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Abstract

We consider the use of wavelet transformations as a di-
mensionality reduction technique to permit efficient simi-
larity search over high-dimensional time-series data. While
numerous transformations have been proposed and studied,
the only wavelet that has been shown to be effective for this
application is the Haar wavelet. In this work, we observe
that a large class of wavelet transformations (not only or-
thonormal wavelets but also bi-orthonormal wavelets) can
be used to support similarity search. This class includes the
most popular and most effective wavelets being used in im-
age compression. We present a detailed performance study
of the effects of using different wavelets on the performance
of similarity search for time-series data. We include sev-
eral wavelets that outperform both the Haar wavelet and
the best known non-wavelet transformations for this appli-
cation. To ensure our results are usable by an application
engineer, we also show how to configure an indexing strat-
egy for the best performing transformations. Finally, we
identify classes of data that can be indexed efficiently using
these wavelet transformations.

1. Introduction

The quantity of data stored in computers is growing
rapidly. Much of this data, particularly data collected au-
tomatically by sensing or monitoring applications, is time-
series data. A time series is a real-valued sequence, which
represents the status of a single variable over time. The
monitored activity can be a process defined by some hu-
man activity, like the fluctuations in Microsoft stock closing
prices, or a natural process, like Lake Huron historical wa-
ter levels. The presence of a time component in data is what
unifies such diverse data sets and classifies them as time se-
ries. Therefore, it is hardly surprising that much research
has been devoted recently to the efficient management of
time-series data [1, 24, 16, 19, et al].

Analysis of time-series data is rooted in the ability to
find similar series. Similarity is defined in terms of a dis-

tance metric, most often Euclidean distance or relatives of
the Euclidean distance [1]. Other distance metrics, includ-
ing the Lp Norms may also be used [35]. Because of the
high dimensionality of most time series, the direct index-
ing of time series is prohibitive. As a result dimensional-
ity reduction appears to be the most promising method for
overcoming this problem.

Agrawal, Faloutsos and Swami first proposed the use of
distance preserving transformations for this task (specifi-
cally orthonormal transformations which preserve the Eu-
clidean distance) [1]. The transformations are applied to
the original data and a few coefficients (or features) of the
transformed data are then indexed. Queries on the data are
transformed into queries on these features that can be effi-
ciently answered using the index. The answer in the feature
space, when converted back to the data space, must be a
superset of the original query answer. This property has
been referred to as the contractive property of the transform
which ensures no false dismissals. The intuition is that the
transformed query may have false positives (data that is not
in the query result) but no false negatives or false dismissals.
Hence, the results of the transformed query may be scanned
to eliminate false positives and arrive at the correct answer
to the original query. The correctness of this technique, re-
ferred to as an F-index, is predicated on having no false
dismissals. The efficiency is determined largely by two fac-
tors: the precision and the number of features used in the
index. The precision is the ratio of the size of the answer
of the original query divided by the size of the answer of
the transformed query. The closer the precision is to one,
the more efficient the technique will be. The precision is a
measure of how well the transformation is able to capture
the information or energy of the data in the indexed fea-
tures. The number of features used in the index will also
effect performance. The use of too many features will ren-
der the index search less effective as the performance of
even the best multidimensional index strategies decreases
in high dimensions [32, 3, 17, 7, 5].

Within this framework, we address the following ques-
tions.

1. Which transformations are effective for similarity
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search over time series? The original work by Agrawal
et al, as well as subsequent research [10, 25], used the Dis-
crete Fourier Transform (DFT) for feature extraction. Later
on, the Singular Value Decomposition (SVD) transformwas
suggested as a very accurate (high precision), but computa-
tionally expensive, alternative [33]. More recently, the Haar
Wavelet [6, 34] and other similar techniques [19, 20, 5, 35]
have been used to improve various aspects of the similarity
search process.

The incorporation of new and better transformations has
not yet taken advantage of the rapidly growing suite of so-
phisticated wavelet transformations being produced in the
data compression community. These transformations are
quickly been adopted for numerous applications. For ex-
ample, the JPEG 2000 standard replaces the Discrete Co-
sine Transform used by its predecessor, with wavelet trans-
forms. Inspired by the success of these transforms in the
closely related area of compression, we present a study of
their use in dimensionality reduction in time series.

Our first contribution is the observation that not only or-
thonormal, but also bi-orthonormal wavelets, can be used
for similarity search. This observation permits us to use a
large class of wavelets that arguably have found the most
success in compression.

