
In
uence Sets Based on

Rev erse Nearest Neighbor Queries

Flip Korn

AT&T Labs-Researc h

flip@research.att.com

S. Muth ukrishnan

AT&T Labs-Researc h

muthu@research.att.com

Abstract

Inherent in the operation of many decision support and
continuous referral systems is the notion of the \in
uence"
of a data point on the database. This notion arises in
examples such as �nding the set of customers a�ected by
the opening of a new store outlet location, notifying the
subset of subscribers to a digital library who will �nd a newly
added document most relevant, etc. Standard approaches to
determining the in
uence set of a data point involve range
searching and nearest neighbor queries.

In this paper, we formalize a novel notion of in
uence
based on reverse neighbor queries and its variants. Since the
nearest neighbor relation is not symmetric, the set of points
that are closest to a query point (i.e., the nearest neighbors)
di�ers from the set of points that have the query point as
their nearest neighbor (called the reverse nearest neighbors).
In
uence sets based on reverse nearest neighbor (RNN)
queries seem to capture the intuitive notion of in
uence from
our motivating examples.

We present a general approach for solving RNN queries
and an e�cient R-tree based method for large data sets,
based on this approach. Although the RNN query appears
to be natural, it has not been studied previously. RNN
queries are of independent interest, and as such should
be part of the suite of available queries for processing
spatial and multimedia data. In our experiments with
real geographical data, the proposed method appears to
scale logarithmically, whereas straightforward sequential
scan scales linearly. Our experimental study also shows that
approaches based on range searching or nearest neighbors
are ine�ective at �nding in
uence sets of our interest.

1 Introduction

A fundamental task that arises in various marketing and
decision support systems is to determine the \in
uence"
of a data point on the database, for example, the

in
uence of a new store outlet or the in
uence of a
new document to a repository. The concept of in
uence
depends on the application at hand and is often di�cult
to formalize. W e �rst develop an intuitive notion
of in
uence sets through examples to motivate our
formalization of it. The following two examples are
drawn from spatial domains.

Example 1 (Decision Support Systems): There
are many factors that may contribute to a clientele
adopting one outlet over another, but a simple premise
is to base it on the geographical proximity to the
customers. Consider a marketing application in which
the issue is to determine the business impact of opening
an outlet of CompanyA at a given location. A simple
task is to determine the segment of A's customers who
would be likely to use this new facility. Alternatively,
one may wish to determine the segment of customers
of Company B (say A's competitor) who are likely to
�nd the new facility more convenient than the locations
of B. Such segments of customers are loosely what we
would like to refer to as in
uence sets. 2

Example 2 (Con tinuousReferral Systems): Con-
sider a referral service wherein a user can specify a street
address, and the system returns a list of the �ve clos-
est FedExTM drop-o� locations.1 A responsible refer-
ral service may wish to give the option (e.g., by click-
ing a button) to make this a continuous query, that
is, to request the system to notify the user when this
list changes. The referral service will then notify those
users whose list changes due to the opening of a closer
FedEx drop-o� location or the closing of an existing
one. When such an event happens, the users who need
to be updated correspond to our notion of the in
uence
set of the added or dropped location. 2

Both examples above reinforce the notion of the
in
uence set of a data point in terms of geographical
proximity. This concept of in
uence sets is inherent

1See http://www.fedex.com/us/dropoff for a realization of
this.

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
MOD 2000, Dallas, TX USA
© ACM 2000 1-58113-218-2/00/05 . . .$5.00

201

in many other decision support situations and referral
services for which there is no underlying spatial or
geographical distance, but for which there is a notion
of similarity based on the vector space model (in which
\distance" between vectors is taken as a measure of
dissimilarity). The following two examples provide
illustration.

Example 3 (Pro�le-based Marketing): A com-
pany may wish to keep pro�les of its customers' in-
terests so that it can gear a new service towards most
customers. For example, suppose AT&T launches a new
wireless service. The service may be abstracted a fea-
ture vector (e.g., covers New England area, free local
calling on weekends, best for $100-per-month users).
The issue is which customers will �nd this the most
suitable plan for their calling patterns; these customers
form the in
uence set of the new service. One approach
is to identify such users based on the distance between
their pro�les and the feature vector representing the
new service. 2

Example 4 (Maintaining Document Reposito-
ries): Consider a repository of technical reports.
When a new report is �led, it may be desirable to alert
the authors of other TRs who would likely �nd the doc-
ument interesting based on similarity to their publica-
tions; the set of all such authors corresponds to the
notion of in
uence set we have been developing so far.
Here, the in
uence set is de�ned based on the similarity
between text documents which has been well-explored
in the Information Retrieval community. Other similar
scenarios abound, such as in a repository of Web pages,
precendent legal cases, etc. 2

