Approximate Join Processing Over Data Streams

Abhinandan Das Johannes Gehrke Mirek Riedewald Cornell University

SAKIRE ARSLAN USC - 2003

Outline

- Data Stream Join Processing
- Sliding Window Join
- Approximate Join
- Error Measures
- Join Algorithms using the Proposed Error Measure
 - Static algorithm
 - Offline algorithm with Fast CPU
 - Online algorithm with Fast CPU
- Experiments and Results

Data Stream Join Processing

- The data elements in the stream arrive online.
- The system has no control over the order in which data elements arrive to be processed.
- Once an element from a data stream has been processed it is discarded or archived
- Data streams are potentially unbounded in size.
- Performing join operation on unbounded streams has high resource requirements (both CPU and memory)

Sliding Window Join

- Restrict the set of tupples that participate in the join to a • bounded size window
- Window boundaries can be defined based on:
 - Time units
 - Number of tupples
 - Landmarks
- In proposed model: The window is defined in terms of time units, and at each time unit a new tupple arrives

Sliding Window Join (cont.)

- A sliding window join of window size *w*:
 - Has to store 2w tupples
 - Has to process incoming tupples as fast as they arrive

- <u>Problem</u>: Limited resources (storage and CPU)
- <u>Solution</u>: Approximating the output

Approximating Query Answers

- Load Shedding : Dropping tupples before they naturally expire
 - Drop the tupples randomly
 - Assign priorities to tupples and remove the lowest priority
- Proposed Solution: Semantic Load Shedding
 <u>Which tupples</u> should be dropped <u>when</u> –in order to minimize the <u>error</u> of the output

Join Processing Models

• Modular vs. Integrated

Join Processing Models (cont.)

- If CPU is fast:
 - Incoming tupples can be processed at least as quickly as they arrive
 - Modular and integrated models are equivalent
 - Approximation is due to memory restriction
 - Optimization Goal: Decide which tupples to drop in the join memory so that approximation error is minimized
- If CPU is slow:
 - Tupples arrive faster then they can be processed
 - Approximation is due to both memory and CPU processing constraints.
 - Optimization Goal: Select the tupples to drop in the join memory and the queue so that approximation error is minimized

Error Measures to Evaluate Approximation

- The output of the join operation is set a of tupples.
- For sets X & Y:
 - Symmetric Difference Measure is defined as $|(X-Y) \cup (Y-X)|$

• Proposed Error Measure: MAX-subset measure

- MAX-subset measure represents the number of missing tupples in the approximate result set
- It is a special case of Symmetric Difference Measure where one of the sets is a subset of the other

Error Measures to Evaluate Approximation (cont.)

• MAX-subset measure

- X = the approximate result set
- Y = the exact result set

 $X \subseteq Y$

symmetric difference (X,Y) = |Y-X|

MAX-subset measure(X,Y) =|Y-X|

• If the set X maximized the error will be minimized (similarly similarity will be maximized)

Error Measures to Evaluate Approximation (cont.)

Some of the set-theoretic error/similarity measures are:

- Matching Coefficient: 1.
- Dice Coefficient: 2
- Jaccard Coefficient: $|X \cap Y| / |X \cup Y|$ 3.
- Cosine Coefficient: 4.
- 5. Earth Mover's Distance
- Matchand Compare 6.
- $|X \cap Y|$ $2 * | X \cap Y | / | X | + | Y |$ $|X \cap Y| / |X \cup Y|^{1/2}$

Join Algorithms

- Algorithm for the Static Case
- Offline window join algorithm with a Fast CPU
- Online window join algorithm with a Fast CPU

Bipartite Graphs

A bipartite graph is a graph G whose vertex set V can be partitioned into two non empty sets V₁ and V₂ in such a way that every edge of G joins a vertex in V1 to a vertex in V2.

- **Kuratowski's theorem:** a graph is <u>planar</u> if and only if it does not contain a <u>subgraph</u> which is an expansion of \underline{K}_5 (the full graph on 5 vertices) or $\underline{K}_{3,3}$ (six vertices, three of which connect to each of the other three)
- Kuratowski components are the graphs that follow Kuratowski's theorem

Static Case

- Input relations (A and B) are not data streams
- Goal is to find a set of k tupples to be dropped from the input relations such that the size of the k-truncated join result is maximized
- k-truncated join approximation problem is modeled as a graph problem:
 - The exact result set is a bipartite graph $G(V_A, V_B, E)$ partition V_A represents tupples from A, partition V_B represents tupples from B, E represents the tupples in the join result

Static Case (cont.)

