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Data Stream Join Processing

The data elements in the stream arrive online.

* The system has no control over the order in which
data elements arrive to be processed.

Once an e ement from a data stream has been
orocessed it Is discarded or archived

« Datastreams are potentially unbounded in size.

 Performing join operation on unbounded streams
nas high resource requirements (both CPU and
memory)
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Sliding Window Join

» Restrict the set of tupples that participate in the jointo a
bounded size window

 Window boundaries can be defined based on:

— Timeunits
— Number of tupples
— Landmarks

— Inproposed model: The window is defined in terms of
time units, and at each time unit a new tupple arrives

window size=w
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Sliding Window Join (cont.)

e A dliding window join of window size w:
— Hasto store 2w tupples

— Hasto process incoming tupples as fast as they arrive

R Memory

0]
O N (W[ I~ [w |- (o

* Problem: Limited resources (storage and CPU)

« Solution: Approximating the output
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Approximating Query Answers

« Load Shedding : Dropping tupples before they naturally
expire
— Drop the tupples randomly

— Assign priorities to tupples and remove the lowest
priority

* Proposed Solution: Semantic Load Shedding

Which tupples should be dropped when —in order to
minimize the error of the output
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Join Processing Models

 Modular vs. Integrated
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Join Processing Models (cont.)

» If CPU isfadt:

— Incoming tupples can be processed at least as quickly asthey
arrive

— Modular and integrated models are equivalent
— Approximation is due to memory restriction

— Optimization Goal: Decide which tupplesto drop in the join
memory so that approximation error is minimized

e If CPU isdow:

— Tupples arrive faster then they can be processed

— Approximation is due to both memory and CPU processing
constraints.

— Optimization Goal: Select the tupples to drop in the join memory
and the queue so that approximation error is minimized

USC
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Error Measures to Evaluate
Approximation

e The output of the join operation is set a of tupples.
e ForsetsX & Y:
— Symmetric Difference Measure is defined as
(X-Y) E (Y-X)]
 Proposed Error Measure: MAX-subset measure

— MAX-subset measure represents the number of missing
tupples in the approximate result set

— It isaspecia case of Symmetric Difference Measure
where one of the setsis a subset of the other
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Error Measures to Evaluate
Approximation (cont.)

e MAX-subset measure

X = the approximate result set
Y =the exact result set
X1Y
symmetric difference (X,Y) = |Y-X]
MAX-subset measure(X,Y) =[Y-X]
o |f the set X maximized the error will be
minimized (smilarly ssimilarity will be
maximized)
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Error Measures to Evaluate
Approximation (cont.)

Some of the set-theoretic error/similarity measures are:

1. Matching Coefficient: | XCY |
2. Dice Coefficient: 2* | XCY || X |+ Y |
3. Jaccard Coefficient: IXCY |/ |XEY |
4. Cosine Coefficient: IXCY |/|XE Y[
5. Earth Mover’s Distance
6. Matchand Compare
T — USC
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Join Algorithms

e Algorithm for the Static Case

« Offlinewindow join algorithm with a
Fast CPU

e Onlinewindow join algorithm with a
Fast CPU

10/23/2003
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Bipartite Graphs

* A bipartitegraph isagraph G whose vertex set V can be partitioned into two
non empty setsV, and V, in such away that every edge of G joinsavertex in

V1toavertex inV2.
V,= {1,4,6,7}
V,= {2,3,5,8}

= (%] [B%] M

o Kuratowski'stheorem: agraph isplanar if and only if it does not contain a
subgraph which is an expansion of K (the full graph on 5 vertices) or K, ; (Six
vertices, three of which connect to each of the other three)

« Kuratowski components are the graphs that follow Kuratowski's theorem
K5 K3,3

10/23/2003 13



Static Case

Input relations (A and B) are not data streams

Goal isto find a set of k tupples to be dropped from the input
relations such that the size of the k-truncated join result is
maximized
K-truncated join approximation problem is modeled as a graph
problem:

— The exact result set isabipartite graph G(V ,,Vg,E)

partition V , represents tupplesfrom A , partition V represents tupples
from B, E representsthetupplesinthejoin result

T T2 v, ={TLT4T6T7}
T4 T3
V, ={T2,73T57T8}
T6 T5
T7 T8
| Ti
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Static Case (cont.)