Let us now make the notion of an in
uence set more
precise. We start with a data set S, some suitable
de�nition of distance between points in S, and a query
point q; the goal is to �nd the subset of points in S
in
uenced by q. Two suggestions present themselves
immediately. The �rst is to use range queries wherein
one speci�es a threshold radius � from q, and all points
within � are returned. The second is to use the well
known concept of nearest neighbors (NN), or, more
generally, k-nearest neighbors wherein one speci�es k,
and the k closest points to q are returned.
Both of these suggestions fall short of capturing the

intuitive notion of in
uence we have so far developed.
In both cases, parameters have to be engineered to yield
an appropriate result size, and it is not obvious how to
choose a value without a priori knowledge of the local
density of points. Range queries may be appropriate
for other notions of in
uence (e.g., the opening of
a toxic waste dump on its surrounding population)
but not for what is required in the examples given
above. NN queries are commonly used in domains

which call for searching based on proximity; however,
they are not appropriate in this context for similar
reasons. Consider Example 1, in which one wants to
�nd potential customers for a new store outlet q. The
deciding factor is not how close a customer is to q, but
rather if the customer is further from every other store
than from q. Thus, it may very well be the case that
potential customers lie outside a small radius from q, or
are further from q than the �rst few nearest neighbors.
Expanding the search radius will not necessarily work
around this problem. Although it may encompass more
customers who are likely to be in
uenced by q, it may do
so at the trade-o� of introducing many customers who
are not in the in
uence set (i.e., customers whose closest
store is not q). Later, we will make these discussions
more concrete and present quantitative measures of
comparison (see Section 6).

We address these shortcomings and develop a notion
of in
uence set with broad applications. A fundamental
observation which is the basis for our work here is that
the nearest neighbor relation is not symmetric. For
example, if p is the nearest neighbor of q, then q need
not be the nearest neighbor of p (see Figure 1).2 Note
that this is the case even though the underlying distance
function is Euclidean and, hence, symmetric. Similarly,
the k-nearest neighbor relation is not symmetric. It
follows that, for a given query point q, the nearest
neighbors of q may di�er substantially from the set of
all points for which q is a nearest neighbor. We call
these points the reverse nearest neighbors of q.

p

q
r

Figure 1: Nearest neighbors need not be symmetric:
the NN of q is p, whereas the NN of p is r. (An arrow
from point i to point j indicates that j is the nearest
neighbor of i.)

We now summarize our contributions:

� We identify a natural and broadly applicable notion
for the \in
uence" of a data point on the database
(namely, the in
uence set), and formalize it based
on reverse nearest neighbors (RNN) and its variants
(such as reverse k-nearest neighbors, reverse furthest
neighbor, etc.);

2That is, provided there are other points in the collection.

202

� We present a general approach for determining re-
verse nearest neighbors. Our approach is geometric,
reducing the problem to that of testing the enclosure
of points in geometric objects; it works for di�erent
distance functions and variants of RNNs. Although
the RNN query appears to be natural, it has not
been studied previously. RNN queries are of inde-
pendent interest, and as such should be part of the
suite of available queries for processing spatial and
multimedia data;

� Based on our approach, we propose e�cient and
scalable R-tree based methods for implementing re-
verse nearest neighbor queries. We also perform an
experimental study of the I/O-e�ciency of the pro-
posed R-tree based methods. Using our approach,
we show in terms of standard precision and recall
measures to assess the output quality, that well
known database queries (range and nearest neighbor
queries) are not e�ective in �nding in
uence sets.

The structure of the paper is as follows. Section 2
de�nes RNN queries and describes its relationship to
NN queries. Section 3 presents an approach and
algorithmic framework for answering RNN queries; we
also propose a scalable method for implementating
this framework using R-trees in Section 4. Section 5
gives empirical results from experiments for RNN
queries. In Section 6, we formalize the basic notion of
in
uence sets based on RNN queries and give results
from a qualitative study of the e�ectiveness of well
known queries to substitute for RNN queries. Then
we develop the variants of RNN queries needed for
generalized notions of in
uence sets. Section 7 reviews
the related work. Section 8 lists the conclusions and
gives directions for future work.

2 Reverse Nearest Neighbor Queries

Reverse nearest neighbor (RNN) queries are the basis
for in
uence sets, and are also of independent interest.
We de�ne and develop them in this section. We start
from the de�nition of the nearest neighbor (NN) query,
a standard query in spatial and multimedia databases
and de�ne the RNN query and its variants based on
this. We will develop the underlying concepts in two
dimensions for simplicity; there will be no di�culty in
extending them to higher dimensions. In our discussion,
we shall assume the distance between any two points
p = (px; py) and q = (qx; qy) is d(p; q) = (qx � px)

2 +
(qy � py)

2, known as the Euclidean, or L2, distance.
3

3Other Lp distances may also be interest, for example L1

where d(p; q) = jqx � pxj + jqy � pyj or L1 where d(p; q) =
maxfjqx � pxj; jqy � pyjg.

2.1 Formal De�nitions

Suppose we have a collection S of points in the plane.
For a nearest neighbor query, we are given a query point
q, and the goal is to determine the nearest neighbor set
NN (q) de�ned as

NN (q) = fr 2 S j 8p 2 S : d(q; r) � d(q; p)g:

Our focus here is on the inverse relation among the
points. Given any query point q, we need to determine
the set RNN (q) of reverse nearest neighbors, de�ned
as

RNN (q) = fr 2 S j 8p 2 S : d(r; q) � d(r; p)g:

RNN (q) may be empty, or have one or more elements,
and we may wish to return any one of them, or the
entire list.

