;%t;ﬁtéi?z;?on
among the objects participating in each query. Realloca:? tpd P _ T hp N is th Jb f undat '
tion is accomplished with low communication overhead bycompu €d as; = x; WNEre.; 1S the number of upaates
having bounds shrink periodically over time and having theOf Oi re;i{;/ei by t:e s}tjreim cooro;na_tor n :trhhe rﬁbsmrge
stream processor’s precision manager periodically Sele(f%nrltnin; i f;iﬁyoir:tu?t?veis%co;esg aiv\; dgl)bouned ourrloirg];

one or more bounds to grow based on current conditions.

In Section 3.1 we describe the exact way in which boundgtream_ed ypd.ate.penc_)d redu@; The exact mathemati-
cal derivation is given in Appendix C.

are shrunk in our algorithm, and then in Section 3.2 we de- o h obiect’s st d uodat iod and burd
scribe when and how bounds are grown. In Section 3.3 we nce each objects streamed update period and burden

provide empirical validation that our algorithm convergesScore have been computed, the second step is to assign a
on good bounds. valueT}, called theburden targetto each AVG query);.

Conceptually, the burden target of a query represents the
3.1 Bound Shrinking !owest overall burden requ_ired of the_objects i_n the query

) ) ] in order to meet the precision constraint at all times. Since
Every objectD; has a corresponding bound width; that  nderstanding the way we compute burden targets is rather
is maintained simultaneously at both the central stream CAnvolved, we present our method later in Section 3.2.1, and
ordinator and at the source filter. Periodically, every  symmarize the process here. For queries over objects in-
time units (seconds, for example);'s bound width is yolved in no other queries, the burden target is set equal to
stream coordinator by setting’; := Wi - (1 — 5). The  nat query. For queries that overlap it turns out that assign-
constant7 is a global parameter called ta€ljustment pe-  jng purden targets requires solving a systemmokqua-
riod, and S is a globgl parameter called ttsfrink Per-  tions with 71, b, . . ., T, asm unknown quantities. Be-
centage The effect is to decrease the bound width by cayse solving this system of equations exactly at run-time
the fractionS every time unit, rendering the update streamis jikely to be expensive, we find an approximate solution
filter lessrestrictive over time. (A filter is more restric-  py rynning an iterative linear equation solver until it con-
tive when it blocks more updates from being streamed.)erges within a small errar. (Performance is evaluated in
All adjustments to the bound width—decreases as well aggction 3.2.2)
increases—aoccur at intervalsdftime units. Note that up- Once a burden target has been assigned to each query.

dates may be streamed to the central stream processor @k third step is to compute for each objéxtits deviation
any time but they simply reposition bounds without alter- p, .

ing the width. We will discuss good settings for algorithm
parameterd ands in Section 5.

To ensure correctness, each time the bound width for D; = max{ B; — Z T;, 0
objectO; shrinks, changing the filter condition, the source 1<j<m,0: €S,




Deviation indicates the degree to which an object is “over-3.2.1 Burden Target Computation

burdened” with respect to the burden targets of the queries

that access it. To achieve low overall stream rates, it is de¥Ve now describe how to compute the burden taifgjefor

sirable to equally distribute the burden across all object§ach query);, given the burden scot; of each objec;

involved in a given query. We justify this claim mathe- (Step 2 above). Recall that conceptually the burden target

matically in Appendix C, and we verify it empirically in for a query represents the lowest overall burden required

Sections 3.3 and 5. of the objects in the query in order to meet the precision
To see how we can even out burden, recall that the burconstraint at all times. For motivation consider first the

den score of objecD; is B; = %, so if the bound Special case involving a single AVG queqy; over ev-

[L;, H;] were to increase in sizeB; would decreasé. &Y OPIECtO1, ..., Oy. In this scenario, the goal for ad-

Therefore, the burden score of an overburdened object cd{Sting the burden scores simplifies to that of equalizing

be reduced by growing its bound. Growth is allocated tot€M (s shown mathematically in Appendix C) so that
B, = By =--- = B, = T. Therefore, given a set of bur-

bounds using the following greedy strategy. Queried ob-

jects are considered in decreasing order of deviation, so th&€n Scores that may not be equal, a simple way to guess at
the most overburdened objects are considered first. (It i@ @PPropriate burden targgtis to take the average of the

important that ties be resolved randomly to prevent 0bject§urre_nt burden §corese., T’“ - ﬁ Li<icn,0ies, Biv
having the same deviation—most notably-from repeat- [N this way, objects having higher than average burden
edly being considered in the same order.) When olgject SCOres will be given high prlor_lty for growth to lower their
is considered, the maximum possible amount by which théurden scores, and those having lower than average burden
bound can be grown without violating the precision con-Scores will shrink by default, thereby raising their burden
straint of any query is computed as: scores. On subsequent iterations, the burden tdigetll
be adjusted to be the new average burden score. This over-
all process results in convergence of the burden scores.
AW; = 1<j<1;(r111%»65~ 85 - 1S;5] = Z Wy We now generalize to the case of multiple queries over
e 1<k<n,0E€S; different sets of objects. It is useful to think of the
. burden score of each object involved in multiple queries
If AW; = 0, then no action is taken. For each nonzero,q givided into components corresponding to each query
growth value, the precision manager increases the Wldﬂaver the object. Le®;; represent the portion of ob-
oAfVEhe bound for0; symrAnVstrlcally by settind: := Li = jact 0,'s burden score corresponding to quedy so that
S5+ andH; = H; + . After all growth has been agégﬁm@esj 0,; = B;. The goal for adjusting burden

