
Maintaining Variance and k–Medians
over Data Stream Windows

Brian Babcock
∗

Mayur Datar
†

Rajeev Motwani
‡

Liadan O’Callaghan
§

Department of Computer Science
Stanford University
Stanford, CA 94305

{babcock, datar, rajeev, loc}@cs.stanford.edu

ABSTRACT
The sliding window model is useful for discounting stale data
in data stream applications. In this model, data elements
arrive continually and only the most recent N elements are
used when answering queries. We present a novel technique
for solving two important and related problems in the sliding
window model — maintaining variance and maintaining a k–
median clustering. Our solution to the problem of maintain-
ing variance provides a continually updated estimate of the
variance of the last N values in a data stream with relative
error of at most ε using O(1

ε2
log N) memory. We present

a constant-factor approximation algorithm which maintains
an approximate k–median solution for the last N data points
using O(k

τ4 N2τ log2 N) memory, where τ < 1/2 is a parame-
ter which trades off the space bound with the approximation
factor of O(2O(1/τ)).

1. INTRODUCTION
The data stream model of computation [14] is useful for

modeling massive data sets (much larger than available main
memory) that need to be processed in a single pass. Moti-
vating applications include networking (traffic engineering,
network monitoring, intrusion detection), telecommunica-
tions (fraud detection, data mining), financial services (arbi-
trage, financial monitoring), e-commerce (clickstream anal-
ysis, personalization), and sensor networks. This model, in

∗Supported in part by a Rambus Corporation Stanford
Graduate Fellowship and NSF Grant IIS-0118173.
†Supported in part by Siebel Scholarship and NSF Grant
IIS-0118173.
‡Supported in part by NSF Grant IIS-0118173, an Okawa
Foundation Research Grant, an SNRC grant, and grants
from Microsoft and Veritas.
§Supported in part by an NSF Graduate Fellowship, an
ARCS Fellowship, and NSF Grant IIS-0118173.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

which the data is treated as a possibly infinite sequence of
records, captures many of the characteristics of such mas-
sive data sets, as distinct from standard data sets that can
be loaded into a traditional RDBMS and analyzed offline.

Data streams are of unbounded length, so it is impos-
sible to guarantee storage of the entire data set; however,
for many applications, it is important to be able to execute
queries that reference more data than can fit in main mem-
ory. Making such queries possible is a major challenge of
data stream processing. Given memory constraints, it be-
comes necessary to devise techniques for maintaining sum-
maries or synopses of the history of the stream. Most re-
search until now has focused on techniques for building sum-
maries of all the data seen so far. However, in most appli-
cations very old data points are considered less useful and
relevant than more recent data. Thus it is necessary that
old or “stale” data does not overly influence the statistics
or models that are built from the analysis. There are two
common approaches to deal with the problem of staleness
of historical data. One method is aging — data elements
are associated with weights that decrease over time. In
most algorithms that use aging, the weights decrease accord-
ing to the computationally-simple exponential-decay model
(e.g. Gilbert et al. [11]), although linear-decay models are
also used. The sliding window model [2, 7] is the other
commonly-used mechanism for discounting stale data. Here,
only the last N elements to arrive in the stream are consid-
ered relevant for answering queries, where N is the window
size.

Datar, Gionis, Indyk, and Motwani [7] considered the
problem of maintaining simple statistics over sliding win-
dows, which is an important tool for processing data stream
queries. They presented a general framework based on a
novel data structure called an exponential histogram (EH)
to estimate a class of aggregate functions over sliding win-
dows. Their result applies to any function f satisfying the
following properties for all multisets X, Y :

Property 1. f(X) ≥ 0.

Property 2. f(X) ≤ poly(|X|).

Property 3. f(X ∪ Y) ≥ f(X) + f(Y).

Property 4. f(X∪Y) ≤ Cf (f(X)+f(Y)), where Cf ≥ 1
is a constant.

Furthermore, for their technique to be efficient, it must be
possible to compute (or at least estimate) f(X) from a small

sketch of X, where a sketch is a synopsis structure of small
size which is additive — given the sketches for two multi-
sets X and Y , a sketch for X ∪ Y can be quickly computed.
They observe that sum and l1/l2 vector norms satisfy these
properties. However, many interesting statistics do not sat-
isfy these properties and cannot be estimated using their
techniques.

In this paper, we expand the applicability of the EH tech-
nique, extending it to work for statistics that do not obey
the above properties. We consider two important statistics
— variance and k–median. Variance is a fundamental statis-
tical measure, widely used for data analysis. The k–median
clustering problem has been studied extensively across sev-
eral disciplines and is an effective means of summarizing
data or building a model for visualization and analysis. For
example, clustering data in a customer-information database
may help advertisers discover market segments, and cluster-
ing telephone-call records may expose fraudulent telephone
use. In the systems community, k–median [4, 21] and clus-
tering in general [13, 20, 22] have long been areas of ac-
tive research. Previous stream clustering algorithms aim to
maintain clusters that are valid for all points since the begin-
ning of the stream; that is, old points do not expire. As such,
these algorithms do not address the important issue of con-
cept drift, a major problem in online learning caused when
a model based on old data fails to correctly reflect the cur-
rent state of the world. Domingos, Hulten and Spencer [9]
have used sliding windows to deal with this problem in the
context of learning decision trees over data streams. One
contribution of our work is to begin to address the problem
of concept drift by providing the first data stream cluster-
ing algorithm to work over sliding windows for k–median
clustering.

Note that the variance is nothing more than the k–median
cost for a special case of (continuous) k–median, where k =
1, data points are from a one-dimensional space, and the sum
of squared distances metric is used. This similarity between
the two translates into a common technique for computing
both; it may be possible to use this technique in comput-
ing other similar statistics or synopses over sliding windows.
The technique that we use to solve both problems is to sum-
marize intervals of the data stream using composable syn-
opses. In order to make efficient use of memory, synopses
for adjacent intervals are combined when doing so will not
increase the relative error significantly. The synopsis for the
interval that straddles the sliding window boundary is inac-
curate because some of the points it summarizes no longer
fall within the sliding window and have expired. But we are
able to contain this inaccuracy by ensuring that the size of
this interval, in terms of the objective function that we are
trying to estimate (variance or k–median clustering cost), is
not large as compared to all other intervals. Moreover—and
this is the main technical innovation that distinguishes our
algorithms from the ones described by Datar, Gionis, Indyk,
and Motwani [7]—we can estimate the contribution of this
interval by treating its expired points as though they were
“typical” points from the interval.