2.2 Variants

There are two variants of this basic scenario that are
of interest to us. We will de�ne only the variants for
RNN queries, although the corresponding variants of
NN queries may also be of interest.
�Monochromatic vs Bichromatic. In some applications,
the points in S are of two di�erent categories, such as
clients and servers; the points may therefore be thought
of as being colored red or blue. The RNN query now
consists of a point in one of the categories, say blue, and
must determine the red points for which the query point
is the closest blue point. Formally, let B denote the set
of blue points and R the set of red points. Consider a
blue query point q. We have,

RNN (q) = fr 2 R j 8p 2 B : d(r; q) � d(r; p)g:

We call this the bichromatic version; in contrast, the
basic scenario above wherein all points were of the same
category is the monochromatic version. Both versions
of the problem are of interest.
At �rst look, the mono and bichromatic versions

of the RNN problem seem very similar. For a blue
query point, we consider only the red points and their
distance to the closest blue point (vice versa for the red
query points). However, at a deeper level, there is a
fundamental di�erence. Let us focus on the L2 case.

Proposition 1 For any query point, RNN (q) may
have at most 6 points in the monochromatic case; in
the bichromatic case, the size of the set RNN (q) may
be unbounded.

A proof of this may be found in [17]. From a combina-
torial viewpoint, the output of RNN queries is bounded;
this in turn a�ects the e�ciency because a RNN query
is output-sensitive. This entire phenomenon is not re-
stricted to the plane (e.g., in three dimensions, the

203

RNN (q) contains at most 12 points under L2 distance
and so on), or the distance function (e.g., in the L1
case, the cardinality of RNN (q) is at most 3d � 1 in d
dimensions).
� Static vs Dynamic. Sometimes we wish to insert or
delete points from the set S and still support the RNN
query; we refer to this as the dynamic case. In contrast,
the case when set S is not modi�ed is called the static
case. The dynamic case is relevant in most applications.
The crux here, as in all dynamic problems, is to be able
to handle insertions and deletions e�ciently without
rebuilding the entire data structure.

3 Our Approach to RNN Queries

Our approach for solving the reverse nearest neighbors
query problem is quite general, and it applies also to its
variants as we shall see.

3.1 Static Case

For exposition, let us consider a basic version of the
problem. We are given a set S of points which is
not updated, and the distance between any two points
is measured using Euclidean distance. Our approach
involves two steps.
Step 1. For each point p 2 S, determine the distance to
the nearest neighbor of p in S, denoted N (p). Formally,
N (p) = minq2S�fpg d(p; q). For each p 2 S, generate a
circle (p;N (p)) where p is its center and N (p) its radius.
(See Figure 2(a) for an illustration.)
Step 2. For any query q, determine all the circles
(p;N (p)) that contain q and return their centers p.
We have not yet described how to perform the two steps
above, but we will �rst prove that they su�ce.

Lemma 1 Step 2 determines precisely all the reverse
nearest neighbors of q.

Proof. If point p is returned from Step 2, then q
falls within the circle (p;N (p)). Therefore, the distance
d(p; q) is smaller than the radius N (p). In other words,
d(p; q) � N (p) and hence q is the nearest neighbor of
p (equivalently, p is a reverse nearest neighbor of q).
Conversely, if p is the reverse nearest neighbor of q,
d(p; q) � N (p) and, therefore, q lies within the circle
(p;N (p)). Hence, p will be found in Step 2. 2

What our approach has achieved is to reduce the
problem of answering the reverse nearest neighbor query
to the problem of �nding all nearest neighbors (Step 1)
and then to what is known in the literature as point
enclosure problems wherein we need to determine all
the objects that contain a query point (Step 2).
Our approach is attractive for two reasons. First,

both steps are of independent interest and have been
studied in the literature. They have e�cient solutions,
as we will see later. Second, our approach extends to
the variants of our interest as we show below.

Other distance functions. If the distance function is L1
rather than L2, we generate squares (p;N (p)) in Step 1
with center p and sides 2N (p). (See Figure 2(b) for an
illustration.) Similarly, for other Lp distance functions,
we will have suitable geometric shapes.
Bichromatic version. Consider only blue query points
for now. We perform the two steps above only for
the red points in set S. For each red point p 2 S,
we determine N (p), the distance to the nearest blue
neighbor. The rest of the description above remains
unchanged. We also process for red query points
analogously.

3.2 Dynamic Case

Our description above was for the static case only. For
the dynamic case, we need to make some modi�cations.
Below we assume the presence of a (dynamically
maintained) data structure for answering NN queries.
Recall the de�nition of N (p) for point p from the
previous section. Consider an insertion of a point q
(as illustrated in Figure 3(a)):

1. Determine the reverse nearest neighbors p of q. For
each such point p, we replace circle (p;N (p)) with
(p; d(p; q)), and update N (p) to equal d(p; q);

2. Find N (q), the distance of q from its nearest
neighbor, and add (q;N (q)) to the collection of
circles.

Lemma 2 The insertion procedure is correct.

Proof. It su�ces to argue that, for each point p, N (p)
is the correct distance of p to its nearest neighbor after
an insertion. This clearly holds for the inserted point q
from Step 2. Among the rest of the points, the only ones
which will be a�ected are those which have q as their
nearest neighbor, in other words, the reverse nearest
neighbors of q. For all such points p, we update their
N (p)'s appropriately in Step 1. The remaining points
p do not change N (p) as a result of inserting q. Hence,
all points p have the correct value of N (p). 2

Step 1 is shown in Figure 3(b) where we shrink all
circles (p;N (p)) for which q is the nearest neighbor of
p to (p; d(p; q)). Step 2 is shown in Figure 3(c).
Now consider an deletion of a point q (as illustrated

in Figure 4(a)):

1. We need to remove the circle (q;N (q)) from the
collection of circles (see Figure 4(b));

2. Determine all the reverse nearest neighbors p of q.
For each such point p, determine its current N (p)
and replace its existing circle with (p;N (p)).