2
allocated the precision manager sends a message to e res in the presence of overlapping queries is to have the

source having objects whose bound width was selected foﬁurden scoreB; of each objec; equal the sum of the
growth. . .. burden targets of the queries ow@¢ (as shown in Ap-
In summary, the procedure for determining bound Wldthpendix C). This goal is achieved if for each quepy
growth is as follows: over O;, 6; ; = T;. Therefore, our overall goal can be
1. Each object is assignedbairden scorebased on its restated n; terTs 900 \f:llues_ase rean;g tt?]atefor e\I/ery
stream transmission cost, estimated streamed updaf’éjernyj ,b'thSS 203‘ - | J t_ 'Izh( ef i.j Val
period, and current bound width. ues for object®); ¢ ; are irrelevan ). Therefore, given:
a set off values, a simple way to guess at an appropri-
2. Each query is assignedbarden targetoy either av- ate burden targel; for each queryQ; is by taking the
eraging burden scores or invoking an iterative linearaverage of the values of objects involved i);, i.e.,
solver (described next in Section 3.2.1). T; = 157 Li<i<noies, %ij- For each object/iquery
pair 0,;/Q;, we can express, ; in terms of B;, which

3. Each object is assignedlaviationvalue based on the is known, and the) values for the other queries ovex,
difference between its burden score and the burden ta(/'vhich aré unknowné '

gets of the queries that access it.

ij = Bi— E1§k§m7k¢j,oiesk 0s k-
If we replace each occurrence &f;, by 7}, for all k£ # j
4. The objects are considered in order of decreasing déPecause we want eaeh, to converge tdly), we have
viation, and each objee®; is assigned the maximum %i.j = Bi = > 1<j<m zj0,cs, Tk Substituting this ex-
possible bound growth I; when it is considered. pression in our formula for guessing at burden targets based
on# values, we arrive at the following expression:
Complexity and scalability of this approach are dis-
cussed in Section 3.2.2.

1
LThis reasoning relies oR; not decreasing wheW’; increases, afact 1 = —=— - Z B; — Z Ty
that holds intuitively and is discussed further in Appendix C. 1<i<n,0; €S, 1<k<m,k#j,0; €S
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25% (50) of the data sources, resulting in a much higher
degree of overlap among queries. (The degree of overlap
determines the density of the linear equation matrix, which
is a major factor in the solver running time.) Varying the
number of queriesn, we measured the average running
time on a Linux workstation with 833 MHz Pentium Il
processor. We set the error tolerance for the LASPack itera-

tive solver small enough that no change in the effectiveness
of our overall algorithm could be detected. Figure 2 shows
the fraction of available processing time used by the linear
solver when it is invoked once evety seconds (when time
units are in seconds aril = 10, which turns out to be a
good setting as we explain later in Section 5). Allocating
This result is a system of. equations withly, Ts, ..., T}, bound growth to handI200 queries ove5% of 200 data
asm unknown quantities, which can be solved using a lin-sources requires only arouri of the CPU time at the
ear solver package. stream processor.

fraction of processing time

0 50 100 150 200
number of queries

Figure 2: Scalability of linear system solver.

3.2.2 Algorithm Complexity and Scalability 3.3 \Validation Against Optimized Strategy

Let us consider the complexity of our overall bound growthWe performed an initial validation of our bound width allo-
algorithm, which is executed once eveFy time units.  cation strategy based on periodic shrinking and selective
Most of the steps involve a simple computation per ob-growing using a discrete event simulator with synthetic
ject, and the objects must be sorted once. In the last stepata. The goal of our simulation experiments is to show
to compute AW, efficiently, the precision manager can that our algorithm converges on the best possible bound
continually track the difference (“leftover width”) between widths, given a steady-state data set. For this purpose, we
each query’s precision constraint and the current answergenerated data for one object per simulated source follow-
bound width. Then for each object we use the precomputeihg a random walk pattern, each with a randomly-assigned
leftover width value for each query over that object. Whenstep size, and compared two unrealistic algorithms. In
gueries are over overlapping sets of objects, an iterative linthe “idealized” version of our algorithm, messages sent
ear solver is required to compute the burden targets, whichy the stream coordinator to sources instructing them to
we expect to dominate the computation. The solver repregrow their bounds incur no communication cost. Instead,
sents the system of. equations havindi, Ts,...,T,, as  only stream transmission costs were measured, to focus on
m unknown quantities as an by (m + 1) matrix, where  the bound width choices only. We compared the overall
entries correspond to pairs of queries. Fortunately, the mastream transmission cost against the stream transmission
trix tends to be quite sparse: whenever the query 8gts cost when bound widths are set statically using an opti-
andS, of two queries), and@, are disjoint, the corre- mization problem solver, described next.

sponding matrix entry i§. For this reason, along with the The nature of random walk data makes it possible to
fact that we can tune the number of iterations, burden targegtimplify the problem of setting bound widths statically
computation using an iterative linear system solver shouldo a nonlinear optimization problem, described in Ap-
scale well. We use a publicly-available iterative solverpendix F. While nonlinear optimization problems with in-
package calledlASPack{Ska96], although many alterna- equality constraints are difficult to solve exactly, an approx-
tives exist. Convergence was generally achieved in verymate solution can be obtained with methods that use itera-
few iterations, and the average running time on a modedive refinement. We used a package called FSQP [LZT97],
workstation was onl.73 milliseconds in our traffic mon- iterating 1000 times with tight convergence requirements
itoring implementation using multiple overlapping queriesto find static bound width settings as close as possible to
(Section 5). optimal.