Our main results are as follows. We show how to esti-
mate variance over sliding windows with relative error at
most ε (0 < ε < 1) using O(1

ε2
log N) memory. Further,

we present an algorithm for k–median clustering over slid-
ing windows using O(k

τ4 N2τ log2 N) memory. This is a
constant-factor bicriteria approximation algorithm for the

k–median problem — it uses 2k centers, and the objective
function value is within a constant factor (2O(1/τ)) of op-
timal, where τ < 1/2 is a parameter which captures the
trade-off between the space bound and the approximation
ratio. We build upon this solution to devise an algorithm
using exactly k centers and providing the same approxima-
tion guarantee of (2O(1/τ)) and having the same asymptotic
memory requirement (O(k

τ4 N2τ log2 N)).
For k–median clustering we introduce a sliding-window

algorithm that incorporates techniques from the one-pass
data-stream clustering algorithm of Guha, Mishra, Motwani,
and O’Callaghan [12]. Their algorithm uses O(nτ) memory

and provides a constant factor (2O(1/τ)) approximation to
the k–median problem. Our sliding window algorithm also
makes use of EH to estimate the value of the k–median ob-
jective function, though direct application of the techniques
from Datar, Gionis, Indyk, and Motwani [7] is impossible (as
in variance) because the k–median objective function does
not satisfy Property 4 from above. If there are two sets of
data points, each tightly clustered about its mean, then the
variance of each set will be small; however, if the means of
the two sets are far apart, then the variance of their union
can be arbitrarily large. The same is true for clustering: al-
though each of two sets of points may cluster nicely into k
clusters, if the two sets of cluster centers are far apart, the
union of the two sets is difficult to cluster. We demonstrate
a new technique that gets around this problem and enables
us to maintain EHs with small space and low relative error.

1.1 Related Work
Algorithms for streaming data have been an area of much

recent research interest. A detailed survey of the algorith-
mic and database research in data streams is available [2].
Domingos, Hulten and Spencer [8, 9] study the problem
of maintaining decision trees over sliding windows on data
streams. Our results on k–median extends earlier work of
Guha, Mishra, Motwani, and O’Callaghan [12], on one-pass
clustering of data streams, to the sliding window model.
There is a large body of previous work on k–median cluster-
ing [1, 5, 15, 16, 17, 18, 19]. Datar, Gionis, Indyk and Mot-
wani [7] have considered the problem of maintaining simple
statistics over sliding windows. Our work can be consid-
ered an extension of that work; we estimate functions over
sliding windows that cannot be estimated using their tech-
niques. Babcock, Datar, and Motwani [3] study sampling in
the sliding window model.

In a recent paper, Gibbons and Tirthapura [10] improved
the results from Datar et al. [7] for computing counts and
sums over sliding windows. They present a new data struc-
ture called waves that has a worst-case update time of O(1)
compared to O(log N) for the EH data structure, and they
also present three extensions of the sliding window model
for the distributed scenario. The efficiency of the waves
data structure crucially hinges on the additivity of the func-
tion f that we are estimating over sliding windows, i.e., in
terms of the notation introduced in Section 1, f should sat-
isfy f(X ∪ Y) = f(X) + f(Y). For this reason, the waves
data structure does not appear to be applicable to the non-
additive functions we consider in this paper.

1.2 Model and Summary of Results
In the sliding window model, data elements arrive in a

stream and only the last N elements to have arrived are

considered relevant at any moment. These most recent N
elements are called active data elements; the rest are called
expired and they no longer contribute to query answers or
statistics on the data set. Once a data element has been
processed, it cannot be retrieved for further computation at
a later time, unless it is explicitly stored in memory. The
amount of memory available is assumed to be limited, in par-
ticular, sublinear in the size of the sliding window. There-
fore algorithms that require storing the entire set of active
elements are not acceptable within this model.

We employ the notion of a timestamp, which corresponds
to the position of an active data element in the current win-
dow. We timestamp the active data elements from most
recent to oldest with the most recently arrived data element
having a timestamp of 1. Let xi denote the data element
with timestamp i. Clearly, the timestamps change with ev-
ery new arrival, and we do not wish to make explicit up-
dates. A simple solution is to record the arrival times in a
wraparound counter of log N bits; then the timestamp can
be extracted by comparison with the counter value of the
current arrival.

We will maintain a histogram for the active data elements
in the data stream. Our notion of histograms is far more
general than the traditional one used in the database liter-
ature. In particular, every bucket in our histograms stores
some summary/synopsis structure for a contiguous set of
data elements, i.e., the histogram is partitioned into buck-
ets based on the arrival time of the data elements. Along
with this synopsis, for every bucket, we keep the timestamp
of the most recent data element in that bucket (the bucket
timestamp). When the timestamp of a bucket reaches N +1,
all data elements in the bucket have expired, so we can drop
that bucket and reclaim its memory. The buckets are num-
bered B1, B2, . . . , Bm, starting from most recent (B1) to
oldest (Bm); further, t1, t2, . . . , tm denote the bucket times-
tamps. All buckets, save the oldest, contain only active
elements, while the oldest bucket may contain some expired
elements besides at least one active element.

We now formally state the problems considered and de-
scribe our results in detail.

Problem 1 (Variance). Given a stream of numbers,
maintain at every instant the variance of the last N values,

VAR =
N

∑

i=1

(xi − µ)2,

where µ = 1
N

∑N
i=1 xi denotes the mean of the last N values.

Unless we decide to buffer the entire sliding window in mem-
ory, we cannot hope to compute the variance exactly at ev-
ery instant. In Section 2 we present a small-space algorithm
to solve this problem approximately. Our algorithm uses
O(1

ε2
log N) memory and provides an estimate at every in-

stant that has relative error at most ε. The time required
per new element is amortized O(1).

We then extend our work to the k–median clustering prob-
lem. Given a multiset X of objects in a metric space M
with distance function `, the k–median problem is to pick k
points c1, . . . , ck ∈ M so as to minimize

∑

x∈X `(x, C(x)),

where C(x) is the closest of c1, . . . , ck to x.1 If ci = C(x)
then x is said to be assigned to ci, and `(x, ci) is called the
1This formulation of k–median is called continuous k–

assignment distance of x. The objective function is the sum
of assignment distances.

Problem 2 (SWKM). Given a stream of points from
a metric space M with distance function `, window size N ,
and parameter k, maintain at every instant t a median set
c1, c2, . . . , ck ∈ M minimizing

∑

x∈Xt
`(x, C(x)), where Xt

is the multiset of the N most recent points at time t.

In Section 3 we show how to maintain an approximate k–
median solution over sliding windows using Õ(k

τ4 N2τ) mem-

ory, for any τ < 1/2, using amortized Õ(k) insertion time
per data point. We assume that the space required to store
any point from the metric space and also the time required
to compute the distance between any pair of points is O(1).
Strictly speaking, if the points belong to a d-dimensional
space, both these quantities will be O(d) and a multiplica-
tive factor d will apply to both the memory and time re-
quirement. But we ignore this for the rest of our discussion.
The algorithm produces k medians such that the sum of as-
signment distances of the points in Xt is within a constant
multiplicative factor 2O(1/τ) of the optimal.

2. MAINTAINING VARIANCE OVER
SLIDING WINDOWS

Datar, Gionis, Indyk, and Motwani [7] presented a space
lower bound of Ω(1

ε
log N(log N + log R)) bits for approxi-

mately (with error at most ε) maintaining the sum, where
N is the sliding window size and each data value is at most
R. Assuming R = poly(N), this translates to a lower bound
of Ω(1

ε
log N) words for maintaining the sum, and hence the

variance, of the last N elements. There is a gap of 1
ε

between
this lower bound and the upper bound obtained here.

