
Approximate Join Processing Approximate Join Processing
Over Data StreamsOver Data Streams

Abhinandan Das Johannes Gehrke
Mirek Riedewald
Cornell University

SAKIRE ARSLAN
USC - 2003

10/23/2003 2

OutlineOutline
• Data Stream Join Processing

• Sliding Window Join

• Approximate Join

• Error Measures

• Join Algorithms using the Proposed Error Measure
– Static algorithm
– Offline algorithm with Fast CPU

– Online algorithm with Fast CPU

• Experiments and Results

10/23/2003 3

Data Stream Join ProcessingData Stream Join Processing
• The data elements in the stream arrive online.

• The system has no control over the order in which
data elements arrive to be processed.

• Once an element from a data stream has been
processed it is discarded or archived

• Data streams are potentially unbounded in size.

• Performing join operation on unbounded streams
has high resource requirements (both CPU and
memory)

10/23/2003 4

Sliding Window JoinSliding Window Join
• Restrict the set of tupples that participate in the join to a

bounded size window
• Window boundaries can be defined based on:

– Time units
– Number of tupples
– Landmarks

– In proposed model: The window is defined in terms of
time units, and at each time unit a new tupple arrives

1 5 15201491934107

window size = w

t-w t

10/23/2003 5

Sliding Window Join (cont.)Sliding Window Join (cont.)
• A sliding window join of window size w:

– Has to store 2w tupples

– Has to process incoming tupples as fast as they arrive

1 5 1201913417

R

4 7 2631132941

S

• Problem: Limited resources (storage and CPU)

• Solution: Approximating the output

4
3
1
9

9
2
3
1

Memory

10/23/2003 6

Approximating Query AnswersApproximating Query Answers
• Load Shedding : Dropping tupples before they naturally

expire

– Drop the tupples randomly

– Assign priorities to tupples and remove the lowest
priority

• Proposed Solution: Semantic Load Shedding

Which tupples should be dropped when –in order to
minimize the error of the output

10/23/2003 7

Join Processing ModelsJoin Processing Models
• Modular vs. Integrated

10/23/2003 8

Join Processing Models (cont.)Join Processing Models (cont.)
• If CPU is fast:

– Incoming tupples can be processed at least as quickly as they
arrive

– Modular and integrated models are equivalent
– Approximation is due to memory restriction
– Optimization Goal: Decide which tupples to drop in the join

memory so that approximation error is minimized

• If CPU is slow:
– Tupples arrive faster then they can be processed
– Approximation is due to both memory and CPU processing

constraints.
– Optimization Goal: Select the tupples to drop in the join memory

and the queue so that approximation error is minimized

10/23/2003 9

Error Measures to Evaluate Error Measures to Evaluate
ApproximationApproximation

• The output of the join operation is set a of tupples.
• For sets X & Y:

– Symmetric Difference Measure is defined as

|(X-Y) ∪ (Y-X)|

• Proposed Error Measure: MAX-subset measure
– MAX-subset measure represents the number of missing

tupples in the approximate result set

– It is a special case of Symmetric Difference Measure
where one of the sets is a subset of the other

10/23/2003 10

Error Measures to Evaluate Error Measures to Evaluate
Approximation (cont.)Approximation (cont.)

• MAX-subset measure
X = the approximate result set
Y = the exact result set
X ⊆ Y
symmetric difference (X,Y) = |Y-X|
MAX-subset measure(X,Y) =|Y-X|

• If the set X maximized the error will be
minimized (similarly similarity will be
maximized)

10/23/2003 11

Error Measures to Evaluate Error Measures to Evaluate
Approximation (cont.)Approximation (cont.)

Some of the set-theoretic error/similarity measures are:
1. Matching Coefficient: | X∩Y |

2. Dice Coefficient: 2 * | X∩Y | / | X |+| Y |

3. Jaccard Coefficient: | X∩Y | / | X ∪ Y |

4. Cosine Coefficient: | X∩Y | / | X ∪ Y |1/2

5. Earth Mover’s Distance

6. Matchand Compare

10/23/2003 12

Join AlgorithmsJoin Algorithms

• Algorithm for the Static Case

• Offline window join algorithm with a
Fast CPU

• Online window join algorithm with a
Fast CPU

10/23/2003 13

• A bipartite graph is a graph G whose vertex set V can be partitioned into two
non empty sets V1 and V2 in such a way that every edge of G joins a vertex in

V1 to a vertex in V2.