To test the scalability of our algorithm to a larger num-  Figure 3 shows the results of comparing the idealized
ber of queries and data objects than we used in our impleversion of our adaptive algorithm against the optimized
mentation, we generated two sets of synthetic workloadstatic allocation, using a continuous AVG query over ten
consisting of AVG queries over a real-wo2d0-host net-  data sources under uniform costs. The x-axis shows the
work traffic data set (details on this data set are providegbrecision constraint, and the y-axis shows the overall cost
in Section 5). We treated each host as a simulated dafaer time unit. In a second experiment we used a workload
source with one traffic level object. In one set of workloads,of five AVG queries whose query sets were chosen ran-
each query is over a randomly-selecttl (10) of the data  domly from thel0 objects. Figure 4 shows the result of
sources. In the second set of workloads, each query is ovéhis experiment, for which the size of the query sets was
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location, random walk data. 4 Coping with Latency

In a real implementation of our approach we must cope
e B oo T R, . i with message and computation latency. Suppose that each
ideal adaptive—— message, including streamed update messages and bound
optimized static allocation-x-- growth messages, has an associated transmission latency as
no filtering--o-- . .
well as a processing delay by both the sender and receiver.
We first note that due to such latencies, bound growth will
be applied at sources after it is applied at the central stream
coordinator, and in the interim period the source filter is
»»»»»»» ‘ less restrictive than it could be. This phenomenon leads to
o 0'5 'l 1'5 g a chance that some unnecessary updgtes are transmitted to
answer precision (average precision constrjnt) the stream processor, but correctness is not jeopardized. To
) ) ) o ) reduce the delay for growth messages and lessen the chance
Figure 4: Ideal adaptive algorithm vs. optimized static al-of ynnecessary streamed updates, the stream coordinator
location, multiple queries. can begin the growth allocation process prior to the end

) o of each adjustment period, and base the computations on
assigned randomly betwe@rand5, and the precision con- preliminary streamed update rate estimates.

straint of each query was randomly assigned a value be- Communication and computation latency for update

ltwe(?no andlémaz', pli)tteg on the.;(—ams. (It:or boéh \,Nork'thstreams is of more concern because, if handled naively,
oa lstwe aso.strlnu a eb ?r:)nunl orm cos ,‘?tﬁn S'n%e] Eontinuous gueries may not access consistent data across
resutts were simiiarin both cases we om ef“-) €S&l sources, leading to incorrect answers. To ensure con-
results demonstrate that our adaptive bound width Sett'ngnuous query answers based on consistent data, source fil-

algorithm converges on bounds that are on par with thos?ers timestamp all updates transmitted to the stream pro-

selected by an optimizer based on knowledge of the rando'@essor. (We assume closely synchronized clocks, as in
walk step sizes.

[Lam78, Mil91].) Similarly, the precision manager times-
tamps all bound width updates with an adjustment pe-
3.4 Handling Precision Constraint Adjustments riod boundary. Value and width updates are converted
into bound updates via the bound cache (recall Figure 1).
Users may at any time choose to alter the precision conBound updates also have associated timestamps (we will
straintd; of any currently running continuous quegy;. discuss how they are assigned shortly), and our CQ eval-
If the user increases; (weaker precision), then addi- uator (Figure 1) treats bound update timestamps as logical
tional bound width is allocated automatically by the boundupdate times for the purposes of query processing. Correct-
growth algorithm at the central precision manager at theness can only be guaranteed if the CQ evaluator receives
end of the current adjustment period. If the user decreasd¥und updates monotonically in timestamp order, in which
§; (stronger precision), bound growth is suppressed, andase it produces a new output value for every unique times-
the automatic bound shrinking process will reduce the overtamp it receives as part of any update. When multiple up-
all answer bound width over time until the requested predates have the same timestamp, the query evaluator treats
cision level is reached. If an immediate improvement inthem as a single atomic transaction and only produces a
answer precision is required, the central precision managerew output value for the last update with the same times-
must proactively send messages to sources requesting elmp.
plicitly that bounds be shrunk. To ensure that the CQ evaluator receives bound updates
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cost per second