- G is a union of mutually disjoint fully connected bipartite components (called Kuratowski components, K(m,n) – where *m* and *n* are number of nodes from V_A and V_B)
- When we delete a node all edges incident on the node get deleted

- New goal is: To find a set of k nodes in the bipartite join-graph whose deletion results in the deletion of the fewest number of edges
- OR to find a set of *k* nodes to be retained, such that the subgraph has highest number of edges

Static Case (cont.)

Optimal Dynamic Programming Solution

- **Input :** A bipartite graph consisting *c* Kuratowski components $K(m_1,n_1)$, $K(m_2,n_2),..., K(m_c,n_c)$ and an integer *k*. $K(m_i,n_i)$, denotes ith Kuratowski component
- For a component K(m,n) *p***\pounds m+n** is the number of retained nodes
 - \mathbf{m}' = nodes retained from m (m' \leq m) \mathbf{n}' = nodes retained from n (n' \leq n)
 - p = m' + n'
 - We want to maximize **m' * n'** (the number of edges)
 - To maximize m'*n', |**m-n**| should be minimized.
 - If p is even m' = n' = p/2 and $m'*n' = (p/2)^2$
 - if p is odd m'=(p+1)/2, n'=(p-1)/2 and m'*n' = $(p^2-1)/4$ (m' > n')
 - Therefore, the max number of edges that can be retained for K(m,n) with retaining p nodes is

$$C_{m,n}(p) = \begin{cases} (p/2)^2 & \text{if } p \le 2n, \ p \text{ even} \\ (p^2 - 1)/4 & \text{if } p \le 2n, \ p \text{ odd} \\ n(p - n) & \text{else.} \end{cases}$$

Static Case (cont.)

• The max number of edges retained from all i Kuratowski components is:

j is the number of nodes retained

$$i=1 T(1,j) = \begin{cases} C_{m_1,n_1}(j) & \text{if } 0 \le j \le m_1 + n_1 \\ -\infty & \text{if } j > m_1 + n_1 \end{cases}$$
$$i>1 T(i,j) = \max \begin{cases} T(i-1,j), \\ T(i-1,j-1) + C_{m_i,n_i}(1), \\ T(i-1,j-2) + C_{m_i,n_i}(2), \\ \vdots \\ T(i-1,j-m_i - n_i) + C_{m_i,n_i}(m_i + n_i) \end{cases}$$

- **Final Output:** T(c,k)
- **Complexity:** O(c.k²)
- If the the join operation has **m** input relations then static join load shedding algorithm will be NP-hard (m>2)

Offline, With a Fast CPU

- Input relations (R and S) are infinite data streams
- Based on sliding window join with a fast CPU and small memory
- All tupples that will arrive in future are already known to the algorithm
- Some tupples are dropped because of memory restriction
- Goal is to minimize the MAX-subset error in the approximation

- Approximation problem is modeled as a flow graph:
 - Nodes correspond to the tupples in memory
 - Node label x(i) : *j* means the tupple arrived at time *i* in stream X is in memory at time *j*
 - Arcs show all possible combinations of keeping or dropping tupples
 - Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple can be replaced by the newly arriving tupple
 - An arc has cost factor -1 if a result tupple produce in the transition. For all other arcs cost factor is 0
 - S is the source node and t is the sink node

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple can be replaced by the newly arriving tupple

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple can be replaced by the newly arriving tupple

R=1,1,1,3,2 S=2,3,1,1,3

5-4,5,1,1,5

t =**0**,1,2,3,4

Window contents: r(0) : 1 s(0) : 2

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple can be replaced by the newly arriving tupple

R=1,1 1,3,2 S=2,3,1,1,3

t =0,1,2,3,4

Window contents: r(0): 1 s(1): 3 r(1): 1 s(0): 2 r(1): 1 s(1): 3

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates, the tupple can be replaced by the newly arriving tupple

R=1,1,1,3,2

S=2,3,1,1,3

t =0,1,2,3,4

Window contents:

 $r(0): 1 \quad s(2): 1$ $r(1): 1 \quad s(2): 1$ $r(2): 1 \quad s(0): 2$ $r(2): 1 \quad s(1): 3$ $r(2): 1 \quad s(2): 1$

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the newly arriving tupple

Graph Construction Example:

- Input streams R=1,1,1,3,2 S=2,3,1,1,3
- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the newly arriving tupple

 $R=1,1 \ 1,3,2$ S=2,3,1,1,3 t=0,1,2,3,4Window contents: $r(1):1 \ s(3):1$ $r(2):1 \ s(3):1$ $r(3):3 \ s(1):3$ $r(3):3 \ s(2):1$ $r(3):3 \ s(3):1$

Graph Construction Example:

• Input streams R=1,1,1,3,2 S=2,3,1,1,3

10/23/2003

- Join memory M=2. Memory is shared between R and S equally
- w=3, tupples are dropped after 3 time units
- Horizontal lines represents that a tupple survives in memory, non-horizontal line indicates , the tupple can be replaced by the newly arriving tupple

• The goal is to find the optimal flow which which produces most output tupples. In the graph optimal flow is the path with the min cost.