We can argue much as before that the deletion
procedure is correct. The crucial observation is that

204

p
N

(p
)

p

N
(p

)

(a) L2 case (b) L1 case

Figure 2: A point set and its nearest neighborhoods.

q q q

(a) �nd RNN (q) (b) shrink circles (c) �nd NN (q)

Figure 3: A geometrical illustration of the insertion algorithm.

the only existing circles (p;N (p)) that get a�ected are
those that have q on the circumference, that is, those
associated with the reverse nearest neighbors of q; their
circles get expanded in Step 1 (see Figure 4(c)). The
details for how to extend these algorithms to other
distance functions and to the bichromatic version are
similar to those given in the previous section.

4 Scalable RNN Queries

In this section we propose a scalable method for
implementing RNN queries on large, out-of-core data
sets, based on our approach from Section 3. Like NN
queries, RNN queries are I/O-bound (as opposed to,
e.g., spatial joins which are CPU-bound), and thus the
focus is on I/O performance. Because R-trees [7, 2, 16]
have been successfully deployed in spatial databases
and because of their generality to support a variety
of norms via bounding boxes, we use them in the
proposed method. However, note that any spatial
access method could be employed (see [6] for a recent

survey of spatial access methods). Our deployment
of R-trees is standard, but requires some elaboration.
First we describe static RNN search; we then present
details of the algorithms and data structures for the
dynamic case.

4.1 Static Case

The �rst step in being able to e�ciently answer RNN
queries is to precompute the nearest neighbor for each
and every point. The problem of e�ciently computing
all-nearest neighbors in large data sets has been studied
in [3, 8], and thus we do not investigate it further in this
paper.4

Given a query point q, a straightforward but naive
approach for �nding reverse nearest neighbors is to
sequentially scan through the entries (pi ! pj) of a
precomputed all-NN list in order to determine which
points pi are closer to q than to pi's current nearest

4All-nearest neighbors is a special case of a spatial join.

205

q q q

(a) remove NN (q) (b) �nd RNN (q) (c) expand circles

Figure 4: A geometrical illustration of the deletion algorithm.

neighbor pj. Ideally, one would like to avoid having to
sequentially scan through the data.

Based on the approach in Section 3, a RNN query
reduces to a point enclosure query in a database
of nearest neighborhood objects (e.g., circles for L2

distance in the plane); these objects can be obtained
from the all-nearest neighbor distances. We propose to
store the objects explicitly in an R-tree. Henceforth, we
shall refer to this instantiation of an R-tree as an RNN-
tree. Thus, we can answer RNN queries by a simple
search in the R-tree for those objects enclosing q.

4.2 Dynamic Case

As mentioned in Section 4.1, a sequential scan of a
precomputed all-NN list can be used to determine the
reverse nearest neighbors of a given point query q.
Insertion and deletion can be handled similarly. Even if
this list were inverted, enabling deletion to be achieved
in constant time by looking up the corresponding entry
(pj ! fpi1 ; pi2; : : : ; pikg), queries and insertions would
still require a pass over the data. We would like to avoid
having to do this.

We describe how to incrementallymaintain the RNN-
tree in the presence of insertions and deletions. To
do this will require a supporting access method that
can �nd nearest neighbors of points e�ciently. At this
point, one may wonder if a single R-tree will su�ce
for �nding reverse nearest neighbors as well as nearest
neighbors, in other words, if our RNN-tree can be used
for this purpose, This turns out to be not the case
since geometric objects rather than points are stored
in the RNN-tree, and thus the bounding boxes are not
optimized for nearest neighbor search performance on
points. Therefore, we propose to use a separate R-tree
for NN queries, henceforth referred to as an NN-tree.
Note that the NN-tree is not needed for static RNN
queries, only for insertions and deletions, and that,
in addition to the RNN-tree, it must be dynamically

maintained.

Algorithm Insert:
Input: point q

1. fp1; p2; : : : ; pkg query q in RNN-tree;

2. for each pi (with corresponding Ri) do

3. shrink Ri to (pi; d(pi; q));
4. find N(q) from NN-tree;

5. insert q in NN-tree;

6. insert (q;N(q)) in RNN-tree;

AlgorithmDelete:
Input: point q

1. delete q from NN-tree;

2. fp1; p2; : : : ; pkg query q in RNN-tree;

3. delete (q;N(q)) from RNN-tree;

4. for each pi (with corresponding Ri) do

5. find N(pi) from NN-tree;

6. grow Ri to (pi; N(pi));

Figure 5: Proposed Algorithms for Insertion and
Deletion.

Figure 5 presents pseudocode for insertion and dele-
tion. The algorithm for insertion retrieves (from the
RNN-tree) the reverse nearest neighbors pi of q, and
their corresponding neighborhood objects Ri, without
having to scan; each Ri is then reduced in size to
(pi; d(pi; q)). The algorithm for deletion works simi-
larly, using the RNN-tree to �nd the points pi a�ected
by the deletion; each corresponding Ri is then expanded
to (pi; d(pi; N (pi)).

5 Experiments on RNN queries

We designed a set of experiments to test the I/O
performance of our proposed method on large data
sets. Our goal was to determine the scale-up trend of
both static and dynamic queries. We also examined
the performance of bichromatic versus monochromatic

206

data. Below we present results from two batches of
experiments, for static and dynamic RNN queries.