10



that represent a consistent state and arrive in timestamp otan be provided by having the stream coordinator “pad” the
der, the bound cache in the central stream coordinator ibounds to account for recent changes rather than using se-
implemented using a combination of twerializing queues rializing queues with a built-in delay as discussed above.
(described shortly) and symmetric hash joifWwA91] (or Padding is performed by adding = 2 - R; - A symmet-
other non-blocking join operator), as illustrated in Figure 5.rically to the width of each updated boufid;, H;] after it
The join operator combines value updates with width up4s produced by the join. If this technique is employed, a
dates to produce bound updates that mirror the boundseduced precision constraif, < d,, should be used for
maintained by source filters, using object identifier equalthe purposes of bound width allocation and adjustment to
ity as the join condition. Each hash table stores only theensure that padded answer bounds meet the original preci-
most recent value or width update for each object, basedion constrainfg. The value 0622 depends on the amount
on timestamp, and each join result is assigned a timestangf padding and the type of query. For example, for AVG
equal to the timestamp of the input that generated the resulgueries, we can séf, = 5 — \3—1Q| . Zlgign,OiESQ ®i.

Join inputs must arrive in timestamp order to ensure cor-
(rjecF behavior. One way to guarantee gIob_aI timestamp or—5 Implementation and Experimental

ering across alV andW update streams is to delay pro- Sy

cessing of each update received on a particular stream un- Validation

til at least one update with a greater timestamp has beefje evaluated the performance of our technique and its
received on each of the other streams [Lam78]. This appractical applicability by building a real network traffic
proach is impractical in our setting, however, because '&onitoring system. The system currently runs continuous
can result in unbounded delays unless additional comMUsyeries oveit 0 hosts in our research group’s network, fol-
nication is performed, and dela_lys tend to be longer Wherl‘owing Example 2 from Section 1.1. In our implementa-
the number of update streams is large. Instead, we take ddn, a special monitoring program executes on each host.
approach similar to one taken in the field of streaming mey; captures network traffic activity using tie€Pdumputil-

dia to handle unordered packets with variable latency (seq‘:t,y and computes packet rate measurements as needed by
e.g, [MKT98]), which relies on a reasonable latency upperihe queries in the workload, representing them as time-
bound. In our approach, serializing queues are positionegyrying numerical data objects. We use time units of one
between the value and width update streams and the jo"éecond, which matches the granularity at which our TCP-
The effect of each serializing queue is to order updates byj,mp monitor is able to capture data. Each host acts as a
timestamp, and release each updétas soon as the cur- gata source, and in all cases objects and their updates cor-
rent timet,,,,, reachesy + A, wherety is U's imestamp  yagpond to a one-minute moving window over packet rate
and )\ is thelatency tolerancean upper bound on the la-  easurements. We use querigs — Qs from Example 2
tency for any streamed update message that holds with higy section 1.1, so different experiments use different ob-
probability and is determined empirically based on the ”et]ects. For example, quer®s uses one object for each of
working environment. As long as all update messages obei,e 1) sources (hosts) for the overall windowed traffic vol-
this latency tolerance and appropriate queue scheduling igme petween that host and external hosts. Each data object
used, we can be assured that the serializing queues togethgrssigned a bound width for update filtering at the source.
outputto the join a monotonic stream of updates ordered by ngs are cached at a central monitoring station, which
timestamp. Of course in practlce.occ.asmnal messages Majpgates the aggregated answers to continuous queries as
be delayed by more thak, resulting in temporary viola-  1,5ng widths shrink and grow and as data updates stream
tions of precision guarantees, an unavoidable effect in any, The communication cost (streamed update or growth
distributed environment with unbounded delays. '—argermessage) for each object is modeled as a uniform unit cost.
values of)\ reduce the likelihood that update messages ar- The first step in our experimentation was to determine
rive late, but also increase the delay before results are reg'ood settings for the two algorithm paramet@rgadjust-
leased to the user. In Section 5.3 we show that using fhent period) and (shrink percentage). We experimented
reasonable choice df, late update messages are Very rare,is 4 real-world network traffic data set in our simulator,
with both uniform and nonuniform costs, and also with live
data in our network monitoring implementation, and found
In some applications, certain data objects may have knowthat the following settings worked well in generdl:= 10
maximum change rates, or at least bounds on change ratine units to achieve low growth message overhead relative
that hold with very high probability. If each data objé2t  to the timescale at which the data changes, &ind 0.05
participating in a continuous que€yhas maximum change (5%) to allow adaptivity while avoiding erratic bound width
rate R;, then an approximate answerd@pthat bounds the adjustments that tend to degrade performance. We also de-
answer attime,,.., —e (for some local processing delaat  termined that our algorithm is not highly sensitive to the
the central stream processor), rather than tige — A —«, exact parameter settings. Setting or adjusting these param-

4.1 Exploiting Constrained Change Rates
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Figure 6: Adaptive algorithm vs. uniform static bound set-Figure 8: Adaptive algorithm vs. uniform static bound set-
ting, query@s using network monitoring implementation. ting, querieg); — Qs using network monitoring implemen-

tation.

10 - - . . .
BB g I &4 form bound allocation for a single query, bearing in mind
X adaptive—+— - that the experiment was over small-scale network monitor-

x uniform allocation--- - ing data available for monitoring on a few hosts within our
A no filtering--g-- | organization.