We now describe our algorithm for solving Problem 1,
i.e., to compute an estimate of the variance with relative
error at most ε. As mentioned before, elements in the data
stream are partitioned into buckets by the algorithm. For
each bucket Bi, besides maintaining the timestamp ti of
the most recent data element in that bucket, our algorithm
maintains the following summary information: the number
of elements in the bucket (ni), the mean of the elements
in the bucket (µi), and the variance of the elements in the
bucket (Vi). The actual data elements that are assigned to
a bucket are not stored.

In addition to the buckets maintained by the algorithm,
we define another set of suffix buckets, denoted B1∗ , . . . , Bj∗ ,
that represent suffixes of the data stream. Bucket Bi∗ rep-
resents all elements in the data stream that arrived after the
elements of bucket Bi, that is, Bi∗ =

⋃i−1
l=1 Bl. Except for

the bucket Bm∗ , which represents all points arriving after
the oldest non-expired bucket, these suffix buckets are not
maintained by the algorithm, though their statistics are cal-
culated temporarily during the course of the algorithm. The
pseudocode for maintaining the histogram as new elements
arrive is presented in Algorithm 1.

Combination Rule: While maintaining the histogram, our
algorithm sometimes needs to combine two adjacent buckets.
Consider two buckets Bi and Bj that get combined to form a
new bucket Bi,j . The statistics (count, mean, and variance)

median. In discrete k–median, the medians must be cho-
sen from the set X. For us, “k–median” will refer to the
continuous version.

Algorithm 1 (Insert): xt denotes the most recent element.

1. If xt = µ1, then extend bucket B1 to include xt, by incre-
menting n1 by 1. Otherwise, create a new bucket for xt.
The new bucket becomes B1 with V1 = 0, µ1 = xt, n1 = 1.
An old bucket Bi becomes Bi+1.

2. If the oldest bucket Bm has timestamp greater than N ,
delete the bucket. Bucket Bm−1 becomes the new oldest
bucket. Maintain the statistics of Bm−1∗ (instead of Bm∗),
which can be computed using the previously maintained
statistics for Bm∗ and statistics for Bm−1.

3. Let k = 9
ε2

and Vi,i−1 denote the variance of the bucket

obtained by combining buckets Bi and Bi−1. While there
exists an index i > 2 such that kVi,i−1 ≤ Vi−1∗ , find the
smallest such i and combine buckets Bi and Bi−1 using the
combination rule described below. Note that the statistics
for Bi∗ can be computed incrementally from the statistics
for Bi−1 and Bi−1∗ .

4. Output estimated variance at time t according to the esti-
mation procedure below.

TIME

(current window, size N)

Bm∗

B
m−

B1B2Bm−1Bm

Figure 1: An illustration of the histogram.

for Bi,j are computed from the statistics of Bi and Bj as

follows: ni,j = ni + nj ; µi,j =
µini+µjnj

ni,j
; and, Vi,j = Vi +

Vj +
ninj

ni,j
(µi − µj)

2.

Note that the combination rule can also be used to “delete”
a set of points (A) from a larger set (B ⊇ A), i.e., calcu-
late the statistics corresponding to the difference (B − A),
based on the statistics for the two sets A, B. The following
lemma shows the correctness of the statistics computed by
the combination rule.

Lemma 1. The bucket combination procedure correctly
computes ni,j, µi,j, and Vi,j for the new bucket.

Proof. First, note that ni,j and µi,j are correctly com-
puted by the definitions of count and average. Define δi =
µi − µi,j and δj = µj − µi,j .

Vi,j =
∑

xl∈Bi,j

(xl − µi,j)
2

=
∑

xl∈Bi

(xl − µi + δi)
2 +

∑

xl∈Bj

(xl − µj + δj)
2)

=
∑

xl∈Bi

(xl − µi)
2 + 2δi(xl − µi) + δi

2 +

∑

xl∈Bj

(xl − µj)
2 + 2δj(xl − µj) + δj

2

= Vi + Vj + δi
2ni + δj

2nj +

2δi





∑

xl∈Bi

xi −
∑

xl∈Bi

µi



 +

2δj





∑

xl∈Bj

xj −
∑

xl∈Bj

µj





= Vi + Vj + (δi)
2ni + (δj)

2nj

= Vi + Vj + ni

(

nj(µj − µi)

ni + nj

)2

+

nj

(

ni(µi − µj)

ni + nj

)2

= Vi + Vj +
ninj

ni,j
(µi − µj)

2

Estimation: Let B1, . . . , Bm be the set of histogram buck-
ets at time t. We describe a procedure to estimate the vari-
ance over the current active window. Let Bm be the oldest
active bucket. It contains some active elements, including
the one with timestamp N , but may also contain expired
data. We maintain statistics corresponding to Bm∗ , the suf-
fix bucket containing all elements that arrived after bucket
Bm. To this end, we use the combination rule for every
new data element that arrives. Whenever the oldest bucket
gets deleted, we can find the new Bm∗ by “deleting” the
contribution of the new oldest active bucket (B′

m) from the
previous Bm∗ , using the combination rule.

Let Bm̃ refer to the non-expired portion of the bucket
Bm, i.e., the set of elements in Bm that are still active.
(See Figure 1 for an illustration.) Since we do not know the
statistics nm̃, µm̃, and Vm̃ corresponding to bucket Bm̃, we
estimate them as follows: nEST

m̃ = N + 1− tm; µEST
m̃ = µm;

and V EST
m̃ = Vm

2
. Note that nm̃ is exact, i.e., nEST

m̃ = nm̃.
The statistics for Bm̃ and Bm∗ are sufficient to accurately

compute the variance at the time instant t. In fact the vari-
ance is nothing but the variance corresponding to the bucket
Bm̃,m∗ obtained by combining Bm̃ and Bm∗ . Therefore, by

the combination rule, the actual variance (V̂AR(t)) for the
current active window is given by:

V̂AR(t) =

(

Vm̃ + Vm∗ +
nm̃nm∗

nm̃ + nm∗

(µm̃ − µm∗)2
)

.

At every time instant t we estimate the variance by com-
puting the variance of Bm̃,m∗ using the estimates above for
Bm̃. This estimate can be found in O(1) time provided we
maintain the statistics for Bm̃ and Bm∗ . The error in our
estimate arises due to the error in the estimate of the statis-
tics for Bm̃. As we shall prove below, this error is small

(within factor ε) as compared to the exact answer (V̂AR(t))
provided we maintain the following invariant:

Invariant 1. For every bucket Bi,
9
ε2

Vi ≤ Vi∗ .