Methods: We compared the proposed algorithms
given in Section 4 to the basic scanning approach. In
the static case, the scanning approach precomputes an
all-NN list and makes a pass through it to determine
the reverse nearest neighbors. In the dynamic case,
the scanning approach precomputes and maintains an
inverted all-NN list. Each entry in the all-NN list
corresponds to a point in the data set, and thus requires
storing two items for nearest neighbor information:
the point coordinates and nearest neighbor distances.
Similarly, the RNN-tree used in the proposed method
requires storing each point and its associated nearest
neighborhood. Both also use an NN-tree for nearest
neighbor search. Thus, the methods require the same
storage space.

Data Sets: Our testbed includes two real data sets.
The �rst is mono and the second is bichromatic:

� cities1 - Centers of 100K cities and small towns in
the USA (chosen at random from a larger data set of
132K cities), represented as latitude and longitude
coordinates;

� cities2 - Coordinates of 100K red cities (i.e.,
clients) and 400 black cities (i.e., servers). The red
cities are mutually disjoint from the black cities, and
points from both colors were chosen at random from
the same source.

Queries: We assume the so-called `biased' query
model, in which queries are more likely to come from
dense regions [13]. We chose 500 query points at
random (without replacement) from the same source
that the data sets were chosen; note that these points
are external to the data sets. For dynamic queries, we
simulated a mixed workload of insertions by randomly
choosing between insertions and deletions. In the case
of insertions, one of the 500 query points were inserted;
for deletions, an existing point was chosen at random.
We report the average I/O per query, that is, the
cumulative number of page accesses divided by the
number of queries.

Software: The code for our experiments was imple-
mented in C on a Sun SparcWorkstation. To implement
RNN queries, we extended DR-tree, a disk-resident R*-
tree package; to implement NN queries (which were
used for the second batch of experiments), we used the
DR-tree as is.5 The page size was set to 4K.

5available at ftp://ftp.olympos.umd.edu.

5.1 Static Case

We uniformly sampled the cities1 data set to get
subsets of varying sizes, between 10K and 100K points.
Figure 6(a) shows the I/O performance of the proposed
method compared to sequential scan. Each query took
roughly between 9-28 I/Os for the data sets we tried
with our approach; in contrast, the performance of the
scanning approach increased from 40 to 400 I/Os with
increasing data set size (n). The gap between the two
curves clearly widens as n increases, and the proposed
method appears to scale logarithmically, whereas the
scanning approach scales linearly.
We performed the same experiment for cities2.

Figure 6(b) plots the I/O performance. It is interesting
to note that the performance degrades more with
increasing n (from 12-65 I/Os) with bichromatic data;
this is primarily because the output size is larger in
bichromatic case than in the monochromatic case as
remarked earlier. However, this increase again appears
to be logarithmic.

5.2 Dynamic Case

Again, we used the cities1 data set and uniformly
sampled it to get subsets of varying sizes, between 10K
and 100K points. As shown in Figure 7, the I/O cost
for an even workload of insertions and deletions appears
to scale logarithmically, whereas the scanning method
scales linearly. It is interesting to note that the average
I/O is up to four times worse than in the static case,
although this factor decreases for larger data sets. We
broke down the I/O into four categories { RNN queries,
NN queries, insertions and deletions { and found that
each took approximately the same number of I/Os.
Thus, the maintenance of the NN-tree accounts for the
extra I/O compared to the static queries.

20

40

60

80

100

120

140

160

180

200

220

10000 30000 50000 70000 90000

A
vg

 I/
O

s

Data set size (n)

cities: Dynamic Performance

"insdel.proposed.cities"
"insdel.scan.cities"

Figure 7: The I/O performance of dynamic RNN
queries (proposed method vs. scanning) in the presence
of an even mix of insertions and deletions.

207

0

50

100

150

200

250

300

350

400

10000 30000 50000 70000 90000

A
vg

 I/
O

s

Data set size (n)

cities: Static Performance

"static.proposed.cities"
"static.scan.cities"

0

50

100

150

200

250

300

350

400

10000 30000 50000 70000 90000

A
vg

 L
ea

f I
/O

s

Data set size (n)

cities.bipartite: Static RNN Performance

"static.proposed.cities.bipartite"
"static.scan.cities.bipartite"

(a) cities1 (monochromatic) (b) cities2 (bipartite)

Figure 6: The I/O performance of static RNN queries (proposed method vs. scanning) for (a) cities1

(monochromatic) and (b) cities2 (bipartite).