Our second contribution is an empirical study that
details the performance of a large number of wavelets
in similarity search. We show that some of these more
sophisticated wavelets can outperform both Haar and the
standard transforms used in similarity search.

2. How do different transformations interact with
index-based similarity search? To use wavelets or any
transformation in practice for this application, we must
know how to best configure our indexing technique. For
wavelets, both the wavelet function and the filter length
can greatly effect the performance of the index. The way
in which each transformation concentrates the energy or
information of the data into features can be quite different.
As a result, different transformations may be sensitive to
the number of features used in the similarity search. This
sensitivity and the interaction of this sensitivity with the
index must be understood. In general, if more features are
indexed, the precision will be higher, but the index search
less effective. But the specifics of this trade-off will vary
with the transform and must be understood.

Our third contribution is a characterization of how to
configure an indexing strategy for the best performing
transformations. That is, we empirically determine the
number of features and the filter lengths that optimize these
transformations.

3. What data classes can be indexed effectively us-
ing an F-index? An important observation is that not

all time-series datasets are alike. Consider some of the
applications that have served as motivations for much of
this work.

� “Find if a musical score is similar to one of the copy-
righted scores” [1].

� “Find all currencies whose prices w.r.t. [the] US Dol-
lar have changed similarly to the price of gold for a
specific period of time” [35].

� “Find past days in which the solar magnetic wind
showed patterns similar to today’s pattern” [10].

Most work on similarity search has focussed on data that
can be classified as Brown noise (with special attention paid
to stock prices) [1, 6, 25, 19, 35]. Furthermore, most have
evaluated the technique on synthetically generated “pure”
Brown noise (generated using randomwalks). However, not
all time-series data is Brown noise, and not all real Brown
noise data is “pure” Brown noise. Important (and common)
classes of time-series data may also be classified as Black
or Pink noise or may fall in between these classes [26].

Our final contribution is a study including different
classes of time-series data (ranging from Black, to Brown,
to Pink and in between). We consider whether each class
can in fact be indexed effectively using an F-index. For
each indexable class, we show the performance of our pro-
posed wavelet transformations. In addition to addressing
the specific problem of similarity search, our results shed
light on how these more robust compression algorithms can
be used within data management. Specifically, we show that
wavelet techniques can be exploited in managing and ana-
lyzing not only highly correlated Black and Brown noise
data, but also data that lies in the area between Brown and
Pink.

The rest of the paper is organized as follows. In Section
2, we survey the related work. In Section 3, we discuss the
wavelet transform and its application as a dimensionality re-
duction technique. We show how bi-orthonormal wavelets
may be used in similarity search. Our experimental results
are reported and discussed in Section 4. Finally, Section
5 contains our conclusions and the direction of our current
work.

2. Related Work

Similarity matching of time-series data was first exam-
ined by Agrawal et al [1]. They suggest the use of the DFT
for feature extraction, arguing that most real signals need
only the first few Fourier coefficients to approximate them.
They introduce an indexing mechanism called an F-Index
which has been used as the framework for much of the sub-
sequent work in this area. Faloutsos et al generalized the
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F-Index for subsequence matching [10]. This early work
proved that in order to guarantee no false dismissal, for a
particular transform T , the distance measure in the feature
space (for any two object x and y) must satisfy the follow-
ing lower bounding lemma or contractive property.

Dfeature(T (x); T (y)) � Dobject(x; y); (1)

Rafiei and Mendelzon showed how to handle moving av-
erages in an F-Index [24]. In follow-on work, they sug-
gested the use of the symmetric property of the DFT to
increase the precision of the distance measure without in-
creasing the number of features stored in index [25]. Time
warping distance has also been considered [24, 19, 36].
Chan and Fu used the simplest wavelet, the Haar wavelet,
and showed performance improvements over DFT [6].
Struzik and Siebes have also applied the Haar wavelet in
this domain [28]. The Piecewise Aggregate Approximation
(PAA) transform, which is similar to the Haar transform,
has also been used for similarity search [19]. This work
also extended the F-index framework to support weighted
Euclidean distance [19]. Yi and Faloutsos used a similar
transform based on segmented means and showed that it
supports similarity search under any of the Lp norms [35].