V1 = {1,4,6,7}

V2 = {2,3,5,8}

• Kuratowski's theorem: a graph is planar if and only if it does not contain a
subgraph which is an expansion of K5 (the full graph on 5 vertices) or K3,3 (six
vertices, three of which connect to each of the other three)

• Kuratowski components are the graphs that follow Kuratowski's theorem
K5 K3,3

Bipartite GraphsBipartite Graphs

10/23/2003 14

Static CaseStatic Case
• Input relations (A and B) are not data streams

• Goal is to find a set of k tupples to be dropped from the input
relations such that the size of the k-truncated join result is
maximized

• k-truncated join approximation problem is modeled as a graph
problem:
– The exact result set is a bipartite graph G(VA,VB,E)

partition VA represents tupples from A , partition VB represents tupples
from B, E represents the tupples in the join result

T1

T4

T6

T7

T5

T8

T3

T2 VA = {T1,T4,T6,T7}

VB = {T2,T3,T5,T8}

10/23/2003 15

Static Case (cont.)Static Case (cont.)
• G is a union of mutually disjoint fully connected bipartite components (called

Kuratowski components, K(m,n) – where m and n are number of nodes from
VA and VB)

• When we delete a node all edges incident on the node get deleted

T1

T4

T6

T7

T5

T8

T3

T2 T2

T4

T6

T7

T5

T8

• New goal is: To find a set of k nodes in the bipartite join-graph whose
deletion results in the deletion of the fewest number of edges

• OR to find a set of k nodes to be retained, such that the subgraph has highest
number of edges

10/23/2003 16

Static Case (cont.)Static Case (cont.)
Optimal Dynamic Programming Solution

• Input : A bipartite graph consisting c Kuratowski components K(m1,n1),
K(m2,n2),… K(mc,nc) and an integer k. K(mi,ni), denotes ith Kuratowski
component

• For a component K(m,n) p≤≤ m+n is the number of retained nodes
– m’ = nodes retained from m (m’ ≤ m) n’= nodes retained from n (n’ ≤ n)
– p = m’ + n’
– We want to maximize m’ * n’ (the number of edges)
– To maximize m’*n’ , |m-n| should be minimized.

• If p is even m’ = n’ = p/2 and m’*n’ = (p/2)2

• if p is odd m’=(p+1)/2, n’=(p-1)/2 and m’*n’ = (p2-1)/4 (m’ > n’)
– Therefore, the max number of edges that can be retained for K(m,n) with

retaining p nodes is

10/23/2003 17

Static Case (cont.)Static Case (cont.)
• The max number of edges retained from all i Kuratowski

components is:
j is the number of nodes retained

i=1

i > 1

• Final Output: T(c,k)
• Complexity: O(c.k2)
• If the the join operation has m input relations then static join

load shedding algorithm will be NP-hard (m>2)

10/23/2003 18

Offline, With a Fast CPUOffline, With a Fast CPU
• Input relations (R and S) are infinite data streams

• Based on sliding window join with a fast CPU and small
memory

• All tupples that will arrive in future are already known to
the algorithm

• Some tupples are dropped because of memory restriction

• Goal is to minimize the MAX-subset error in the
approximation

10/23/2003 19

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
• Approximation problem is modeled as a flow graph:

– Nodes correspond to the tupples in memory
– Node label x(i) : j means the tupple arrived at time i in stream X is in memory at time j
– Arcs show all possible combinations of keeping or dropping tupples
– Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple

can be replaced by the newly arriving tupple
– An arc has cost factor –1 if a result tupple produce in the transition. For all other arcs cost factor is 0
– S is the source node and t is the sink node

r(0):0

s(0):0

s

r(1):1

r(2):4

r(3):3

s(2):2

s(1):2

s(0):2

s(1):1

r(2):3

r(1):3

r(2):2

r(1):2

r(0):2

s(2):4

r(4):4

s(3):4

r(3):4

s(3):3

s(2):3

s(4):4

s(1):3

t=2

t

Events for
stream S

Events for
stream R

-1

-1

-1 -1

-1

-1

-1

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(1) : 3
r(1) : 1 s(0) : 2
r(1) : 1 s(1) : 3

r(1):1

s(1):1

r(0):1

s(0):1

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(1) : 3
r(1) : 1 s(0) : 2
r(1) : 1 s(1) : 3