6 In
uence Sets

6.1 Basic notion and applications

Our �rst, and most basic, de�nition of the in
uence
set of a point q is simply that it is the set of all
reverse nearest neighbors of q, that is, RNN (q). This
may be mono or bichromatic reverse nearest neighbors,
depending on the application.
Before exploring this notion further, let us brie
y

reexamine the motivating examples from Section 1. In
Examples 1 and 2, the in
uence set of the new location
of a store outlet is indeed the set of customers who
�nd the new location the closest amongst all locations
of stores. This is an instance of bichromatic RNN.
In Example 3, the customers who are in
uenced by a
new service are those whose pro�les have the feature
vector of the new service closest amongst all service
feature vectors. Again, the in
uence set of the new
service corresponds to our basic de�nition above. In
Example 4, the in
uence set of a new document is the
set of all documents in the database that �nd it the
closest under a suitable measure of similarity; here, the
de�nition of an in
uence set based on monochromatic
RNNs applies.
We can think of many other applications where the

basic notion of in
uence set arises. What is perhaps
more interesting is that this notion of in
uence sets
implicitly arises in many computational tasks.
For example, many problems of interest in Operations

Research and Combinatorial Optimization have greedy
solutions with good performance. One such example
is the facility location problem. Here we are given
many points and the goal is to designate some as
facilities and others as non-facilities. There is a cost
to designating a point as a facility, and a cost for non-

facilities which equals the cost of accessing the closest
facility. This problem is known to be NP-hard, and
thus the focus is on designing approximation algorithms
for this problem. The method of choice in practice for
this problem is the greedy method { it is simple, and
is a provably small approximation [14].6 The greedy
algorithm involves repeatedly adding a facility, deleting
one, or swapping a facility with a non-facility. In order
to implement this algorithm, we need to determine
the enhanced cost when a new facility is added which
involves looking at precisely those locations whose NN
distance is changed when a new facility is added (or
deleted, swapped). The set of all such locations is
indeed our basic de�nition of a in
uence set; these have
been implicitly computed in this context for a long time.
Another example is that of computing the shortest path
from a single point to every other point in the database.
When a point is added to a partial solution that greedy
algorithms maintain, the distance of remaining points
to the partial solution has to be updated and this will
again be given by the in
uence set of the point added
to the partial solution. Many other implicit uses of
in
uence sets exist in Combinatorial Optimization.

6.2 Using existing methods

There are two potential problems with the e�ectiveness
of any approach to �nding in
uence sets. One is
the precision problem wherein a large portion of the
retrieved set contains irrelevant points. Conversely,
there is the recall problem wherein the retrieved set
misses some of the relevant points. An e�ective
approach would achieve high precision at high recall

6Better approximations exist, but they are based on Linear
Programming [10].

208

(ideally, 100% precision at 100% recall). In this section
we present results from an experiment to demonstrate
that nearest neighbor queries and range queries are not
e�ective \engineering" substitutes for RNN queries in
�nding in
uence sets; we use standard precision and
recall metrics from information retrieval to assess their
quality.

The �rst issue that arises in �nding in
uence sets
is what region to search in. Two possibilities immedi-
ately present themselves: �nd the closest points (i.e.,
the k-nearest neighbors) or all points within some ra-
dius (i.e., �-range search). Of course, there are many
variants of these basic queries, such as searching with
weighted distances, searching over polygonal or ellipti-
cal regions, etc. To demonstrate the ine�ectiveness of
these approaches, it shall su�ce to consider the most
basic version. The question then is how to engineer the
parameter value (namely k or �) that will contain the
desired information. Without a priori knowledge of the
density of points near the query point q, it is not clear
how to choose these values. Regardless, we show that
any clever strategy to engineer parameter values (be it
from histograms, etc.) would still fall short.

Figure 8 illustrates this concept. The black points
represent servers and the white points represent clients.
In this example, we wish to �nd all the clients for
which q is their closest server. The example illustrates
that a �-range (alternatively, k-NN) query cannot
�nd the desired information in this case, regardless
of which value of � (or k) is chosen. Figure 8(a)
shows a 'safe' radius �l in which all points are reverse
nearest neighbors of q; however, there exist reverse
nearest neighbors of q outside �l. Figure 8(b) shows
a wider radius �h that includes all of the reverse nearest
neighbors of q but also includes points which are not.
In this example, it is possible to achieve 100% precision
or 100% recall, but not both simultaneously.

We ran an experiment to investigate how often this
trade-o� occurs in practice. The experiment was carried
out as follows. Suppose we had an oracle to suggest the
largest radius �l admitting no false-positives, i.e., whose
neighborhood contains only points in the in
uence
set. For this scenario, we assess the quality of the
retrieved set from the number of false-negatives within
this radius. More speci�cally, we measured the recall at
100% precision, that is, the cardinality of the retrieved
set divided by that of the in
uence set. Further suppose
we had an oracle to suggest the smallest radius �h
allowing no false-negatives, i.e., whose neighborhood
contains the full in
uence set (equivalently, reverse
nearest neighbors). For this scenario, we assess the
quality of the retrieved set from the number of false-
positives within this radius. More spec�cially, we
measured the precision at 100% recall, that is, the
cardinality of the in
uence set divided by that of the

retrieved set.
We used the cities2 data set in the our experiment

and averaged over 100 queries. The results are
summarized in Table 1. The quality of the retrieved
set at radius �l is poor, containing a small fraction of
the full in
uence set. The quality of the retrieved set
at radius �h is also poor, containing a lot of 'garbage'
in addition to the in
uenced points.

measure radius value

precision (at 100% recall) �h 44.3%
recall (at 100% precision) �l 40.2%

Table 1: The e�ectiveness of range queries in �nding
in
uence sets. Quality is measured by precision at 100%
recall and recall at 100% precision.

6.3 Extended notions of in
uence sets

In this section, we extend the notion of in
uence
sets from the previous section. We do not explore
these notions in depth here using experiments; instead
we focus on sketching how our approach for �nding
the basic in
uence sets can be modi�ed to �nd these
extended in
uence sets. Some of these modi�cations
will be straightforward, others less so.