It is easy to see that our algorithm maintains the invariant
above. Any bucket will have a non-zero variance only if it is
formed by the combination of two buckets, and the condi-
tion for combining two buckets guarantees that the invariant
holds for the combined bucket when it is formed. Once the
invariant holds for a bucket Bi it continues to hold in the
future since the variance of the suffix bucket Bi∗ is non de-
creasing with time. Additionally, our algorithm maintains
the following invariant which ensures that the total number
of buckets is small:

Invariant 2. For each i > 1, for every bucket Bi,

9

ε2
Vi,i−1 > Vi−1∗ .

Lemma 2. The number of buckets maintained at any point
in time by an algorithm that preserves Invariant 2 is

O(
1

ε2
log NR2),

where R is an upper bound on the absolute value of the data
elements.

Proof Sketch. It follows from the combination rule that
the variance for the union of two buckets is no less than the
sum of the individual variances. Therefore, it is easy to
see that, for any algorithm that preserves Invariant 2 the
variance of the suffix bucket Bi∗ doubles after every O(1

ε2
)

buckets. Thus, the total number of buckets maintained by
such an algorithm is no more than O(1

ε2
log V), where V is

the variance of the last N points. If R is an upper bound on
the absolute value of the data elements, V is no more than
NR2 and the claim follows.

Note that we require Ω(log R) bits of memory to represent
each data element. We will need the following technical
lemma to analyse the performance of our algorithm.

Lemma 3. For any choice of a and any set of data ele-
ments B with mean µ,

∑

x∈B (x − a)2 =
∑

x∈B (x − µ)2 +

|B|(a − µ)2

Proof. The proof follows from the following calculations.
∑

x∈B

(x − µ)2 + |B|(a − µ)2

=
∑

x∈B

(x − µ)2 + (a − µ)2

=
∑

x∈B

x2 + 2µ2 + a2 − 2xµ − 2aµ

=
∑

x∈B

x2 + 2µ(µ − x) − 2aµ + a2

=
∑

x∈B

x2 − 2ax + a2

=
∑

x∈B

(x − a)2.

The following theorem summarizes the algorithm’s per-
formance.

Theorem 1. Let VAR(t) be the variance estimate pro-
vided by the algorithm maintaining Invariants 1 and 2, and

let V̂AR(t) be the actual variance. Then (1 − ε)V̂AR(t) ≤

VAR(t) ≤ (1+ ε)V̂AR(t). Further, this algorithm requires at
most O(1

ε
log NR2) memory.

Proof. The memory usage is demonstrated by Lemma 2.
Define δ = µm −µm̃ = µEST

m̃ −µm̃. By the combination rule
and our estimates for Bm̃,

VAR(t) − V̂AR(t)

= (V EST
m̃ + Vm∗ +

nm̃nm∗

nm̃ + nm∗

(µEST
m̃ − µm∗)2) −

(Vm̃ + Vm∗ +
nm̃nm∗

nm̃ + nm∗

(µm̃ − µm∗)2)

= (Vm/2 − Vm̃) +
nm̃nm∗

nm̃ + nm∗

(2δ(µm̃ − µm∗) + δ2)

= (Vm/2 − Vm̃) +
nm̃nm∗

nm̃ + nm∗

δ2 +

nm̃nm∗

nm̃ + nm∗

(2δ(µm̃ − µm∗)).

We will show that each of the three additive terms in the
error is small. Since Bm̃ is a subinterval of Bm we know that
Vm̃ ≤ Vm. As variance is always non-negative, it follows
that |Vm

2
−Vm̃| ≤ Vm

2
. By Lemma 3 we know that nm̃(µm̃ −

µEST
m̃)2 = nm̃(µm̃ − µm)2 ≤

∑

x∈Bm̃
(x− µm)2 ≤ Vm, which

implies that |
nm̃nm∗

nm̃+nm∗
δ2| ≤ Vm. Define c2 = 3, a constant

derived from the analysis. For the third error term, consider
two cases:

Case 1 (|µm̃ − µm∗ | ≤ | c2δ

ε
|): Then

|
nm̃nm∗

nm̃ + nm∗

2δ(µm̃ − µm∗)| ≤
nm̃nm∗2c2δ

2

(nm̃ + nm∗)ε

≤
2c2Vm

ε
.

Case 2 (|µm̃ − µm∗ | > | c2δ

ε
|): The actual variance

V̂AR(t) is at least
nm̃nm∗

nm̃+nm∗
(µm̃ − µm∗)2. The ratio

between the error term and the overall variance is at
most

|2δ(µm̃ − µm∗)|

(µm̃ − µm∗)2
≤ |

2δ

µm̃ − µm∗

| ≤
2ε

c2
.

By Invariant 1, we know that Vm ≤ ε2

9
Vm∗ . The first

two error terms contribute a combined additive error of at
most 3

2
Vm, which is a multiplicative error of at most 1

6
ε2

since Vm∗ ≤ V̂AR(t). The third error term contributes an
additive error of at most 2c2Vm

ε
(in case 1), which represents

a multiplicative error of at most 2
3
ε. In case 2 the multi-

plicative error from the third error term is at most 2
3
ε. We

assume that ε ≤ 1 since otherwise the trivial algorithm that
always returns zero suffices. In both cases we have the total
error strictly less than an ε fraction of the overall variance,
proving the theorem.

The algorithm presented earlier requires O(1
ε2

log NR2)
time per new element. Most of the time is spent in Step 3,

where we make the sweep to combine buckets. This time is
proportional to the size of the histogram (O(1

ε2
log NR2)). A

simple trick is to skip Step 3 until we have seen Θ(1
ε2

log NR2)
data points. This ensures that the running time of the algo-
rithm is amortized O(1). While we may violate Invariant 2
temporarily, we restore it every Θ(1

ε2
log NR2) data points

when we execute Step 3. This ensures that the number of
buckets is O(1

ε2
log NR2).

3. CLUSTERING ON SLIDING WINDOWS

3.1 Bicriteria Approximate Clustering
We now present a solution to the SWKM problem (Prob-

lem 2). As mentioned earlier, we focus on continuous k–
median; however, the techniques also apply to discrete k–
median, although the approximation ratios will be differ-
ent. Our solution incorporates the techniques of Guha,
Mishra, Motwani, and O’Callaghan [12], but ensures a high-
quality sliding-window clustering. Roughly speaking, the
algorithm of Guha et al. is a divide-and-conquer algorithm
that builds clusters incrementally and hierarchically as the
stream grows. The algorithm maintains medians (cluster
centers) at various levels, the original input points being
considered to be at level 0. On seeing nτ level-0 medians
(input points) it clusters them, using any bicriteria clus-
tering algorithm, into O(k) cluster centers which form the
level-1 medians. When nτ of these level-1 medians accumu-
late, they are clustered into level-2 medians and so on. In
general, whenever there are nτ medians at level-i they are
clustered to form level-(i + 1) medians. Thus, at any mo-
ment their algorithm maintains at most nτ medians at every
level. Since we cluster groups of size nτ , the hierarchical tree
formed due to clustering has depth at most 1/τ if there are
n original input points. The authors prove that every level
of the hierarchical tree increases the approximation factor
by at most a constant multiple. As a result their algorithm
has an approximation guarantee of 2O(1/τ) and a memory
requirement of 1

τ
nτ .