G isaunion of mutually digoint fully connected bipartite components (called
Kuratowski components, K(m,n) —where mand n are number of nodes from
V, and V)

When we delete anode all edges incident on the node get deleted

T1 T2 T2
T4 T3 T4

T6 T5 T6 T5
T7 T8 T7 T8

New goal is. Tofind aset of k nodesin the bipartite join-graph whose
deletion results in the deletion of the fewest number of edges

OR to find a set of k nodes to be retained, such that the subgraph has highest
number of edges
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Static Case (cont.)

Optimal Dynamic Programming Solution

« Input : A bipartite graph consisting ¢ Kuratowski components K(m,,n,),
K(m,,n,),... K(m,n) and an integer k. K(m,,n,), denotesit" Kuratowski
component

 For acomponent K(m,n) pE£ m+n isthe number of retained nodes

— m’ = nodesretained fromm (M £m) n’'= nodesretained fromn (N’ £ n)
— p=m+n
— Wewant to maximizem’ * n’ (the number of edges)
— Tomaximizem*n’ , [m-n| should be minimized.

o If piseven m’ =n =p/2and m'*n’ = (p/2)?

o if pisodd m'=(p+1)/2, "=(p-1)/2 and m'*n’ = (p%-1)/4 (m' >n’)
— Therefore, the max number of edgesthat can be retained for K(m,n) with

retaining p nodesis

(p/2)° if p << 2n, p even
Cm.n(p) = (p> = 1)/4 if p < 2n, p odd

nip —n) else.
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Static Case (cont.)

e The max number of edgesretained from all i Kuratowski
components s

j isthe number of nodes retained

- e Ciyng(3) 0 <5< mi 4+ na
i=1  7q,j)={ Cmm@) £0<;<
I'(1,5) { — 00 if 7 > my + n
Tz —1,3),
T(i—=1,7=1}4 Ci,n,l1),

i>1 73 /) = maxd TGE=13=2)+Cm,n(2)

T(i— 1,7 —m; —n;) + Crayom, (12 + 75)

* Final Output: T(ck)
o Complexity: O(c.k?)

 |f thethejoin operation has m input relations then static join
load shedding algorithm will be NP-hard (m>2)
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Offline, With a Fast CPU

e Input relations (R and S) are infinite data streams

e Based on dliding window join with afast CPU and small

memory

o All tupplesthat will arrive in future are already known to

the algorithm

o Some tupples are dropped because of memory restriction

e Goad I1sto minimizethe MAX-subset error in the
approximation

10/23/2003
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Offline, With a Fast CPU (cont.)

. ApprOX| mation problem is modeled as a flow graph:

Nodes correspond to the tupples in memory

— Nodelabel x(i) : j meansthe tupple arrived at time i in stream X isin memory at timej

— Arcsshow all possible combinations of keeping or dropping tupples

— Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple
can be replaced by the newly arriving tupple

— Anarc has cost factor —1 if aresult tupple produce in the transition. For all other arcs cost factor isO

— Sisthe source node and t is the sink node
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Offline, With a Fast CPU (cont.)

Graph Construction Example:

Input streams R=1,1,1,32 S=2,3,1,1,3
. Join memory M=2. Memory is shared between R and S equally
. w=3, tupples are dropped after 3 time units

. Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

USC

10/23/2003 20



Offline, With a Fast CPU (cont.)

Graph Construction Example:

Input streams R=1,1,1,32 S=2,3,1,1,3
. Join memory M=2. Memory is shared between R and S equally
. w=3, tupples are dropped after 3 time units

. Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

@ R=1,1,1,3,2

S=2,3,1,1,3
t =0,1,2,3,4

Window contents:
a @ @ r(0):1 s0):2

USC
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Offline, With a Fast CPU (cont.)

Graph Construction Example:

Input streams R=1,1,1,32 S=2,3,1,1,3
. Join memory M=2. Memory is shared between R and S equally
. w=3, tupples are dropped after 3 time units

. Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

R=1,11,3,2
S=2,3,1,1,3
t =0,1,2,3,4

Window contents:
@ r(0):1 s(1):3

r(1):1 50):2

r():1s1):3
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10/23/2003 20



Offline, With a Fast CPU (cont.)