r(1):1

s(1):1

r(0):1

s(0):1

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:

r(0) : 1 s(2) : 1
r(1) : 1 s(2) : 1
r(2) : 1 s(0) : 2
r(2) : 1 s(1) : 3
r(2) : 1 s(2) : 1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(1) : 3
r(1) : 1 s(0) : 2
r(1) : 1 s(1) : 3

r(1):1

s(1):1

r(0):1

s(0):1

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:

r(0) : 1 s(2) : 1
r(1) : 1 s(2) : 1
r(2) : 1 s(0) : 2
r(2) : 1 s(1) : 3
r(2) : 1 s(2) : 1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

t=2-1

r(0):0

s(0):0

r(1):1

r(0):1

s(0):1

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(1) : 3
r(1) : 1 s(0) : 2
r(1) : 1 s(1) : 3

r(1):1

s(1):1

r(0):1

s(0):1

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:

r(0) : 1 s(2) : 1
r(1) : 1 s(2) : 1
r(2) : 1 s(0) : 2
r(2) : 1 s(1) : 3
r(2) : 1 s(2) : 1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

t=2-1

r(0):0

s(0):0

r(1):1

r(0):1

s(0):1

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

r(3):3

r(2):3

r(1):3

s(3):3

s(2):3

s(1):3

-1

-1

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(1) : 1 s(3) : 1
r(2) : 1 s(3) : 1
r(3) : 3 s(1) : 3
r(3) : 3 s(2) : 1
r(3) : 3 s(3) : 1

-1

10/23/2003 20

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
Graph Construction Example:
• Input streams R=1,1,1,3,2 S=2,3,1,1,3

• Join memory M=2. Memory is shared between R and S equally

• w=3 , tupples are dropped after 3 time units

• Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the
newly arriving tupple

s t

r(0):0

s(0):0

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(0) : 2

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(0) : 1 s(1) : 3
r(1) : 1 s(0) : 2
r(1) : 1 s(1) : 3

r(1):1

s(1):1

r(0):1

s(0):1

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:

r(0) : 1 s(2) : 1
r(1) : 1 s(2) : 1
r(2) : 1 s(0) : 2
r(2) : 1 s(1) : 3
r(2) : 1 s(2) : 1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

t=2-1

r(0):0

s(0):0

r(1):1

r(0):1

s(0):1

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

r(3):3

r(2):3

r(1):3

s(3):3

s(2):3

s(1):3

-1

-1

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(1) : 1 s(3) : 1
r(2) : 1 s(3) : 1
r(3) : 3 s(1) : 3
r(3) : 3 s(2) : 1
r(3) : 3 s(3) : 1

-1

Events for
stream S

Events for
stream R

r(2):4

s(2):4

r(4):4

s(3):4

r(3):4

s(4):4

-1

R=1,1 1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:
r(2) : 1 s(4) : 3
r(3) : 3 s(4) : 3
r(4) : 2 s(2) : 1
r(4) : 2 s(3) : 1
r(4) : 2 s(4) : 3

10/23/2003 21

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
• The goal is to find the optimal flow which which produces most output

tupples. In the graph optimal flow is the path with the min cost.

Optimal Solution:

5 output tupples

(r(0),s(2)) at time t=2
(r(2),s(2)) at time t=2
(r(2),s(3)) at time t=3
(r(3),s(1)) at time t=3
(r(3),s(4)) at time t=4

2 tupples are missed
because of the
approximation:

(r(1),s(2)) at time t=2
(r(1),s(3)) at time t=3

r(0):0

s(0):0

s

r(1):1

s(1):1

t

t=2-1

r(3):3

r(2):3

r(1):3

s(3):3

s(2):3

s(1):3

-1

-1

Events for
stream S

Events for
stream R

r(2):4

s(2):4

r(4):4

s(3):4

r(3):4

s(4):4

-1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

-1

10/23/2003 22

Offline, With a Fast CPU (cont.)Offline, With a Fast CPU (cont.)
• Complexity for finding the minimum cost flow is O(n2mlogn) where m is

the number of arcs and n is the number of nodes
• Number of nodes and arcs can be bounded to reduce the complexity

– There are at most 2wN + N + 2 = θ(wN) nodes
– There are at most (M+1+3.(numNodes-2)) = O(wN+M) arcs

r(0):0

s(0):0

s

r(1):1

s(1):1

t

t=2-1

r(3):3

r(2):3

r(1):3

s(3):3

s(2):3

s(1):3

-1

-1

Events for
stream S

Events for
stream R

r(2):4

s(2):4

r(4):4

s(3):4

r(3):4

s(4):4

-1

s(2):2

s(1):2

s(0):2

r(2):2

r(1):2

r(0):2
-1

-1

-1

N is the length
of streams

10/23/2003 23

Online, With a Fast CPUOnline, With a Fast CPU
• Online algorithm does not know which tupples will arrive in

future

• Goal is to maximize the expected output size by assuming
arrival probabilities for future tupples

• It estimates an arrival probability for each value in the
domain of the join attribute.