We now describe an algorithm for sliding-window k–median
(SWKM) that uses the techniques from the above-described
algorithm and ideas from the previous section. This section
is organized as follows: first, we describe the EH data struc-
ture used by our algorithm and the method for associating
a cost with each bucket; next, we describe the combination
step for combining two buckets; then, we discuss the estima-
tion procedure of the final clustering of the current active
window after each data point arrives, or whenever a cluster-
ing is desired; and finally, we present the overall algorithm
that maintains the data structure as new points arrive.

Data Structure: As in the previous case, the data struc-
ture maintained is an EH whose buckets are numbered
B1, B2, . . . , Bm from most recent to oldest, and buckets con-
taining only expired points are discarded. As with variance,
each bucket stores a summary structure for a set of contigu-
ous points as well as the timestamp of the most recent point
in the bucket. In the case of variance, the summary struc-
ture contained the triplet (ni, µi, Vi); for clustering, each
bucket consists of a collection of data points or intermediate
medians. For consistency, we will refer to the original points
as level-0 medians.

Each median is represented by the triple (p(x), w(x), c(x)).
The value p(x) is the identifier of x; in Euclidean space, for

example, this could be the coordinates of x, and in a general
metric this could simply be the index of x in the point set.
The value w(x) is the weight of a median x, i.e., the number
of points that x represents. Similar to the algorithm of Guha
et al. [12], if x is of level 0, w(x) = 1, and if x is of level
i, then w(x) is the sum of the weights of the level-(i − 1)
points that were assigned to x when the level-i clustering
was performed. Finally, c(x) is the estimated cost of x, i.e.,
an estimate of the sum of the costs `(x, y) of assigning to x
each of the leaves y of the subtree rooted at x. If x is of level
0, c(x) = 0; if x is of level 1, c(x) is the sum of assignment
distances of the members of x; and, if x is of level i > 1, c(x)
is the sum over all members y of x, of c(y) + w(y) · `(x, y).
Thus, c(x) is an overestimate of the “true” cost of x.

As in the algorithm of Guha et al. [12], we maintain me-
dians at intermediate levels and whenever there are Nτ me-
dians at the same level we cluster them into O(k) medians
at the next higher level. Thus, each bucket Bi can be split
into 1/τ (the maximum number of different levels) groups

R0
i , . . . , R

1/τ−1
i , where each Rj

i contains medians at level j.
Each group contains at most Nτ medians. Along with a
collection of medians, the algorithm also maintains for each
bucket Bi a bucket cost, which is a conservative overestimate
of the assignment cost of clustering all the points represented
by the bucket.

Cost Function: The bucket cost function is an estimate of
the assignment cost of clustering the points represented by

the bucket. Consider a bucket Bi and let Yi =
⋃1/τ−1

j=0 Rj
i be

the set of medians in the bucket. As explained earlier, each
median x is associated with a cost c(x) which is an estimate
of the sum of the distances to x from all points assigned to
x by the clustering algorithm. We cluster the points in Yi to
produce k medians c1, . . . , ck. The cost function for bucket
Bi is given by: f(Bi) =

∑

x∈Yi
c(x) + w(x) · `(x, C(x)), where

C(x) ∈ {c1, . . . , ck} is the median closest to x. Clearly,
f(Bi) is an overestimate of the assignment cost of cluster-
ing all the original points that are assigned to the medians
in Yi, using c1, . . . , ck as medians.

Combination: Let Bi and Bj be two (typically adjacent)
buckets that need to be combined to form the merged bucket

Bi,j , and let R0
i , . . . , R

1/τ−1
i and R0

j , . . . , R
1/τ−1
j be the groups

of medians from the two buckets, where Rl
i (resp., Rl

j) rep-
resents the group of medians at level l in bucket Bi(resp.,
Bj). We set R0

i,j = R0
i

⋃

R0
j . If |R0

i,j | > Nτ , then cluster

the points from R0
i,j and set R0

i,j to be empty. Let C0 de-

note the set of O(k) medians obtained by clustering R0
i,j ,

or the empty set if R0
i,j did not need to be clustered. We

carry over these level-1 medians to the next group R1
i,j . Set

R1
i,j = R1

i

⋃

R1
j

⋃

C0. As before, if there are more than Nτ

medians, we cluster them to get a carry-over set C1, and
so on. In general, after at most 1/τ unions, each possibly
followed by clustering, we get the combined bucket Bi,j . Fi-
nally, the bucket cost is computed by clustering all medians
in the bucket (at all levels).

Estimation: Let B1, B2, . . . , Bm denote the buckets at any
time instant t. Bm is the oldest bucket and contains medians
that represent some data points that have already expired.
If a query is posed at this moment that asks for a clustering
of the active elements we do the following:

• Consider all but the oldest of the buckets: B1, . . . , Bm−1.
They each contain at most 1

τ
Nτ medians. We will

prove that the number of buckets is O(log N). Thus
we have O(1

τ
Nτ log N) medians. Cluster them to pro-

duce k medians.

• Similarly, cluster bucket Bm to produce k additional
medians.

• Present the 2k medians as the answer.

If required, the procedure can also provide an estimate for
the assignment cost using the same technique as that used
for computing the cost function over buckets.

Algorithm: The algorithm for combining and maintaining
buckets is very similar to that used for estimating variance.
As before, we define suffix buckets Bi∗ which represent the
combination of all buckets that are later than a particular
bucket (Bi). These are not maintained at all times but in-
stead are computed when required, as in the case of variance.
The pseudocode for our algorithm is presented below.

Algorithm 2 (Insert): xt denotes the most recent element.

1. If there are fewer than k level-0 medians in B1 add the point
xt as a level-0 median in bucket B1. Otherwise, create a
new bucket B1 to contain xt and renumber the existing
buckets accordingly.

2. If bucket Bm has timestamp more than N , delete it.

3. Make a sweep over the buckets from most recent to least
recent and while there exists an index i > 2 such that
f(Bi,i−1) ≤ 2f(Bi−1∗), find the smallest such i and com-
bine buckets Bi and Bi−1 using the combination procedure
described above. The suffix bucket Bi∗ is computed incre-
mentally as we make the sweep.

Our algorithm maintains the following two invariants, which
are useful in the proofs of Lemmas 4 and 5.

Invariant 3. For every bucket Bi, f(Bi) ≤ 2f(Bi∗).

Invariant 4. For every bucket Bi (i > 1), f(Bi,i−1) >
2f(Bi−1∗).

Lemma 4. Because the algorithm maintains Invariant 3,
it produces a solution with 2k medians whose cost is within
a multiplicative factor of 2O(1/τ) of the cost of the optimal
k–median solution.

Proof Sketch. Let Bm be the oldest bucket in the his-
togram. Recall that Bm may contain some medians that
represent points that have expired. Consider first the suffix
bucket Bm∗ representing all points arriving after the old-
est non-expired bucket and compare our algorithm’s perfor-
mance on this set of points to the optimal solution on the
same set of points.