Optimal Solution:

5 output tupples

(r(0),s(2)) at time t=2 (r(2),s(2)) at time t=2 (r(2),s(3)) at time t=3 (r(3),s(1)) at time t=3 (r(3),s(4)) at time t=4

2 tupples are missed because of the approximation:

(r(1),s(2)) at time t=2 (r(1),s(3)) at time t=3

- Complexity for finding the minimum cost flow is $O(n^2 m \log n)$ where m is • the number of arcs and n is the number of nodes
- Number of nodes and arcs can be bounded to reduce the complexity ullet
 - There are at most $2wN + N + 2 = \theta(wN)$ nodes
 - There are at most (M+1+3.(numNodes-2)) = O(wN+M) arcs

Online, With a Fast CPU

- Online algorithm does not know which tupples will arrive in future
- Goal is to maximize the expected output size by assuming arrival probabilities for future tupples
- It estimates an arrival probability for each value in the domain of the join attribute.
- Two heuristics are defined to estimate prioroties:
- PROB Heuristic
 - A tupple's priority is equal to the arrival probability of it's join attribute in the other stream

For example, for the tupple r(i) the priority is $p_S(r(i))$

- <u>LIFE Heuristic</u>
 - It also estimates probabilities, but it favors age of the tupple to partner arrival probabilities
 For example, for the tupple r(i) with remaining lifetime *t* the priority is *t**p_s(r(i))
- Example: For streams R and S,
 - if $p_s(3)=0.5$, PROB priority for r(i)=3 is 0.5
 - and if remaining lifetime for r(i) is 3, LIFE priority is 1.5

Experiments

- The performances of the following techniques are compared:
 - RAND : tupples are dropped randomly
 - OPT-offline : offline approach with fast CPU
 - PROB : online approach using PROB heuristic
 - LIFE : online approach using LIFE heuristic
 - EXACT : exact sliding window join with M=2w
- The length of the input streams are at most 5600 tupples.
- Experiments are done with both real datasets and synthetic dataset

Effect of Window Size

• The behavior of algorithms RAND, PROB, OPT and LIFE is similar for different window sizes

Effect of Data Pattern

- 1. Join Attribute Values are <u>Uniformly Distributed</u>
- 2. Join Attribute Values have <u>Zipfian Distribution</u> with varying degrees of skew

Effect of Having Uniform Data

• With uniformly distributed join attribute values, all online algorithms perform almost same, OPT-offline performs little improvement

Zipfian Distribution

- It is the distribution of occurrence probabilities which follow Zipf's law. Probabilities starts high and tapers off exponentially. Thus, a few items occur very often while many others occur rarely.
- Zipfian distribution is defined as:

 $P_n \approx a.n^{-\theta}$ P_n : the frequency of occurrence of the nth ranked item

- a : a number close to 1
- θ : skew parameter
- If θ is big, probabilities drop quickly, else they drop slowly

Effect of Zipfian Skew Parameter

• PROB performs better than RAND as the skew increases

Effect of Domain Size

- #Outputs versus memsize for w=400 z1u distribution with domainsize=200 (fixed allocation) 2.5 Random (RAND) #Output tuples as percentage of Opt. Offline PROB Optmal Offine (OPT) EXACT 2 1.5 0.5 0 0 100 200 300 400 500 600 Memory Size Domain size 200
- The performance of PROB and OPT-offline drops as the domain size increase. But, the performance of PROB gets worse than OPToffline.

10/23/2003

Experiments with Real Life Data

• The behavior of the algorithms is similar to synthetic dataset results

Related Work and Developments

- <u>Previous work</u>:
 - J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over unbounded streams.
 - This paper also investigates algorithms for evaluating sliding window joins over unbounded streams. They consider the cases where :
 - data arrival rates of the input streams are different
 - processing speed is insufficient to keep with streams
 - memory is limited.

• <u>Developments</u>:

The paper has 2 citations:

- L. Golab, S. Garg and M. Tamer Ozsu. On Indexing Sliding Windows over On-line Data Streams.
 - Talks about sliding window indexing in main memory over online data streams
- Ahmet Bulut and Ambuj K. Singh. Stardust: Fast Stream Indexing using Incremental Wavelet Approximations
 - They propose an approach for summarizing a set of data streams, and for constructing a composite index structure to answer similarity queries.

QUESTION

What is the use of "Static Join Algorithm" in this paper?

QUESTIONS ?

10/23/2003