3. Dimensionality Reduction Using Wavelets

A time series (a finite sequence of real values) is alterna-
tively called an object, sequence or signal in the literature.
We will also interchange the terms depending on context
and the aspect of the data we are discussing. The process of
dimensionality reduction can be described as follows. The
original times series or signal is a finite sequence of real
values, or coefficients, recorded over time in some object
space. This signal is transformed (using a specific transfor-
mation function) into a signal in a transformed space. To
achieve dimensionality reduction some subset of the trans-
formed coefficients are selected as features. These features
form a feature space which is simply a projection of the
transformed space.

The Fourier transform is based on the simple observa-
tion that every signal can be represented by a superposition
of sine and cosine waves. The Discrete Fourier Transform
(DFT) and Discrete Cosine Transform (DCT) are efficient
forms of the Fourier transform often used in applications.

Wavelets can be thought of as a generalization of this
idea to a much larger family of functions than sine and co-
sine [9, 29]. Mathematically, a “wavelet” denotes a func-
tion  j;k defined on the real numbers R, which includes an
integer translation by k, also called a shift, and a dyadic di-
lation (a product by the powers of two), often referred to as
stretching. The following set of functions where j and k are
integers, form a complete orthonormal system for L2(R).

 j;k(t) = 2j=2 (2jt� k); (2)

Using these functions, we can uniquely represent any
signal f 2 L2(R) by the following series.

f =
X
j;k2Z

hf;  j;ki j;k: (3)

Here hf; gi := RR f�gdx is the usual inner product of two
L2(R) functions. The functions  j;k(t) are referred as the
basis functions of the wavelets. Note that while the Fourier
transform has a single basis function (the exponential func-
tion), wavelets make use of an infinite family of basis func-
tions.

The Haar wavelets are the most elementary example of
wavelets. Although they have many drawbacks, they still
illustrate in a very direct way some of the main features
of wavelets and so we present them as an example. From
Equation (2), we see that each wavelet is built upon a partic-
ular function  . This function is often referred to as mother
wavelet. The mother wavelet for the Haar wavelets is the
following function.

 Haar(t) =

8<
:

1; if 0 < t < 0:5
�1; if 0:5 < t < 1
0; otherwise

The Haar family of wavelets is produced using this
mother wavelet and varying j and k in Equation 2.
Daubechies [9] discovered that wavelet transforms can be
implemented using a pair of Finite Impulse Response (FIR)
filters, called a Quadrature Mirror Filter (QMF) pair. These
filters are often used in the area of signal processing as they
lend themselves to efficient implementation. Each filter is
represented as a sequence of numbers. The filter length is
the length of this sequence. The output of a QMF pair con-
sists of two separate components: a high-pass and a low-
pass filter, which correspond to high-frequency and low-
frequency output, respectively. Wavelet transforms are con-
sidered to be hierarchical since they operate stepwise. The
input on each step is passed through the QMF pair. Both
the high-pass and low-pass component of the QMF output
are half the length of the input. The high-pass component is
naturally associated with details while the low-pass compo-
nent concentrates most of the energy or information of the
data. The low-pass component is used as further input, thus,
reducing the length of the input by a factor of 2 at each step.

3.1 Benefits of Wavelet Transforms

Practical experience has shown that for many applica-
tions wavelet transforms are as powerful and versatile as
the Fourier transform, yet without some of the limitations
of the latter. Wavelets have numerous properties that can
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be exploited in data management [18]. We briefly present a
few of the most commonly cited properties

� Some wavelet transforms have compact support. This
means that the basis functions are non-zero only on
a finite interval. What this means for an application
is that wavelets are able to capture local (time depen-
dent) properties of data, whereas Fourier transforms
can only capture global properties.

� The efficiency of the wavelet transform is superior
even when compared with the Fast Fourier transform.
The Fourier transform is O(n2), where n is the length
(number of attributes) of the data and Fast Fourier
transform is O(nlogn). In general, the speed of
wavelet transforms is linear in the length of the data.1

� The Fourier transform gives the set of frequency com-
ponents, which exist in our signal. On the other hand,
wavelet transforms give gradually refined represen-
tation of the signal of different scales, which corre-
spond to basis functions of different length. Hence,
the wavelet transform is hierarchical and allows much
finer tuning for a variety of applications [21].

� Unlike the Fourier transform, wavelet transforms have
an infinite set of possible basis functions. Thus, they
provide access to information that can be obscured by
other methods.