We cluster medians at any level only when there are at
least Nτ medians at that level, so that the depth of the
hierarchical clustering tree is guaranteed not to exceed 1

τ
.

As discussed above, at each level in the tree, the divide-
and-conquer approach introduces a constant multiplicative
approximation factor. These approximation factors accu-
mulate, so the overall clustering cost for our algorithm’s

clustering of Bm∗ is 2O(1/τ) times the cost of the optimal
k–median clustering of Bm∗ .

Now consider the non-expired points from bucket Bm. In-
variant 3 guarantees that f(Bm) ≤ 2f(Bm∗). This means
that f(Bm), our algorithm’s cost for clustering all of Bm, is

at most twice f(Bm∗), which is within a 2O(1/τ) factor of
the optimal clustering cost for Bm∗ . Only the cost of clus-
tering the non-expired portion of Bm counts against us, but
this can only be less than the clustering cost when summing
over Bm in its entirety.

Therefore the costs of our algorithm’s solution for the
points in Bm∗ and also for the points in Bm are both within
a 2O(1/τ) factor of the optimal clustering cost for Bm∗ . Bm∗

is a subset of the active points, so the cost of the optimal
k–median clustering of all active points can only be greater
than the cost of the optimal clustering of Bm∗ .

Lemma 5. Since the algorithm maintains Invariant 4, the
number of buckets never exceeds O(1

τ
log N).2

Proof Sketch. Invariant 4 guarantees that the number
of buckets is at most 2 log R where R is our cost function
over the entire sliding window. Lemma 4 proves that our
cost function is at most 2O(1/τ) times the cost of the optimal
k–median solution. Since the optimal k–median cost for N
points is poly(N) this gives us that log R = O(1

τ
log N).

The above k–median algorithm is efficient in terms of
memory, but not in running time. After each element ar-
rives, the algorithm checks all the buckets to see whether In-
variant 4 is violated, in which case it combines two adjacent
buckets to restore the invariant. In order to reduce the per-
item processing time, we can use the same batch processing
technique as in Section 2 to reduce the amortized time to
Õ(k). To this end, we draw a distinction between data struc-
ture maintenance and output production. We assume that
the algorithm will not be called upon to actually produce
an updated clustering as each new point is added. Instead,
it may maintain sufficient statistics so as to be able, upon
request, to quickly generate a valid clustering. Requests for
the current clusters may come at arbitrary points in time,
but we assume that they will not come too frequently. In
short, we distinguish between update time and query time
for our data structure.

We can modify Algorithm 2 so that it does not execute
the bucket combination procedure until k

τ3 N2τ log N points
have accumulated in bucket B1. No effort is made to main-
tain the invariants until the bucket “fills up,” i.e. has more
than k

τ3 N2τ log N points, at which time the points in B1

are clustered and replaced by k level-1 medians. However,
the original data points are not yet discarded; they are re-
tained until their bucket satisfies satisfy Invariant 3. (If this
bucket is combined with another bucket, the resulting com-
bined bucket will necessarily satisfy Invariant 3.) After clus-
tering the points in B1, we execute the remaining steps in
the algorithm (discarding expired buckets and maintaining
Invariant 4).

Consider what happens to the invariants as points accu-
mulate in bucket B1. Since the value of f(Bi∗) is increasing
for all i > 1, it is possible that Invariant 4 may no longer be
satisfied. However, the temporary failure of this invariant
is not important; recall (Lemma 4) that Invariant 4 is not

2We assume that `(x, y) is bounded by a polynomial in N .

essential for the correctness of the answer provided by the
algorithm, but ensures that the number of buckets remains
small. However, while the algorithm is filling up bucket B1,
the number of buckets does not increase, and as soon as the
bucket is complete the invariant is restored by combining
buckets as necessary. Thus, the number of buckets main-
tained by the algorithm is always O(1

τ
log N) and Lemma 5

remains valid even though Invariant 4 may temporarily get
violated.

Invariant 3 will not cause trouble for any bucket Bi (i > 1)
as Bi fills, because the increase in f(Bi∗) for these buck-
ets only strengthens the invariant. However, there may be
buckets for which this invariant does not hold. The batch
processing changes described above guarantee that for such
buckets we retain the original data points. Recall from the
proof of Lemma 4 that we used Invariant 3 in our analy-
sis only to ensure that the bucket cost f(Bm) of the oldest
bucket was no more than twice the combined bucket cost
f(Bm∗) and hence no more than 2O(1/τ) times the optimal
clustering cost Bm∗ . This was necessary because we could
bound the performance of the original algorithm in terms
of the clustering cost of bucket Bm∗ , but not in terms of
f(Bm), because f(Bm) potentially includes the cost of clus-
tering expired points. However, as long as we maintain the
original data points for every bucket Bi that violates Invari-
ant 3, there is no problem. If the invariant holds for the
oldest bucket Bm, then we use the estimation procedure de-
scribed earlier; if the invariant fails for Bm, then given the
original data points for the bucket, we can distinguish the
expired elements from the active ones and cluster only the
latter.

We cluster the level-0 medians using the randomized al-
gorithm from Indyk [15], using the local search algorithm
from Charikar and Guha [5] as a subroutine. This proce-

dure requires linear space and takes time Õ(nk) (where n
is the number of points that are clustered) while providing
a constant factor approximation with high probability. All
higher level (level-1 and above) medians are clustered using
the O(n2) local search algorithm of Charikar and Guha [5].
While this algorithm uses up to 2k centers, the number can
be reduced to k for the final answer via the primal-dual al-
gorithm of Jain and Vazirani [16].

Now consider the running time of the modified algorithm.
Whenever a current clustering is desired, we cluster the me-
dians in the oldest bucket Bm and the medians in the suffix
buckets Bm∗ . If bucket Bm violates Invariant 3 then we clus-
ter only the active elements in it using the Õ(nk) algorithm
from Indyk [15] to produce k medians which are then clus-
tered with the medians from the suffix bucket Bm∗ . The
total number of such medians is at most O(1

τ2 Nτ log N).
The running time for clustering the active elements in Bm

dominates, giving a total query time of Õ(k
τ4 N2τ).

Putting everything together we have Theorem 2. The
memory bound follows from Lemma 5. The space used to
maintain the original data points for buckets violating In-
variant 3 dominates the space used to maintain the EH itself.
The approximation guarantee follows from Lemma 4, while
the amortized maintenance time and query time follow from
the discussion in the last two paragraphs.

Theorem 2. Our algorithm provides a (2, 2O(1/τ)) bicri-
teria approximation to the SWKM problem for any τ < 1/2.
It uses O(k

τ4 N2τ log2 N) memory and requires amortized

Õ(k) maintenance time per data element. The query time

for the data structure that we maintain is Õ(k
τ4 N2τ).

We have described a bicriteria approximation algorithm
that produces 2k centers as opposed to k. Next, we build
upon this algorithm to get an algorithm that produces ex-
actly k centers, while preserving the approximation guaran-
tee of 2O(1/τ).