To test our algorithm on large-scale network data with
many hosts, we ran a simulation on publicly available
traces of network traffic levels between hosts distributed
over a wide area during a two hour period [PF95]. For
each host, average packet rates ranged féota about
150 packets per second, and we randomly select@d
hosts as our simulated data sources. Figure 7 shows the
Figure 7: Adaptive algorithm vs. uniform static bound set-results using our simulator over this large-scale data set,
ting, single query over large-scale network data using simaccounting for all communication costs. With this data set
ulator. our algorithm significantly outperforms uniform static al-
location for queries that can tolerate a moderate level of
imprecision (small to medium precision constraints). For
gueries with very weak precision requirements (large pre-
cision constraints), even naive allocation schemes achieve

We now present our first experimental results showing thd®W €0st, and the slight additional overhead of our algo-
effectiveness of our algorithm. We begin by considering Jithm causes it to perform about on par with uniform static
simple case involving a single continuous AVG query. We?&llocation.
used query)s from Example 2 of Section 1.1 applied over
the 10 sources.Q)s monitors the average rate of traffic to
and from our organization, which ranged from ab®d®  \We now describe our experiments with multiple continuous
to 800 packets per second. queries having overlapping query sets. We used a workload
Since the optimized static bound width allocation de-of the five continuous AVG querig3, — Qs from Example
scribed in Section 3.3 relies on knowing the random walk2 in Section 1.12° — 1 “measurement groups” are defined
step size, it is not applicable to real-world data so cannoat each source based on which subsets of the five query
be used for comparison. Assuming data update patterns afgedicates a packet satisfies. Each measurement group is
not known in advance, the only obvious method of staticaggregated and acts as a data object whose updates are fil-
allocation is to set all bound widths uniformly. Thus, we tered with a bound and streamed to the central monitoring
compare our algorithm against this setting. station. (It may seem more natural for sources to further ag-
Figure 6 compares the overall communication cost in-gregate data objects into one object per query; we discuss
curred in our real-world implementation by our adaptivethis option shortly in Section 5.2.1.)
algorithm compared to uniform static allocation, measuring Figure 8 shows the results of our experiments measur-
cost for21 hours after an initial warm-up period. The con- ing cost for23 hours after an initial warm-up period. The
tinuous query monitors the average traffic level with pre-x-axis shows the precision constraints used for quepies
cision constrain® ranging from0 to 10 packets per sec- andQ@s. The other queries monitored a much lower volume
ond. Our algorithm offers a mild improvement over uni- of data (by a factor of roughly00) so for each run we set

cost per second
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eters automatically is a topic of future work.

5.1 Single Query

5.2 Multiple Queries
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their precision constraints tb/100th that shown on the x-

axis. As discussed in Section 1.2.1, uniform static bound,
width allocation can be performed for multiple overlapping$
queries if for each data object involved in more than oné&.
guery we maintain the narrowest bound assigned. Our

gorithm significantly outperforms uniform static allocation §
for queries that can tolerate a moderate level of impreci§
sion (small to medium precision constraints). For exam+
ple, using reasonable precision constraint® of 4 for o

queries); and@s andé = 0.04 for queries@), @3, and %0 01 02 03 04 05 06 07 08 09 1
()4, our algorithm achieves a cost of orily6 messages per latency tolerance (seconds)

second, compared with a cost d# with uniform static  gjq,,re 9: Fraction of updates arriving after the maximum
bound width allocation. Furthermore, as with all prewouslatency toleranca for queryQs.

results reported, the overall cost decreases rapidly as the

precision constraint is relaxed, offering significant reduc-  As future work we plan to design and experiment with

tions in communication cost compared with not filtering.  an algorithm that monitors the expected cost of using ver-

sus not using source aggregation and switches adaptively
5.2.1 Source Aggregation between them.

In the multiple-query workload it may appear advantageous
for sources to further aggregate data objects to formone ot-3  Impact of Message Latency

ject per query whose updates are streamed to the monitogyr |ast experiment measures update message latency. In
ing station, instead of one per query sub_set. Interestmgly[;igure 9 we vary the maximum latency tolerancére-
doing so (a process we calburce aggregatiordoes notal- 5| Section 4) and measure the fraction of updates arriving
ways result in lower overall cost, and whether it is cheapeyyithin \ for queryQs during a21-hour period. In our im-
to perform source aggregation depends on the data, quepfementation filtered update streams are transmitted over a
workload, and user-specified precision constraints. In Apjgcal area network. A value of — 0.4 seconds. which is
pendix G we show mathematically that there are reasonablgasonable since data changes are meaningful on a scale of
conditions under which source aggregation is expected tgpoyt1 second in our case, ensures thHas% of updates
achieve lower cost, and other reasonable conditions undefie received on time. When a moderate precision constraint
which c_ost is lower without source aggregation. Note thakor this query ofs = 5 is used, updates exceeding the la-
the chqlce of whether to perform source aggregatlo_n can b@ncy allowance occur only about once evéfy7 minutes.
made independently for each source and for each indepefyhen an update does arrive late, the resulting inconsis-
dent set of overlapping queries, and the best overall configrency in the output is brief, and based on our measurements
uration may be to perform source aggregation selectively. piotted in Figure 9 the overall fraction of time the answer
~Ingeneral, if there is a large disparity between the preig consistentfidelity in the terminology of [SBS02]) is
cision constraints of overlapping queries, source aggregast leasto9.997%. By adjusting), higher fidelity can be
tion achieves lower overall communication cost for update;chieved at the expensive of delayed output, or vice-versa.
stream transmission because queries with large precisiofvik T98] proposes an algorithm for adjusting the latency

constraints can use separate wide bounds not constraingglerance adaptively in a similar context based on observed
by other queries with small precision constraints. On thgaency distributions.)