These properties and others have been exploited exten-
sively for managing images [14, 15, and others] and for a
variety of data compression applications including selectiv-
ity estimate [22], approximate query answering [4, 30] and
clustering [27]. However, their use as a scalable dimension-
ality reduction technique for time-series data has not yet
been fully appreciated. In the next section, we will show
how these properties can be exploited to improve the exist-
ing methods for similarity search.

3.2 Wavelet Comparison

We distinguish wavelet families which are named after
their creator. The wavelets are implemented using a pair of
FIR filters. Since the filters are of different lengths, we use
the length to distinguish among the wavelets within each
family. For example, Coiflet 4 (or the Coiflet wavelet of
length 4), refers to the wavelet of the Coiflet family, which
is implemented using a filter of length 4.

1Another performance benefit of using wavelet transform is that it is
real to real transform, hence, it is much easier to implement, and it reduces
the pre-processing and post-processing of data. The Fourier transform is a
complex transform, although its close cousin the Discrete Cosine transform
is real to real.
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Figure 1. Haar and Daubechies 12 wavelets
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Figure 2. Haar and Daub12 reconstruction

Several researchers have noted that wavelets can be used
in similarity search. Chan & Fu [6] proposed and studied
the use of the Haar wavelet transform as a dimensionality
reduction technique for this application. Both this study and
a similar study by Wu et al showed that the Haar wavelet
captures the shape of time series better than Fourier trans-
form within the context of similarity search [34]. Although,
the Haar wavelet shares most of the properties of other
wavelets, there is a major drawback. The basis functions for
the Haar wavelet, are not smooth (i.e., they are not contin-
uously differentiable). Rather, they have the shape shown
in the Figure 1a. Hence, the Haar wavelet approximates
any signal by a ladder-like structure. This undesirable effect
when approximating close to smooth functions is illustrated
in Figure 2a. Using 8 features of the Haar transform, we get
the step-like signal depicted in this figure.

Hence, the Haar wavelet is not likely to approximate a
smooth function using few features. The number of fea-
tures we must use is high (this property is referred to as
slow convergence). For comparison, we approximated the
same function using the Daubechies wavelet with a filter
length of 12. Figure 1b depicts the shape of the Daubechies
basis functions and Figure 2b gives the reconstructed sig-
nal (again using 8 features). To measure and compare the
quality of different transforms, we will use the mean rel-
ative error between the original signal and the transformed
signal.

Definition 3.1 Given a signal x of length N , let �x denote
any approximation of x. The mean relative error is defined
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as the mean of the relative error for each feature.

MeanRelativeError =
1

N

NX
i=1

j�x[i]� x[i]j
jx[i]j

In the example of Figure 2, the mean relative error for re-
construction using the Haar wavelet was 1:6576. The error
improved to 0:4771 when we used the Daubechies wavelet
to reconstruct the original signal. Note that the compression
ratio is 8=1024 = 0:078 in both cases. Using Daubechies,
just a few features are enough to have a meaningful close
representation of the original data. This property is ex-
tremely important for similarity search as the efficiency of
the index search will deteriorate if too many features are
used.

Schroeder suggests that real world time-series data are
indeed smoother than random data [26]. He goes on to char-
acterize the smoothness using the energy spectra of the data
which are captured by functions of the form f�� . Data sets
with a constant energy spectrum (that is � = 0) are called
white noise. As � increases, so does the smoothness of the
data. A � of 1 corresponds to Pink noise data (acoustic
signals), a � of 2 corresponds to Brown noise data (stock
prices) and larger � values correspond to Black noise (in-
cluding natural phenomenon). Note that the smoothness is
a measure of the correlation in the data. A skewed energy
spectrum means that the data is strongly correlated, and as
a result the data looks more like a smooth function than like
random data. Thus, by using a wavelet which better cap-
tures the specific characteristics of time-series data sets, the
same number of features will contain a much better descrip-
tion of the original data.

3.3 Using Wavelets in Similarity Search

Before we can use general wavelet transforms for sim-
ilarity search, we must show that they have the contrac-
tive property and thus can be used in a way that guarantees
no false dismissals. Chan and Fu state that the contractive
property is only known for the Haar wavelet [6]. In this
section, we show that we can in fact use any bi-orthonormal
wavelet for similarity search.

The contractive property for the relative distance in the
object and feature spaces can be used to guarantee that an
F-index does not result in any false dismissals (Equation (1)
of Section 2).