• Two heuristics are defined to estimate prioroties:

• PROB Heuristic

– A tupple’s priority is equal to the arrival probability of it’s
join attribute in the other stream

For example, for the tupple r(i) the priority is pS(r(i))

10/23/2003 24

Online, With a Fast CPU (cont.)Online, With a Fast CPU (cont.)
• LIFE Heuristic

– It also estimates probabilities, but it favors age of the
tupple to partner arrival probabilities

For example, for the tupple r(i) with remaining lifetime t
the priority is t*pS(r(i))

• Example: For streams R and S ,
– if pS(3)=0.5, PROB priority for r(i)=3 is 0.5

– and if remaining lifetime for r(i) is 3, LIFE priority is 1.5

10/23/2003 25

ExperimentsExperiments
• The performances of the following techniques are

compared:
– RAND : tupples are dropped randomly
– OPT-offline : offline approach with fast CPU
– PROB : online approach using PROB heuristic
– LIFE : online approach using LIFE heuristic
– EXACT : exact sliding window join with M=2w

• The length of the input streams are at most 5600
tupples.

• Experiments are done with both real datasets and
synthetic dataset

10/23/2003 26

Effect of Window SizeEffect of Window Size

• The behavior of algorithms RAND, PROB, OPT and LIFE is similar
for different window sizes

Window size 400 Window size 800

10/23/2003 27

Effect of Data PatternEffect of Data Pattern

1. Join Attribute Values are Uniformly Distributed

2. Join Attribute Values have Zipfian Distribution
with varying degrees of skew

10/23/2003 28

Effect of Having Uniform DataEffect of Having Uniform Data

• With uniformly distributed join attribute values, all online algorithms
perform almost same, OPT-offline performs little improvement

10/23/2003 29

Zipfian Zipfian DistributionDistribution
• It is the distribution of occurrence probabilities which

follow Zipf's law. Probabilities starts high and tapers off
exponentially. Thus, a few items occur very often while
many others occur rarely.

• Zipfian distribution is defined as:

Pn ≈ a.n- θ Pn : the frequency of occurrence of the nth ranked item

a : a number close to 1

θ : skew parameter

• If θ is big, probabilities drop quickly , else they drop
slowly

10/23/2003 30

Effect of Effect of Zipfian Zipfian Skew ParameterSkew Parameter

• PROB performs better than RAND as the skew increases

10/23/2003 31

Effect of Domain SizeEffect of Domain Size

• The performance of PROB and
OPT-offline drops as the domain
size increase. But, the performance
of PROB gets worse than OPT-
offline.

Domain size 10

Domain size 200

Domain size 50

10/23/2003 32

Experiments with Real Life DataExperiments with Real Life Data

• The behavior of the algorithms is similar to synthetic
dataset results

Weather data: Performance Weather data: memory allocation

10/23/2003 33

Related Work and DevelopmentsRelated Work and Developments
• Previous work:

– J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over
unbounded streams.

• This paper also investigates algorithms for evaluating sliding window joins over
unbounded streams. They consider the cases where :

– data arrival rates of the input streams are different
– processing speed is insufficient to keep with streams
– memory is limited.

• Developments:
The paper has 2 citations:

– L. Golab, S. Garg and M. Tamer Ozsu. On Indexing Sliding Windows over On-line
Data Streams.

• Talks about sliding window indexing in main memory over online data streams

– Ahmet Bulut and Ambuj K. Singh. Stardust: Fast Stream Indexing using
Incremental Wavelet Approximations

• They propose an approach for summarizing a set of data streams, and for constructing a
composite index structure to answer similarity queries.

10/23/2003 34

QUESTIONQUESTION

What is the use of
“Static Join Algorithm”

in this paper?LIFE

10/23/2003 35

QUESTIONS QUESTIONS ??

?

? ?