3.2 Producing Exactly k Clusters
In order to produce exactly k centers, we need to change

the algorithm in two ways: (1) with each median, we main-
tain additional information that lets us estimate to within
a constant factor the number of active data points that are
assigned to it, and (2) we change the estimation procedure
that produces a solution whenever a request is made for
the current clusters. Rather than separately clustering the
oldest bucket Bm and the suffix bucket Bm∗ , we cluster the
medians from all the buckets together. However, the weights
of the medians from bucket Bm are adjusted so that they
only reflect the contribution of active data points, discount-
ing the contribution of the expired points.

The costs of Bm and Bm∗ are both within 2O(1/τ) times
the cost of the optimal k–median solution for Bm∗ and hence
within 2O(1/τ) times the cost of the optimal k–median solu-
tion for the current window. Moreover, the assignment cost
for the active points in Bm is no more than the total cost
of Bm. Using these facts and Theorem 2.3 from Guha et al.
[12] it is easy to prove the following lemma for the modified
estimation procedure above.

Lemma 6. Let f(Bm) ≤ 2f(Bm∗) be the cost of the oldest
bucket. If we can assign weights to medians from Bm so that
the weight of each median is within a constant factor c of
the number of active points assigned to that median, then the
optimal k–median solution for the instance of weighted medi-
ans from Bm and Bm∗ is at most f(Bm)+ f(Bm∗)+ cC∗ =

2O(1/τ)C∗, where C∗ is the optimal k–median solution for
the current window.

Proof Sketch. The cost of assigning original points from
Bm∗ to their medians from Bm∗ is no more than f(Bm∗) ≤

2O(1/τ)C∗. The cost of assigning original points from Bm to
their medians in Bm is no more than f(Bm) ≤ 2f(Bm∗) ≤

2O(1/τ)C∗. Consider a k–median problem instance consist-
ing of active original points from Bm and original points
from Bm∗ . This constitutes the current window and by def-
inition the optimal clustering cost for this instance is C∗.
Instead, if we assigned each original point a weight of c the
cost of clustering this instance would be cC∗. The medians
from Bm are weighted so that their weight is no more than
c times the number of active points assigned to them. In
other words, these can be thought of as medians for origi-
nal points from Bm, where each original point has weight c.
Applying Theorem 2.3 from Guha et al. [12], with ` = 2, we
get that the cost of the optimal k–median solution for the
instance of weighted medians from Bm and Bm∗ is at most
f(Bm) + f(Bm∗) + cC∗ = 2O(1/τ)C∗

In the case of estimating variance, we always knew exactly
how points from the oldest bucket were active. Similarly, in
the case of clustering, if we knew for each median in the
oldest bucket how many active data points were assigned

to it, then we could cluster these medians along with me-
dians from the suffix bucket Bm∗ to get exactly k centers.
In fact, the above lemma tells us that even if, instead of
exact counts, we had only an estimate of the number of ac-
tive points assigned to each median in Bm, we would get a
constant factor approximation with exactly k centers.

We show how to estimate the number of active data points
assigned to each median, to within a factor of 2, using at
most k1/τ log N space per median. For any median cj , con-
sider the following imaginary stream Z(j) of 0 − 1 values:

For each actual data point xi, Z
(j)
i = 1 if xi was assigned

to median cj , and Z
(j)
i = 0 otherwise. Note that if the

median cj belongs to a particular bucket, Z
(j)
i will be zero

outside the interval covered by that bucket. Estimating the
number of active data points assigned to cj is the same as
counting the number of ones from the last N elements of
Z(j). If the stream Z(j) were presented explicitly, this prob-
lem could be solved using an EH data structure that uses
O(1

ε′
log N) memory and provides an estimate at all times

that has error at most ε′, as shown by Datar et al. [7]. We
set ε′ equal to 1/2 for our estimation. Unfortunately, the
stream Zj is not presented explicitly. Medians at level 2
and above are produced by the combination of lower-level
medians. All points previously assigned to lower-level medi-
ans are now assigned to a higher-level median, but there is
no way to reconstruct the exact arrival order (timestamps)

of those points and simulate the stream Z(j) since the orig-
inal points have been discarded. In order to estimate the
number of active points for such higher-level medians we
use the following two observations about EHs over 0 − 1
data streams:

1. Consider two Exponential Histograms (EH1 and EH2)
corresponding to two 0−1 data streams for the same
error parameter ε′ and the same window size N . If
all the 1’s in EH1 have arrival times strictly greater
than the arrival times for 1’s in EH2 then we can
combine the two EHs to get an EH for the union of
the two streams in time O(log N). We say such EHs
are non-overlapping. This “combination” can be eas-
ily achieved by placing the buckets of the two EHs one
after the other and then making a sweep from right
to left to combine the buckets. This process takes
O(log N) time, and the combined EH uses O(log N)
buckets or words of memory.

2. If the two data streams (respectively two EHs) are
overlapping, i.e., they do not satisfy the property that
all the 1’s in one of them arrive before the 1’s in the
other, then we can maintain two separate EHs cor-
responding to them to answer count queries over the
union of the two streams. The EHs corresponding to
these overlapping streams are called overlapping EHs.

When a higher-level median is formed by the clustering of
lower-level medians we assign all the EHs of the lower-level
medians to the higher-level medians. We combine as many
non-overlapping EHs as possible, but those that are overlap-
ping are maintained separately. We claim that a median at
level l needs to maintain at most kl−1 EHs, where each EH
requires O(log N) memory. Since 1

τ
is the maximum level

of any median, the amount of extra memory required per
median is O(k1/τ log N).

We prove the claim by induction on the level of the me-
dians. Original points (level-0 medians) do not maintain an

EH; they simply maintain their timestamps. The Z(j)’s cor-
responding to them have 1 in exactly one position and zero
everywhere else. When level-0 medians are clustered to form
k level-1 medians, for each level-1 median thus formed we
can insert the level-0 medians assigned to it in the sorted (de-
creasing) order of timestamps so that we get a single EH for
a level-1 median. Note that the k level-1 medians obtained
in such a clustering may have overlapping EHs. A pair of
level-i medians are called conflicting if they are created at
the same time and have overlapping EHs. A level-i median
can conflict with at most k − 1 other level-i medians—the
ones created during the same clustering of level-(i − 1) me-
dians.