Fukanaga includes a proof that the Euclidean distance
is preserved for the class of orthonormal transforms [13].
The Haar wavelet as well as many other wavelets belong to
the class of orthonormal wavelets. However, many wavelet
transforms used in practice are not orthonormal. Indeed, the
majority of wavelets used in the area of image compression,
belong to the class of bi-orthonormalwavelets (defined be-
low). As we will see, the class of orthonormal wavelets,

is a subset of the class of bi-orthonormal wavelets. The
contractive property has not been shown for the class of bi-
orthonormal wavelets.

There are certain requirements that a wavelet should sat-
isfy. It has been proven that a necessary and sufficient
condition for stable reconstruction is that the energy of the
wavelet features lies between two positive bounds [9]. That
means that there exists constantsA and B such that the fol-
lowing holds. Here x is a data object and X is the transfor-
mation of x under the wavelet,X = T (x).2

AkXk2 � kxk2 � BkXk2 (4)

Note that for A = B = 1, Equation (4) turns into an
equality: kxk2 = kXk2. This equality shows that the
energy is preserved and, actually it holds for orthonormal
transforms. However, the constants A and B need not be
1, so the Euclidean distance is not in general preserved for
bi-orthonormal transformations. However, Equation (4) is
sufficient to let us determine a transformed query predicate
that will guarantee no false dismissals.

Notice first that for �-queries of radius � with a query
object q (and transformed query object Q = T (q)) we have
the following predicate.

AkX �Qk2 � kx� qk2 < �2 (5)

The last inequality implies, that a necessary condition for
the norm to be less than �2 is that every magnitude on the
left be less than �2. Hence, all the qualifying points in the
transform space must satisfy the following inequality.

kX �Qk2 < �2

A
(6)

So for each dimension k, we have the following.

jX [k]�Q[k]j < �p
A

(7)

As a result, using a search sphere of radius 1p
A
� or a

hyper-rectangle of width 2p
A
� in each dimension in the fea-

ture space will guarantee that we obtain all the required
points. Thus, using this transformed query predicate, we
can guarantee there are ’no false dismissal’ even for bi-
orthogonal wavelets.

4. Experimental Results

To verify the effectiveness of our proposed method, we
performed an extensive set of experiments on both real and
synthetic data. Each experiment is designed to answer one
of the following questions.

2Note that we are using standard vector notation to denote the Eu-
clidean distance.
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1. Do any wavelets outperform the Haar wavelet and the
best known non-wavelet transformations? We first wished
to validate our hypothesis that some of the more robust
wavelets can be effective for similarity search. We also
wished to understand which families of wavelets show good
performance for this application.

2. How does the number of dimensions or features used
in the indexing effect the search performance? The answer
to this question is important to being able to configure the
F-index.

3. Within a given family of wavelets (that is, for a fixed
wavelet function), how does the filter length effect the pre-
cision of the query?

4. Are wavelets effective for different data classes?
Additional experiments are reported in the full version

of the paper [23].

4.1 Experimental Setup

All the experiments use the same multidimensional in-
dex structure, namely Norbert Beckman’s Version 2 imple-
mentation of the R�-tree [2]. For the wavelet transforma-
tions, we used the “Imager Wavelet Library” which is a re-
search library [11]. This library, while perhaps not contain-
ing the fastest implementations of specific wavelets, did per-
mit us to experiment with a large suite of dozens of wavelet
functions. For comparison with DFT, we used one of the
best known implementations [12]. Because of this choice,
comparison of CPU times for the transformations would be
very biased and unreliable. While the complexity of DFT
is O(nlogn) compared to O(n) for wavelets, we actually
observed CPU times that were about 6 times faster for DFT
than for the Haar wavelet.

Different approaches have been proposed to compare the
effectiveness of different transformations. We will use the
query precision which we define as follows.

Precision(Q) =
Number of sequences in answer
Number of sequences retrieved

(8)

Dimensionality reduction implies information loss.
Therefore, the size of the data set retrieved using the in-
dex is always greater or equal to the size of the actual result
set and the range for the precision is [0; 1].