other hand, if most updates are to objects involved in mul-

tlple queries, it is preferable in terms of oyerall commu- ¢ Summary and Future Work
nication cost not to apply source aggregation, to avoid re-
dundantly applying those updates to one object per releWe specified a new approach for reducing communication
vant query. As an extreme case, consider Example 1 fromost in an environment of centralized continuous query pro-
Section 1.1 in which each source (router) maintains a sineessing over distributed data streams. Our approach hinges
gle queue latency value accessed by multiple path latenayn specifying precision constraints for continuous queries,
gueries, and all updates at each source apply to objects imvhich are used to generate adaptive filters at remote data
volved multiple queries. Source aggregation would havesources that significantly reduce update stream rates while
each router maintain one copy of its queue size measurestill guaranteeing sufficient precision of query results at all
ment for each path latency query, each with a bound havingimes. Our approach enables users or applications to trade
a potentially different width. Updates would fall outside precision for lower communication cost at a fine granular-
the bounds at different times causing unnecessary updatég by individually adjusting precision constraints of con-

to be transmitted to the central stream processor. tinuous queries. Imprecision of query results is bounded
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numerically so applications need not deal with any uncer-
tainty.

To validate our approach we performed a number of ex-
periments using simulations and a real network monitoring
implementation. Our experiments demonstrated: [BOO3]

e For a steady-state scenario our algorithm converges on
bound widths that perform on par with those selected
statically using an optimization problem solver with [Bwo1]
complete knowledge of data update behavior.

¢ Inthe case of a single continuous query, our algorithm
significantly outperforms uniform bound width allo- [CCC™02]
cation in some cases, and in other cases our algorithm
is only somewhat better than uniform allocation. As
future work we plan to characterize those cases for
which our algorithm achieves a significant improve-
ment over uniform static allocation, and those cases

for which uniform allocation suffices.

. . . [CDTWO0]
e In the case of multiple overlapping continuous

queries, our algorithm significantly outperforms uni-
form bound width allocation.

While our optimization techniques are specialized to ag-
gregation queries over numeric values, general continuo%Rm]
guery processing can in theory be performed over bounded
values to produce bounded answers with precision guar-
antees. Further work in this area includes understanding
how imprecision propagates through more complex query
plans, and developing appropriate optimization techniqueﬁersou
for adapting remote filter predicates in these more complex
environments.
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Appendix
A MIN Queries

We consider MIN queries, and show that for the purposes of bound width setting they can be treated as a collection of
AVG queries. Consider a MIN quei§; over query sef5; with precision constraini;. First, we show that if the bound
for each objecD; € S; has width at most;, the precision constraint is always met. To see this fact, observe that the
answer[L, H| = [min(L;), min(H;)], and it has widthH — L = min(H;) — min(L;) < Hj, — min(L;), for the upper
boundH}, of any objectO,, € S;. If we chooseD;, to be the object with the lowest lower boung,, L;, = min(L;), we
obtainH — L < Hj, — L. Thus, if all bounds have width at mast, then the answer bound has width— L < §;.

We now show the converse: if the bound for so@ec S; has width greater thady;, then the precision constraint
cannot be guaranteed. To see this fact, consider an abjeet S; whose value is far greater than the minimum value
of the queried objects. It may seem safe to assign a bfnd?;] of width exceeding, to O, as long ad; is greater
than the lowest lower bound, sin¢g;, H;] will not contribute to the answer bound. However, if the stream processor
receives an update of one or more objects, caukjrtg suddenly become the lowest lower bound &hdhe lowest upper
bound, then the new answer bound has width greater dhailthough this situation could be remedied by requesting
a tighter bound foO; from its source, this procedure would incur a delay during wigigis answer bound violates its
precision constraint, breaking our requirement of continuous precision for continuous queries. Therefore, fora MIN query
Q;, the bound for each queried object must have width at doat all times, and those widths are guaranteed to uphold
the precision constraint. (In circumstances where occasional precision constraint violations for short periods of time are
tolerable, the technique of [BOO03], which avoids communication altogether for objects far from the current minimum, can
be used instead.)

Based on the above observations, for the purposes of bound width setting, a MINGgueith precision constraint
d; over a set of objects; is equivalent to a set of single-object queries over gacke S; with precision constraint;
for each. Since single-object queries are AVG queries over one object, the techniques in Section 3 can be applied to MIN
gueries without modification.

Overall, since SUM can be computed from AVG, and MAX is symmetric to MIN, the Section 3 techniques can be
used for any workload consisting of a combination of SUM, AVG, MIN, and MAX queries.