Graph Construction Example:
Input streams R=1,1,1,32 S=2,3,1,1,3
Join memory M=2. Memory is shared between R and S equally
w=3, tupples are dropped after 3 time units

Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

R=1,1,1,3,2
S=2,3,1,1,3
t =0,1,2,3,4

Window contents:

@ r0):1s2):1
r):1s2:1
r2:1 50):2
3
1

r2:1 92):
r2:1 s2):
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Offline, With a Fast CPU (cont.)

Graph Construction Example:
Input streams R=1,1,1,32 S=2,3,1,1,3
Join memory M=2. Memory is shared between R and S equally
w=3, tupples are dropped after 3 time units

Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple
-1

»(=2)

R=1,1,1,3,2
S=2,3,1,1,3
t =0,1,2,3,4

v Window contents:

@ r0):1s2):1
r):1s2:1
r2:1 50):2
r2:1921):3
r2):1s2:1
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Offline, With a Fast CPU (cont.)

Graph Construction Example:
Input streams R=1,1,1,32 S=2,3,1,1,3
Join memory M=2. Memory is shared between R and S equally
w=3, tupples are dropped after 3 time units

Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple
-1

R=1,11,3,2
S$=2,3,1,1,3
t=0,1,2,3,4

y JOL Window contents:
AN T O Bre
] ri2) : :
() (sw2) r(3):3 (1) : 3
1
1

r3) :3 92):
r3):3 s(3):
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Offline, With a Fast CPU (cont.)

Graph Construction Example:

Input streams R=1,1,1,32 S=2,3,1,1,3
. Join memory M=2. Memory is shared between R and S equally
. w=3, tupples are dropped after 3 time units

. Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple
-1

> t=2

R=1,11,3,2
S=2,3,1,1,3
t =0,1,2,3,4

1 Window contents:
r2:194):3

./v r3):3 s4):3
r4):2 92):1
e 1#):2 9311
r(4):2 s(4):3

Eventsfor
stream S
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Offline, With a Fast CPU (cont.)

« Thegod isto find the optimal flow which which produces most output
tupples. In the graph optimal flow is the path with the min cost.

Optimal Solution:
5 output tupples

- 4 (r(2),5(2) at timet=2

: (w3) (r(2),53)) at time t=3
\ 4 H1 (r(3),5(2)) at timet=3
(3) D (r(3),5(4)) at time t=4

@ - 2 tupples are missed
@ ./V because of the
‘...................n. . SEtventSfOI’ apprOXImanon
@: @ ream R
‘ 5 (r(1),5(2)) at time t=2
= @ : @ Events o (r(2),s(3)) at time t=3
stream S

USC
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Offline, With a Fast CPU (cont.)

e Complexity for finding the minimum cost flow is O(n?mlogn) where mis
the number of arcs and n isthe number of nodes
* Number of nodes and arcs can be bounded to reduce the complexity
— Thereareat most 2wN + N+ 2 = g(wN) nodes
— Thereare at most (M+1+3.(numNodes-2)) = O(wN+M) arcs

N isthelength

teecccecccccceccceccceeeee eefecece

: Eventsfor
@ : @ ! Events for =
(x92) e s USC
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Online, With a Fast CPU

e Online agorithm does not know which tupples will arrivein
future

e (Goal isto maximize the expected output size by assuming
arrival probabilities for future tupples

o |t estimates an arrival probability for each value in the
domain of the join attribute.

* Two heuristics are defined to estimate prioroties:
 PROB Heuristic
— A tuppl€’ s priority is equal to the arrival probability of it's
join attribute in the other stream
For example, for the tupple r(i) the priority is pg(r(i))

USC
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Onling, With a Fast CPU (cont.)

e LIFE Heuristic

— |t aso estimates probabilities, but it favors age of the
tupple to partner arrival probabilities

For example, for the tupple r(i) with remaining lifetime t
the priority ist*pg(r(i))

 Example: For streeamsR and S,
— 1f pg(3)=0.5, PROB priority for r(1)=3 15 0.5
— and if remaining lifetimefor r(i) is 3, LIFE priority is 1.5

USC
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Experiments

* The performances of the following techniques are

compared.:
— RAND : tupples are dropped randomly
— OPT-offline : offline approach with fast CPU
— PROB : online approach using PROB heuristic
— LIFE : online approach using LIFE heuristic
— EXACT : exact diding window join with M=2w

* The length of the input streams are at most 5600

tupples.