The precision, however, only compares the pruning
power of a particular technique, and it does not measure
overall performance. To ensure our results are not biased
by implementation details (such as our choice of transfor-
mation libraries), we report the performance in terms of the
number of physical page accesses. Both for the index and
for the database we use 4; 096 bytes as the default page size.
The parameters for our experiments are summarized in Ta-
ble 1. We follow the convention in this field of reporting
results for relatively small databases as the improvements

Parameter Symbol Ranges Default
Number Features F 3 - 21 9
Number Sequences S 36,000 36,000
Length Sequences D 128 - 512 128
Number Data Pages P 9,000 9,000
Query Selectivity s .01 - .1 .01

Table 1. Summary of experimental parameters

for larger datasets will be even more pronounced [1, 19].
We use sequences of length 128 as a default. Many of the
experiments were conducted with a range of different input
sequence lengths and we found the qualitative results unaf-
fected by the sequence length. Where this was not the case,
it is noted in the text.

4.2 Wavelet Study

Our first experiment is designed to determine whether
any of the more robust wavelets can be effective for similar-
ity search. To address this question, we copied an experi-
mental set up fromWu et alwhich was designed to compare
the use of the DFT (using the symmetry optimization [25])
with the Haar wavelet [34].

The data set consists of 1; 647 stocks and their historical
quotes in several time frames (daily, weekly, etc.)3 We se-
lected a set of 100 stocks and for each stock, we extracted
the closing prices for the last 360 days. Then we used a 128-
day sliding window, starting at the beginning and taking a
sample at each data point. When the window reached the
end of the 360 days sequence, we warped the beginning of
the 360-day sequence to the end. Since we started with 100
stocks and for each sequence we have 360 subsamples, we
ended up with 36000 time-series, each of which is 128 days
long. The size of the database is approximately 37Mbs,
stored in 9; 000 data pages. Notice that this database is cre-
ated using only a fraction of the original data. We used
the remaining data to generate the queries for the experi-
ments. All reported results are averaged over execution of
100 queries.

Our first aim was to study the pruning power of the com-
petitive techniques. Therefore, we fixed the number of in-
dex dimensions to 9, but we varied the query selectivities
from 0.02 to 0.1.

Figure 3 shows the precision over different query selec-
tivities. Note that the results for DFT and Haar are very
close as is suggested by Wu et al [34].4 However, the preci-

3This data set was obtained from Yahoo (“http://chart.yahoo.com/”).
4Chan and Fu did find that Haar showed improvement over DFT, but we

believe this is because they did not use DFT with Rafiei and Mendelzon’s
symmetry optimization [25].
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Figure 3. Precision of wavelets

sion of the Daubechies wavelet is significantly better. This
confirms our prediction that the precision can be improved
using wavelets that model the characteristics of the dataset
better. PAA is the Piecewise Aggregation Approximation
(also known as segmented means) that has been used in sev-
eral recent studies [19, 35]. We did not expect PAA to per-
form well on this pruning-power test. However, we have in-
cluded it since it has been shown to have good performance
in increasing classification accuracy for weighted Euclidean
distance [19]. Furthermore, it is the only technique suitable
for applications that require similarity models based on all
Lp norms [35].

We performed this experiment with a large class of
wavelets from our library. For this data set, which is an ex-
ample of brown noise (� = 1:99), we found the Daubechies
wavelet with filter length 12 outperformed all other wavelets
in the library. We expect the reason for this performance has
to do with the length of the Daubechies filter. Most of the
other wavelets in our library had filter lengths less than 10.
Intuitively, the length of the filter reflects the length of the
patterns that the wavelet is able to capture and use in com-
pressing the data. Given the success of the wavelets with
longer filters, we studied the effect of filter length in a sep-
arate experiment (Section 4.4).

4.3 Dimensionality Study

To study the impact of the index structure on the over-
all performance, we analyzed the number of page accesses
over a range of dimensionalities. For this study, we used the
same stock data as in the previous study and the best trans-
formation for this type of data, the Daubechies 12. The
query selectivity was 0.01. To understand the influence of
the number of dimensions used in indexing, we plot the per-
formance for different dimensions (Figure 4).

More index dimensions improve query precision. How-
ever, increasing the number of dimensions improves search
performance, but up to a point. To explain this, first notice
that the page accesses can be broken down into two compo-
nents: index page accesses and database page accesses.

An improvement in precision means that the number of
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Figure 4. Performance vs. # dimensions

database page accesses is decreasing. At the same time, the
number of index page accesses is steadily growing as the
performance of all multidimensional index structures de-
creases with added dimensions. Before the minimum (in
this experiment, 9 dimensions), the growth in the number of
index page accesses is less than the reduction in the number
of database page accesses, caused by the improved preci-
sion. Hence, the search performance is improved. After
this minimum, the situation is reversed. This same trade-off
will be present with any index structure although the opti-
mal point may be reached at a different number of dimen-
sions.