Consider what happens when we cluster level-1 medians to
form a level-2 median. Of all the level-1 medians assigned to
a single level-2 median, any given level-1 median can conflict
with at most k − 1 other level-1 medians. Consequently, we
can organize the assigned medians into k groups such that
within a group there are no conflicting medians. For each of
these groups the corresponding EHs will be non-overlapping
and can combined to form a single EH. Thus a level-2 median
will have at most k EHs. By the inductive hypothesis, as-
sume each level-l median has at most kl−1 overlapping EHs.
By arguments same as above, when a level-l + 1 median is
formed, the level-l medians assigned to it can be organized
into k groups such that within a group there are no conflict-
ing medians. Moreover, since every level-l median within a
group can contribute at most kl−1 overlapping EHs, we can
combine all of them to form kl−1 overlapping EHs. Thus,
across the k groups the level-(l +1) median has a total of kl

EHs. This proves the claim.
The combination procedure for EHs described above is

executed during the clustering of higher-level medians, i.e.
medians from level 1 and above. It is done in the last phase
when points are assigned to the cluster centers. The time

taken to assign every point is now O(k
1
τ log N) instead of

O(1). Since we use a quadratic running time algorithm
to cluster the higher-level medians this does not affect the

asymptotic running time for clustering provided k
1
τ log N <

Nτ . Moreover, the asymptotic space requirement of the al-
gorithm also remains unchanged. This follows from consid-
ering the two different types of bucket: Buckets that violate
Invariant 3 and retain the original points have k

τ3 N2τ log N
original points and at most k level-1 medians. All other
buckets are formed by combination of other buckets and do
not retain original points. They contain O(1

τ
Nτ) higher

level medians and as explained above, each such median re-

quires at most O(k
1
τ log N) memory for estimating number

of active points assigned to it. If k
1
τ log N < Nτ then the

memory requirement of such a bucket is also O(1
τ
N2τ). This

gives a total memory requirement of O(k
τ4 N2τ log2 N). We

have already established the approximation factor for this
algorithm in Lemma 6. This gives us our final result which
is summarized in the theorem below.

Theorem 3. For τ < 1/2, the SKWM algorithm provides

a 2O(1/τ)-approximation. It uses O(k
τ4 N2τ log2 N) memory

and requires Õ(k) amortized maintenance time per data el-

ement, provided k
1
τ log N < Nτ .

4. CONCLUSIONS AND OPEN PROBLEMS
The goal of algorithms for data stream processing under

the sliding window model is to maintain statistics or infor-
mation for the most recent N members of a point set that
is growing in real time, while operating with memory that
is asymptotically smaller than the window size. We have
introduced two such algorithms. The first uses O(1

ε2
log N)

memory and maintains an estimate of the variance of the
most recent N real numbers from a growing stream, with at
most ε relative error (where ε is between 0 and 1). Closing
the gap between this upper bound on memory usage, and
the lower bound of Ω(1

ε
log N), given by Datar et al.[7], is an

open problem. The second algorithm uses O(k
τ4 N2τ log2 N)

memory, for τ between 0 and 1/2, and maintains a solution
to the k–median problem for the most recent N points in a
stream. This algorithm maintains k medians whose cost on
the most recent N points is always within a constant fac-
tor of the cost of the optimal k medians for these N points.
Whether it is possible to maintain approximately optimal
medians in polylogarithmic space (as Charikar et al. [6] do
in the stream model without sliding windows), rather than
polynomial space, is an open problem.

5. REFERENCES
[1] V. Arya, N. Garg, R. Khandekar, V. Pandit,

A. Meyerson, and K. Munagala. “Local Search
Heuristics for k–median and Facility Location
Problems.” In Proc. 33rd ACM Symp. on Theory of
Computing (STOC), 2001, pages 21–29.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. “Models and Issues in Data Stream
Systems.” In Proceedings of the 21st ACM Symposium
on Principles of Databases Systems (PODS), 2002,
pages 1–16.

[3] B. Babcock, M. Datar, and R. Motwani. “Sampling
from a Moving Window over Streaming Data.” In
Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002,
pages 633–634.

[4] P. S. Bradley, U. M. Fayyad, and C. Reina. “Scaling
clustering algorithms to large databases.” In
Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining (KDD), 1998,
pages 9–15.

[5] M. Charikar and S. Guha. “Improved Combinatorial
Algorithms for the Facility Location and k–median
Problems.” In Proc. of the 40th Annual IEEE
Symposium on Foundations of Computer
Science(FOCS), 1999, pages 378–388.

[6] M. Charikar, L. O’Callaghan, and R. Panigrahy.
“Better Streaming Algorithms for Clustering
Problems.” In Proc. of 35th ACM Symposium on
Theory of Computing (STOC), 2003.

[7] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
“Maintaining Stream Statistics over Sliding
Windows.” In Proceedings of Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002, pages 635–644.

[8] P. Domingos and G. Hulten. “Mining High-speed Data
Streams.” In Proceedings of the 6th International
Conference on Knowledge Discovery and Data Mining
(KDD), 2000, pages 71–80.

[9] P. Domingos, G. Hulten, and L. Spencer. “Mining
Time-changing Data Streams.” In Proceedings of the
7th International Conference on Knowledge Discovery
and Data Mining (KDD), 2001, pages 97–106.

[10] P. Gibbons, and S. Tirthapura. “Distributed Streams
Algorithms for Sliding Windows” In Proc. of ACM
Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2002.

[11] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. “Surfing Wavelets on Streams: One-pass
Summaries for Approximate Aggregate Queries.” In
Proc. 27th Conf. on Very Large Data Bases (VLDB),
2001, pages 79–88.

[12] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
“Clustering Data Streams.” In Proceedings of the 41st
Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2000, pages 359–366.

[13] S. Guha, R. Rastogi, and K. Shim. “CURE: An
efficient clustering algorithm for large databases.” In
Proc. of the ACM SIGMOD Intl. Conference on
Management of Data (SIGMOD) , 1998, pages 73–84.

[14] M.R. Henzinger, P. Raghavan, and S. Rajagopalan
“Computing on Data Streams.”, Technical Report
1998-011, Compaq Systems Research Center, Palo
Alto, CA, May, 1998.

[15] P. Indyk. “Sublinear Time Algorithms for Metric
Space Problems.” In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing (STOC),
1999, pages 428–434.

[16] K. Jain and V. Vazirani. “Primal-Dual Approximation
Algorithms for Metric Facility Location and k–median
Problems.” In Proc. 40th IEEE Symp. on Foundations
of Computer Science (FOCS), 1999, pages 1–10.

[17] R. R. Mettu and C. G. Plaxton. “The Online
k–median Problem.” In Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), 2000, pages 339-348.

[18] N. Mishra, D. Oblinger, and L. Pitt. “Sublinear Time
Approximate Clustering.” In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2001, pages 439–447.

[19] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani. “Streaming-Data Algorithms for
High-Quality Clustering.” In Proceedings of the 18th
Annual IEEE International Conference on Data
Engineering (ICDE), 2001.

[20] C. R. Palmer and C. Faloutsos. “Density biased
sampling: an improved method for data mining and
clustering.” In Proc. of the ACM SIGMOD Intl.
Conference on Management of Data (SIGMOD), 2000,
pages 82–92.

[21] D. Pelleg and A. W. Moore. “Accelerating exact
k–means algorithms with geometric reasoning.” In
Proceedings of the 5th International Conference on
Knowledge Discovery and Data Mining (KDD), 1999.

[22] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH:
an efficient data clustering method for very large
databases.” In Proc. of the ACM SIGMOD Intl.
Conference on Management of Data (SIGMOD), 1996,
pages 103–114.

	page1: 234
	page2: 235
	page3: 236
	page4: 237
	page5: 238
	page6: 239
	page7: 240
	page8: 241
	page9: 242
	page10: 243