B Modifications to Handle Weighted AVG and SUM Queries

We introduce modifications to handle continuous queries that monitor the weighted average (or weighted sum by extension)
of a set of data values. Say there arsuch registered continuous querigs @, . . ., Q... For each quer);, each object
0; in Q;’s query setS; may have an associated (positive or negative) welght for the query. We lefs; ; = 1 in the
absence of a specified weight. For notational convenience let us;say= 0 for all objectsOy, in the stream processor but
not in Q,’s query setS;. Then the exact answer to AVG quegy; is ﬁ “ Y 1<i<n Ki,j - Vi, and our goal is to be able to
continuously compute an approximate answer from bounds that is witfisnprecision constraini;. Note that weighted
AVG and SUM queries are quite flexible,g, we can monitor the difference between two values by using weighisl
—1.
To guarantee that all precision constraints are met, the following constraint must hold for eac) g(ssg Appendix D
for a derivation):

> 1Kl Wi <6518

1<i<n

In other words, the weighted sum (in absolute value) of bound widths for each query must not exceed the product of
the precision constraint with the number of objects queried. Initially, the bounds can be set in any way that meets the
precision constraint of every quem.g, allocating bound widths uniformly for each query and for each object using the
minimum width assigned as described in Section 1.2.1. Then, our adaptive algorithm described in Section 3 can be used to
adjust bound widths, with the following three modifications to the bound growth process (Section 3.2 and Section 3.2.1) to
incorporate weights.

First, we must modify the burden target computation described in Section 3.2.1. Readgl);thegiresents the portion of
objectO;’s burden score corresponding to qué}y. Appropriately weighting the averagg ; value for queryQ); across

(ZW]

all queried object®); € S;, we havel; = ﬁ D1<i<n,0:€S, 17 If we substitute our expression féy; and replace

each occurrence & ;, by |K; | - T, for all k£ # j, we arrive at the following expression:
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IS Z o z - ’
1531 1<i<n,0;€S8; | K1 1<k<m,k#j | K51

Second, when computing the deviatiby of each objecO; from the burden targets of the queries that access it, we must
weight the burden targets appropriately:

Di = Ina,X{Bi - Z |Ki,j| . Tj,O}
1<j<m

Finally, during greedy allocation of growti\1¥;, the maximum possible amount by which objégts bound can be
grown without violating the precision constraint of any weighted query is computed as:

518 — Ky |- Wy
AW, — min j | ]| Elgkﬁn | k7J| k
1<j<m,0;€S; |Ki7j|

C Mathematical Justification for Bound Growth Strategy

We give a mathematical model for the behavior of objects whose update streams are filtered using bounds, and we use it
to justify the bound growth allocation strategy presented in Section 3.2 and extended in Appendix B to handle weighted
gueries. We model the behavior of objects with filtered update streams as follows. For an(hbjdudse exact value
V; varies with time, we assume that the streamed update p&yigda function of the bound widthl’; = H; — L;, and
signify this relationship by writing®; (1W;) instead ofP;. Intuitively, when a bound is narrow, the actual value is likely to
exceed it more often and therefore the streamed update period will be short. Conversely, when a bound is wide we expect
the streamed update period to be longer. The precise relationship bdfiyesm P, depends on the behavior bf.

Since each streamed update of obf@cincurs a cost’;, we can express the communication cost of the entire system
as:

C;
€= Z Pi(W;)

1<i<n

If no continuous queries are registered, then zero cost can be achieved by setting all bdungdsdo]. However, as
we will derive in Appendix D, each quei§; with weightsK ;, K> ;, ..., K, ; and precision constraidt imposes the
following constraint on the bound widths:

Y 1Kyl Wi <6518

1<i<n

(Recall that we sei(; ; = 0 for objectsO; ¢ S;, and that all queries can be treated as weighted AVG queries.) We are
now faced with the optimization problem of minimizing the overall @dbgthile satisfying the above constraint for each of
m queries, Qz, . . ., Q.-

Unless the functio®,(W;) is inversely proportional t&V;, which is unlikely as discussed above, we are faced with a
nonlinear optimization problem with inequality constraints. Since such problems are very difficult to solve, we decided to
try treating the inequality constraints as equality constraints to get an idea of the form of the solution. (We later verified the
success of this approach by comparing results obtained using the algorithm which we derive from it with results obtained
by executing a nonlinear optimization problem solver that operates over synthetic data; see Section 3.3.) We can apply the
method of Lagrange Multipliers [Ste91] to minimiZeunder a set ofn, equality constraints of the form:

> 1Kl Wi =6;-1S;]

1<i<n

The solution [Ste91] has the property that there are a set@nstants\;, X, ..., A\, such that for all:

9] 1
Cza—Wq <m> = Z [Kijl - A

1<j<m
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To evaluate the derivative we make the assumption that the funkf{®#; ) has roughly the fornP,(W;) = Z, - (W;)?,
where eacli; is an arbitrary constant andcan be any positive real number. For example, this modelwith2 applies
to data that follows a random walk pattern, as shown in Appendix E. Assumifitj;) roughly follows this form, we can
evaluate the partial derivative to obtain the following expression:

C;
S DR
Pi ’ Wz 1<j<m
where) is a constant. Finally, let the burden tar§ét= M - A\; and recall that the burden scaBg = Pf" -, giving:
C;
Bi= 5 = > Kl Ty
g v 1<j<m

According to this formula, we warf; andW; to be set such that the burden scéteof each objecO; roughly equals
the weighted sum of the burden targets of all queries 6erOur algorithm described in Section 3 converges to this
state by monitoring the burden scores and increaBipgand consequently; as well, to decreasB; when it becomes
significantly higher than the weighted sum of estimated targets.