Reverse k-nearest neighbors. A rather simple
extension of the in
uence set of point q is to de�ne
it to be the set of all points that have q as one of
their k nearest neighbors. Here, k is �xed and speci�ed
a priori. For static queries, the only di�erence in
our solution is that we store the neighborhood of kth
neighbor rather than nearest neighbor. (Note that we
do not explicitly store the k nearest neighbors.) Each
query is an enclosure problem on these objects as in
the basic case. For insertions and deletions, we update
the neighborhood of the kth nearest neighbor of each
a�ected point as follows. When inserting or deleting
q, we �rst �nd the set of a�ected points using the
enclosure problem as done for answering queries. For
insertion, we perform a range query to determine the
k nearest neighbors of each such a�ected point and
do necessary updates. For deletion, the neighborhood
radius of the a�ected points is expanded to the distance
of the (k + 1)th neighbor, which can be found by a
modi�ed NN search on R-trees.

In
uence sets with predicates. The basic notion
of in
uence sets can be enhanced with predicates.
Some examples of predicates involve bounding the
search distance (�nd reverse nearest neighbors within
a speci�ed region of interest) and providing multiple
facilities (�nd the reverse nearest neighbors to any,
some, or all of multiple points in the set fq1; : : : ; qmg).

209

l

q

ε

q

hε

(a) range �l (b) range �h

Figure 8: In many cases, any �-range query or k-NN query will be either (a) too small or (b) too big.

For such queries, we can push the predicates inside the
R-tree search.

Reverse furthest neighbors. An interesting varia-
tion of in
uence sets is to base it on dissimilarity rather
than similarity, in other words, on furthest neighbors
rather than nearest neighbors. More formally, de�ne
the in
uence set of a point q to be the set of all points
r such that q is farther from r than any other point of
the database is from r. This notion of in
uence has a
solution that di�ers from the basic notion in an inter-
esting way. We sketch the solution here only for the
static case, but all modi�cations to convert this into
a dynamic solution are based on ideas we already de-
scribed before. We will also only describe the solution
for the two dimensional case, but extending it to the
multi-dimensional case is straightforward.
Say S is the set of points which will be �xed. A query

point is denoted q. For simplicity, we will �rst describe
our solution for the L1 distance.
Preprocessing: We �rst determine the furthest point
for each point p 2 S and denote it as f(p). We will put
a square with center p and sides 2d(p; f(p)) for each p;
say this square is Rp.
Query processing: The simple observation is that for
any query q, the reverse furthest neighbors r are those
for which the Rr does not include q. Thus the problem
we have is square non-enclosure problem. (Recall that,
in contrast, the reverse nearest neighbors problem led
to square enclosure problem.)
The following observation is the key to solving the

square non-enclosure problem.

Lemma 3 Consider the intervals xr and yr obtained by
projecting the square Rr on x and y axis respectively.
A point q = (x; y) is not contained in Rr if and only if
either xr does not contain x or yr does not contain y.

Therefore, if we return all the xr's that do not contain
x as well as those yr 's that do not contain y's, each
square r in the output is repeated atmost twice. So the
problem can be reduced to a one dimensional problem
on intervals without losing much e�ciency. Let us
restate the one dimensional problem formally: we are
given a set of intervals, say N of them. Each query is a
one dimensional point, say p, and the goal is to return
all interval that do not contain p.
For solving this problem, we maintain two sorted

arrays, one of the right endpoints of the intervals
and the other of their left endpoints. The following
observation is easy:

Proposition 2 Any interval with its right endpoint to
the left of p does not contain p. Likewise, any interval
with its left endpoint to the right of p does not contain
it.

Hence, it su�ces to perform two binary searches with
p in the two arrays, to determine the intervals that do
not contain p. Notice that from a practical viewpoint,
the only data structure we need is a B-tree to keep these
two arrays.

Theorem 1 There exists an �(logBN + t) time algo-
rithm to answer each query in the square non-enclosure
problem, where t is the output size, N = n=B is the
number of disk blocks, and B is the block size; space
used is �(N).

Although the solution above is simple, we are not
aware of any published claim of this result for square
non-disclosure problem. As mentioned before, this
immediately gives a solution for �nding the set of all
reverse furthest neighbors for a query point under the
L1 distance. While a R-tree may be used to solve this

210

problem, our solution above shows that the only data
structure we need is to a B-tree. Hence, the solution is
very e�cient. For other distance functions, we still have
non-enclosure problem, but with di�erent shapes (e.g.,
circles for Euclidean distance). Practical approaches for
solving such problems would be to either use bounding
boxes to reduce the problem to square non-enclosure
with some false positives, or to use R-tree based search.