For the index structure we chose, we found 9 dimensions
to be optimal for most wavelets. We also found the same
optimum for other data sets that were Brown or midway
between Brown and Pink (for example, the River data set
described in Section 4.5). Hence, we believe this number is
influenced primarily by the index structure.
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Figure 5. R*-tree vs. SR-tree

To confirm that the optimum depends on the index struc-
ture, we decided to perform similar experiments using other
multi-dimensional indices. Collosi and Nascimento have
bench-marked a set of promising high-dimensional index
structures [8]. The SR-tree [17] and the M-tree [7] are
among the structures that clearly outperform the other com-
petitive techniques in their experimental set. We ran an ex-
periment to compare the R*-tree and the SR-tree, an im-
plementation of which is publicly available. We fixed the
selectivity to 0.01 and we used the Haar wavelet transform
for both index structures. For the SR-tree, the optimal num-

Proceedings of the 18th International Conference on Data Engineering (ICDE�02) 
1063-6382/02 $17.00 © 2002 IEEE 



ber of dimensions shifted to 17. Furthermore, we observe
that the SR-tree exhibits much slower deterioration when
the number of dimensions grows. However, Figure 5 con-
firms that the overall behavior of SR-tree is similar to the
one observed for the R*-tree.

4.4 Filter Length Study

For this experiment, we studied the effect of the filter
length on the precision of the query and the performance of
the search. We used the Daubechies family of wavelets for
several reasons.

� It includes the longest filter length (20) that we were
able to find. Given the success of longer filters in earlier
studies, we felt it was important to systematically study
these filters.

� It includes a larger set of filter lengths than other fami-
lies. For example, the Coiflet family is represented by filters
of three different lengths (2, 4, 6), for Daubechies family we
have filters of eight different lengths (4, 6, 8, 10, 12, 14, 16,
20).5

� It performs well for all type of data.
We varied the filter length from 4 to 20 and studied the

precision. The results are shown in Figure 6.
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Figure 6. Precision vs. filter length

The precision of the wavelets increases with increased
filter length to a point, then begins to decrease. For the
Daubechies family, we observe best performance for the fil-
ter of length 12. We believe the explanation for this is that
time-series data exhibits strong patterns of length 12�16 so
shorter filters are not able to take advantage of these trends
in compression. For longer filters, these trends are obscured
by additional data. To better quantify the impact to a user of
this performance difference, we measured the correspond-
ing access times for Daubechies 4 and the Daubechies 12
wavelets. The query precision, thus, the number of data
page accesses is the most reliable way to present perfor-
mance evaluation when comparing dimensionality reduc-
tion techniques. However, for this study we used the same

5Note that our library only came with Daubechies 12 and 20, but we
were able to add in Daubechies 14 and 16.

transformation library which permitted us to also do a rea-
sonable time comparison. For this experiment we fixed the
dimensionality of our R*-tree to 9 and we varied the se-
lectivity of the queries. To measure time, we recorded the
wall clock time by using the ‘times’ system call which is
similar to UNIX ‘time’ utility. We used one of our com-
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Figure 7. Daubechies 4 vs Daubechies 12

putational servers to perform this test. To avoid the influ-
ence of the server workload, we increased substantially the
number of tests and we ran the tests for the same selectiv-
ity consecutively. We used the “median” method to present
the results, i.e., we threw away the highest and the lowest
result for each run and we took the average over the rest.
The time used for the false alarm pruning stage is shown
in Figure 7. Despite our precautions, we observed some
anomalies, that confirmed our assumption that measuring
time cannot be considered universal. However, it was no-
table that Daubechies 12 outperformed the Daubechies 4 by
a margin of at least 9 seconds for all of the experiments.
For a selectivity of .01, this corresponds to almost a 20%
improvement.

4.5 Data Study

White noise (completely random) data, with a spectral
exponent � = 0 is not a subject for our indexing method.
On the other hand, brown noise, with spectral exponent
� = 2, has been shown very suitable for indexing using
dimensionality reduction techniques. A natural question is
how an F-index performs for signals in the gap between
white noise and brown noise, and for signals classified as
black noise. A related, yet more fundamental, question is
whether wavelets are an effective compression technique
for different types of time-series data. This question is es-
sential, since there are many real signals exhibiting spectral
exponent in the range � 2 [1� �; 1+ �], also known as pink
noise. At the same time, many natural phenomenon, for ex-
ample the level in water resources (like rivers and lakes),
are even more skewed. This data has a spectral exponent
� > 2, hence, these signals are classified as black noise.