D Derivation of Constraint Formula

We now derive the constraint formula referenced in Appendices B and C. The hbuHd on the answer to a weighted
average queryy, is computed from the weighk’; ; associated with each obje®; along with its boundL;, H;]. The
lowest possible weighted averafieccurs when the values of objects with a positive weight are as small as possible and
the values of objects with a negative weight are as large as possible. In other words, wiieneved, the answer lower
bound has/; = L;, and whenevek; ; < 0, the answer lower bound ha = H;. The converse holds for the upper
answer bound{. Therefore, a tight bound., H] on the weighted average answer is:

—_

H D D TR SR e
J 1<i<n,K; ;>0 1<i<n,K; ;<0
1
Il WP YR T T DR
J 1<i<n,K; ;>0 1<i<n,K; ;<0
which can be rewritten as:
1
L= Yo IKyl-Li— Y Kyl H
J 1<i<n,K; ;>0 1<i<n,K; ;<0
1
H = R > IKyl-Hi—- Y Kl L
J 1<i<n,K; ;>0 1<i<n,K; ;<0

The answer bound width i — L, which using the second pair of formulae above simplifiessto - 3=, _,,, | K ;| -
(H; — L;), making our constraint: ‘

Y 1Kl Wi <651

1<i<n

E Streamed Update Period for Random Walk Data

We derive an expression for the expected streamed update g&(idd) as a function of the bound widii; for an object
O, that changes according to a random walk pattern. In the random walk model; afégrs of sizes;, the probability
distribution of the value is a binomial distribution with variange= (s;)? - t [GKP89]. Chebyshev’s Inequality [GKP89]

gives an upper bound on the probabilRthat the value is beyond any distaricéom the starting pointP < :—2 If we
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let k = VQV treat the upper bound as a rough approximation, and solvewben’” = 1, we obtaint =~ ﬁ - (W5)2,

which is roughly the expected streamed update perio®; 60;) ~ ﬁ - (W;)2. This model for the streamed update

period of random walk data was verified empirically in [OLWO1]. In relation to our general expression in Appendix C, for
random walksZ; = ﬁ andp = 2.

F Optimized Static Bound Width Allocation

Recall from Appendix C that the overall cast= 3, _,, % where P;(W;) is the streamed update period as a
function of the bound width 0);. In Appendix E, we derived an approximate formula for this function in the random
walk case:P;(W;) ~ ﬁ - (W;)?, which depends on the step size If the step sizes of all the objects are known,
then a good static bound width allocation can be found by solving the following nonlinear optimization problem: minimize

D i<i<n 0(‘557;2)2 in the presence of: constraints of the formy_, ., 5,cs, Wi < 65 - |S;]-

G Mathematical Analysis of Source Aggregation

We analyze the effect of source aggregation mathematically. We show that cases exist where source aggregation is ad-
vantageous in terms of minimizing stream transmission cost, and cases also exist where it is not. Suppose there are three
data valuedy, V1, andV; at a single data source, and two continuous SUM quépieand@- at the stream processor.
Q1 computes/y + Vi with a precision constraint af;, and@> computes/, + V» with precision constraini,. If source
aggregation is not applied, then three bounds are maintained by the stream prodesd@si, [L1, H1], and[Ls, Hs],
corresponding to the three source vallgs V1, andV;. Let width W, = H; — L;. The query precision constraints
require thai?y, + W, < §; andW, + Wy < §,. On the other hand, if source aggregation is applied, then two bounds are
maintained by the stream processor: a bojngh, Hg1] on Vo1 = Vo + Vi and a boundLgq, Hga] on Ve = Vo + V5,
whereWg: < §; andWga < 6.

If all stream transmission costs are equal, then cost is determined by the sum of the streamed update frequencies of all
bounds, which can be estimated using our random walk model from Appendix E. The streamed update frequency for a

bound of widthI¥; on the valueV; is F, ~ ((QV'V";"’))E, wheres; is the random walk step size ®f. Applying the law that

variances are additive for sums of independent random variables [GKP89], we can compute the streamed update frequency

for the source-aggregated bounfig; ~ %%;2”)2) and Fo ~ W Therefore, the overall stream
transmission cost if source aggregation is not appli€t) is= Fy + F1 + F3, and the overall cost if source aggregation is
appliedisC, = Fg1 + Fgs.

Supposé; > s, SO there is a large disparity in the precision constraints of the two queries. For this purpose we can
treatd; asoo, and itis easy to verify mathematically that for any step sizes and any bound widths that meet the constraints,
C, < C,, so source aggregation achieves lower overall stream transmission cost. On the other handssuppesand
S0 > s9, SO valuel; involved in both queries changes much more rapidly iaandV;, which are each only involved in
a single query. If we take the extreme case where s, = 0, then if source aggregation is not performed any reasonable

width allocation strategy will assigi’; = 0, W, = 0, andW, = min{d:, §> }, and we can derive tha}, < C,.
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