7 Related Work

There has been a lot of work on nearest neighbor
queries [5, 11, 4, 15, 9]. NN queries are useful in
many applications: GIS (`Find the k nearest hospitals
from the place of an accident.'), information retrieval
(`Find the most similar web page to mine.'), multimedia
databases (`Find the tumor shape that looks the most
similar to the query shape.' [12]), etc. Conceptually,
a RNN query is di�erent from a NN query; it is the
inverse.
There has been work in the area of spatial joins, and

more speci�cally with all-nearest neighbor queries [8].
To the best of our knowledge, none of the previous
work has addressed the issue of incremental mainte-
nance. While reverse nearest neighbors is conceptually
di�erent, RNN queries provide an e�cient means to in-
crementally maintain all-nearest neighbors.
Both incremental and random incremental Delaunay

triangulations could be used for answering RNN queries,
as the update step involves identifying points (and their
circumcircles) local to the query point whose edges
are a�ected by insertion/deletion, a superset of reverse
nearest neighbors.7 However, these algorithms rely on
being able to e�ciently locate the simplex containing
the query point, a problem for which there is no e�cient
solution in large data sets. In addition, the algorithms
make the general position assumption and do not work
well for the bipartite case.
Our approach for RNN queries relied on solving

point enclosure problems with di�erent shapes. Point
enclosure problems with n rectangles can be solved after
O(n logd�1 n) time preprocessing inO(logd�1 n+t) time
per query where t is the output size [1]. Such e�cient
algorithms are not known for other shapes, for dynamic
cases, or for external memory datasets. Our R-tree
approach is simple and applies to all the variants of
RNN queries.

8 Conclusions and Future Work

The \in
uence" of a point in a database is a useful
concept. In this paper, we introduce an intuitive
notion of in
uence based on reverse nearest neighbors,
and illustrate through examples that it has broad

7Alternatively, one could use the dual data structure, Voronoi
diagrams.

appeal in many application domains. The basic
notion of in
uence sets depends on reverse nearest
neighbor queries, which are also of independent interest.
We provide the �rst solution to this problem, and
validate its I/O-e�ciency through experiments. We also
demonstrate using experiments that standard database
queries such as range searching and NN queries are
ine�ective at �nding in
uence sets. Finally, we further
extend the notion of in
uence based on variants of RNN
queries and provide e�cient solutions for these variants
as well.
We have initiated the study of in
uence sets using

reverse nearest neighbors. Many issues remain to be
explored, for example, the notion of in
uence outside
of the typical query-response context, such as in data
mining. It is often desirable to process the data set to
suggest a region in which a query point should lie so
as to exert maximal in
uence. What is the appropriate
notion of in
uence sets in this context? From a tech-
nical point of view, e�cient solutions for RNN queries
are needed in high dimensions. Extensions of our ap-
proach to higher dimensions is straightforward; how-
ever, in very high dimensions, alternative approaches
may be needed, as is the case for high dimensional NN
queries. Also, the role of RNN queries can be explored
further, such as in other proximity-based problems. It
is our belief that the RNN query is a fundamental query,
deserving to be a standard tool for data processing.

Acknowledgements

The authors wish to thank Christos Faloutsos, Dimitris
Gunopoulos, H.V. Jagadish, Nick Koudas, and Dennis
Shasha for their comments.

References

[1] P. Agrawal. Range searching. In E. Goodman and
J. O'Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 575{598. CRC
Press, Boca Raton, FL, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An e�cient and robust
access method for points and rectangles. ACM
SIGMOD, pages 322{331, May 23-25 1990.

[3] T. Brinkho�, H.-P. Kriegel, and B. Seeger. E�cient
processing of spatial joins using R-trees. In Proc. of
ACM SIGMOD, pages 237{246,Washington, D.C.,
May 26-28 1993.

[4] B. Chazelle and L. J. Guibas. Fractional cascading:
I. A data structuring technique. Algorithmica,
1:133{162, 1986.

[5] K. Fukunaga and P. M. Narendra. A branch
and bound algorithm for computing k-nearest

211

neighbors. IEEE Trans. on Computers (TOC), C-
24(7):750{753, July 1975.

[6] V. Gaede and O. Gunther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170{
231, June 1998.

[7] A. Guttman. R-trees: A dynamic index structure
for spatial searching. In Proc. ACM SIGMOD,
pages 47{57, Boston, Mass, June 1984.

[8] G. R. Hjaltason and H. Samet. Incremental
distance join algorithms for spatial databases.
ACM SIGMOD '98, pages 237{248, June 1998.

[9] G. R. Hjaltason and H. Samet. Distance browsing
in spatial databases. ACM TODS, 24(2):265{318,
June 1999.

[10] K. Jain and V. Vazirani. Primal-dual approxima-
tion algorithms for metric facility location and k-
median problems. Proc. 40th IEEE Foundations of
Computer Science (FOCS '99), pages 2{13, 1999.

[11] D. G. Kirkpatrick. Optimal search in planar
subdivisions. SIAM J. Comput., 12:28{35, 1983.

[12] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel,
and Z. Protopapas. Fast nearest-neighbor search
in medical image databases. Conf. on Very Large
Data Bases (VLDB), pages 215{226, September
1996.

[13] B. Pagel, H. Six, H. Toben, and P. Widmayer.
Towards an analysis of range query performance.
In Proc. of ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems
(PODS), pages 214{221, Washington, D.C., May
1993.

[14] R. Rajaraman, M. Korupolu, and G. Plaxton.
Analysis of a local search heuristic for facility
location problems. Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA '98),
pages 1{10, 1998.

[15] N. Roussopoulos, S. Kelley, and F. Vincent. Near-
est neighbor queries. In Proc. of ACM-SIGMOD,
pages 71{79, San Jose, CA, May 1995.

[16] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+ tree: A dynamic index for multi-dimensional
objects. In Proc. 13th International Conference on
VLDB, pages 507{518, England,, September 1987.

[17] M. Smid. Closest point problems in computational
geometry. In J.-R. Sack and J. Urrutia, editors,
Handbook on Computational Geometry. Elsevier
Science Publishing, 1997.

212