To explore these questions and to test the limits of ap-
plication of wavelets to time-series data, we considered a
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number of different data sets with different noise character-
istics.

� Lakes - The historical water levels of the following
lakes: Erie, Michigan-Huron, Ontario, Superior and Lake
St. Clair. Records span the period 1918 - present. The
spectral exponent is � = 2:68.

� Stocks - The stock dataset used in the previous two
studies. The energy spectrum is � = 1:99.

� Pink - Synthetically generated dataset. We observe an
average spectrum of � = 1:01 for the output of our data
generator.

The Lakes dataset was the smallest with only 3; 936
sequences. Therefore, we adjusted the size of the other
two datasets to be the same. Throughout this experiments
the query selectivity was fixed at 0:01, and we used the
Daubechies 12 wavelet. Data dimensionality is 128, while
we vary the index dimensionality between 16, 32 and 64.
All the results are averaged over 100 queries.
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Figure 8. Different data characteristics

In this study, we tried to understand which classes of
data can be indexed using an F-index technique. The results
are plotted in Figure 8. The vertical axis is the part of the
database that is scanned throughout the query answering.
Thus, linear scan corresponds to a horizontal line at 1:0.
Considering the results, we observe that for pink noise data
we need to scan more of the dataset even using 64 dimen-
sions than for brown and black noise data using 16 dimen-
sions. Dimensionality of 64 is beyond the practical range
of almost all multidimensional indexing methods. Further-
more, a common rule of thumb in indexing is that if more
than 20% of the data needs to be retrieved using the index,
then a linear scan is better [31]. Hence, for pink noise data,
an index that performed efficiently for 32 dimensions (at
least) would be required.

Our experiment (and conclusion) relied on “pure” syn-
thetically generated pink noise. Hence, we decided to per-
form an additional experiment to try to determine whether
any data less correlated than brown noise could be indexed
effectively with this technique. We used the Rivers dataset,
which we obtained from the Hydro-Climatic Data Network
(HCDN).6 It consists of stream flow records for 1; 659 sites

6ftp://ftprvares.er.usgs.gov/hcdn92/

throughout the United States and its Territories. Records
cumulatively span the period 1874 through 1988. For this
dataset we observe, a spectral component of � = 1:4. No-
tice that the Lake dataset is excluded in Figure 8b, in or-
der to compare datasets of reasonable size. Hence, we are
able to use our default settings throughout this experiment
(rather than a small sample of the data as was used for Fig-
ure 8a). The results for the River data set is much closer
to Brown noise, than it is to our pure Pink data set. These
results motivate using an F-Index (even with a standard R*-
tree) as long as the spectral characteristic of the data sur-
passes 1:5. We expect many data sets to fit into this cate-
gory.

5. Conclusions

Inspired by the success of wavelets in data compression,
we have proposed using full-featuredwavelet transforms for
similarity search over time-series data. We have first con-
sidered the problem of whether general wavelets can in fact
be used for this application. We showed that a large class
of wavelets, in fact all wavelets with a stable reconstruction
(the class of bi-orthonormal wavelets), can in fact be used
for similarity search. We then presented a study of how dif-
ferent wavelets perform in this application. We experimen-
tally determined that wavelets with a relatively long (12-16)
filter length have the highest precision for this application.
We found this to be true for a number of real and synthetic
time-series data sets suggesting that these filter lengths best
model the important trends in this type of data. In partic-
ular, we presented wavelets that outperform the DFT and
Haar wavelet for this application.

In addition to our contributions to understanding and op-
timizing similarity search over time-series data, our work
considers the more general question of whether wavelets
can be used as part of an effective management or analysis
technique for different classes of time-series data. We have
shown that some of the more robust wavelets from image
compression are indeed effective for not only Brown noise
data (a well-studied class that includes most stock datasets),
but also for significantly less correlated data. Our results
show that data with a spectral component of 1.5 can be effi-
ciently search using off-the-shelf multidimensional indices.
They also suggest that even less correlated data may be ef-
ficiently search with some of the newly emerging indices
designed for much higher dimensions.
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