« Experiments are done with both real datasets and

synthetic dataset

10/23/2003
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#0utput tuples

Effect of Window Size

#Outputs Vs mamsize for w=400 z1u distribution, domainsize=50 (fixed allocation)
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* Thebehavior of agorithms RAND, PROB, OPT and LIFE issimilar

for different window sizes
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Effect of Data Pattern

1. Join Attribute Values are Uniformly Distributed

2. Join Attribute Values have Zipfian Distribution

with varying degrees of skew

10/23/2003
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Effect of Having Uniform Data

#Outputs Vs memsize for w=400 uniform distribution, domainsize=50 (fixed allocation)

#Dutput tuples
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* With uniformly distributed join attribute values, al online algorithms
perform amost same, OPT-offline performs little improvement
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Zipfian Distribution

 Itisthedistribution of occurrence probabilities which
follow Zipf'slaw. Probabilities starts high and tapers off
exponentially. Thus, afew items occur very often while
many others occur rarely.

o Zipfian distribution is defined as:

Pn » and P, : the frequency of occurrence of the n™ ranked item

a : anumber closeto 1
g : skew parameter

o If gqishig, probabilities drop quickly , else they drop
slowly

USC
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Effect of Zipfian Skew Parameter

10/23/2003

#Output tuples as a fraction of Offline Optimal

#0Outputs Vs zipf parameter (w=400, m=400) for uncorrelated zipf, domainsize=50
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« PROB performs better than RAND as the skew increases
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Effect of Domain Size

#Dutputs versws mamsize for w=400 z1u distribution with domainsize=10 (fixed allocation) #Outputs versus memsize for w=400 z1u distribution with domainsize=50 (fixed allocation)

o — . i 4.5 : i : 7 -
% Random (RAND) " Random (RAND) —
S 45t PROE £ 4 g o PROE —— |
= Oplirmual CHfine (OPT) = | Opslirmal Ofinag(QPT) e
S EXACT b EXACT —n-
= £ 25
o 35 O
ek -
: 2 9y
o 3 Lh
8 &, ‘E 25|
% 2.5 t
& i 2
g 2 .. 9 5
m 1 15+
%_ 1.5 i i
= 1 % . & & i = 1 ¥ - e ¥ "
o FE 2 _
= — = 3 =
9 05 . o — Z 05| - 2 _
£ 3 i — = ' — =
I.-I L 1 1 1 ﬂ i 1 1
o 100 200 300 A0 S00 600 0 100 200 300 400 500 G600
Memory Size Memiory Sire
Domain size 10 Domain size 50

'ITCIIJIZFIIJIE varsus memsize for w=400 ziu distribution with domainsize=200 (fixed allocation)

28 : . ;
;| om:ﬁlﬂgﬁj  The performance of PROB and
£ 20\ R OPT-offline drops as the domain
Bl sizeincrease. But, the performance
: L of PROB gets worse than OPT -
N T+ offline.
E 0.5 B
§ S
EIIZI 100 EIjD :Elt.:-:l 4-5-.’3 5«1‘1] G:.IIIZI
Mamory Size
Domain size 200 ———
I
USC

10/23/2003 31



#Outpul luples

Experiments with Real Life Data

#0utputs versus memsize for w=5000 waather data [Sep85L-SapBaL) Variation of memory allocated to streams Sep85 and Sepd6 for w=5000, m=5000
126408  F T T S ' i 5000 ; ' = = s
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Weather data: Performance Weather data: memory allocation

e The behavior of the algorithmsis ssimilar to synthetic
dataset results
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Related Work and Developments

e Previouswork:

— J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over
unbounded streams.
» This paper also investigates algorithms for evaluating sliding window joins over
unbounded streams. They consider the cases where :
— dataarrival rates of the input streams are different
— processing speed isinsufficient to keep with streams
— memory is limited.

 Developments
The paper has 2 citations:

— L. Golab, S. Garg and M. Tamer Ozsu. On Indexing Sliding Windows over On-line
Data Streams.
» Taksabout diding window indexing in main memory over online data streams

— Ahmet Bulut and Ambuj K. Singh. Stardust: Fast Stream |ndexing using
Incremental Wavelet Approximations

» They propose an approach for summarizing a set of data streams, and for constructing a
composite index structure to answer similarity queries.
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QUESTION

What is the use of
“ Static Join Algorithm”
In this paper?
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