Semantic Caching in Location-Dependent Query Processing*

Baihua Zheng Dik Lun Lee
bathua@cs.ust.hk dlee@cs.ust.hk

Department of Computer Science, Hong Kong University of Science and Technology

April 3, 2001

Abstract

A method is presented in this paper for answering location-dependent queries in a mobile
computing environment. We investigate a common scenario where data objects (e.g., restaurants
and gas stations) are stationary while clients that issue queries about the data objects are
mobile. Our proposed technique constructs a Voronoi Diagram (VD) on the data objects to
serve as an index for them. A VD defines, for each data object d, the region within which
d is the nearest point to any mobile client within that region. As such, the VD can be used
to answer nearest-neighbor queries directly. Furthermore, the area within which the answer is
valid can be computed. Based on the VD, we develop a semantic caching scheme that records
a cached item as well as its valid range. A simulation is conducted to study the performance
of the proposed semantic cache in comparison with the traditional cache and the baseline case
where no cache is used. We show that the semantic cache has a much better performance than
the other two methods.

Keywords: mobile computing, location-dependent query, Voronoi Diagrams.

1 Introduction

With the advance of wireless networks and the popularity of portable electronic devices, mobile
computing has been one of the hottest topics in computer science research in the past several years.
Mobility has created new challenges to the existing computing infrastructures, such as databases,
networks and so on. In the database research area, for example, data models must support the
notion of user and data mobility as first-class data types. Furthermore, database systems must be

able to represent location information efficiently to support complex location-dependent queries.

*Research supported by the Research Grants Council of Hong Kong, China (HKUST6241/00E).

The fact that clients in a mobile environment can change locations opens up the possibility of
answering queries in a way that is dependent on the current position of the client [2]. These kinds
of queries are called location-dependent queries. Examples of location-dependent queries are “find
the nearest gas station to my current location,” “find all the cinemas within a 1 km radius,” “which
buses will pass by me in the next 10 minutes?”, and so on. While the data objects in the first two

examples are stationary, they are mobile in the last example.

The provision of location-dependent information for the same user at different locations is a
challenging problem. In addition, queries should be processed in such a way that consumption
of wireless network bandwidth and battery power of the portable client is kept to a minimum.
Techniques such as broadcast, caching, and indexing have been developed for this purpose. The
focus of this paper is on location-dependent queries. Since users are mobile in a mobile computing
environment, location-dependent queries must be answered according to the user’s current location.
For example, “find the nearest restaurant” would return totally different answers to the same user
when the query is issued at different locations. If a user keeps moving after he/she submits a
query, the problem becomes more complicated because the user’s location is changing continuously
and thus the results would change accordingly. How to answer a continuous query and provide an
accurate answer is an open question.

Although a lot of research work been done in this area, methods for answering location-
dependent queries efficiently and also guaranteeing the validation of the answer are not available.
Our method makes use of Voronoi Diagrams to preprocess the data in order to answer location-
dependent queries quickly, and a semantic cache to validate the answer.

Section 2 of this paper gives the definition of location-dependent queries, describes the difficulties
of solving them, and outlines some existing work done in this field. Our method is described in
Section 3. Section 4 gives the simulation and performance evaluation results. Finally, the summary

and future work of this project are given in Section 5.

2 Related Work

In order to support location dependent queries, some basic requirements must be met:

1. Locating the user: The prerequisite of answering location-dependent queries is to locate the
user. Available technologies that can provide user locations include GPS (Global Positioning
System) and cellular wireless networks. Since these technologies have inherent errors, appli-
cations demanding high precision must take into account the location errors during query

processing.

2. Maintaining the mobility of moving objects: Since the location information of moving objects
keeps changing all the time, storing the location in the database and updating it whenever it
changes is not an acceptable solution because of the frequent updates required. Some dynamic,
intelligent representation should be adopted in order to reduce the number of updating to the

database.

3. Predicting future movement trends: There is a time interval between the submission of the
query and the return of the answer to the user. As such, prediction and validation must be
done in order to guarantee that the answer is correct at the time when it is received by the
user (not just at the time when the answer is computed). Also, there are queries about future
situations such as forecasting traffic conditions of particular areas. In order to answer these

kinds of queries, some future information should be predicted from current information.

4. Processing queries efficiently: Due to the expensive bandwidth of the wireless network and
the limitations of computing resources for portable devices, query processing must be done
efficiently. Technologies such as caching, data replication, and indexing can be used to improve

efficiency.

5. Guaranteeing the boundaries of the precision: Neither the position of a current location nor
the prediction of a future location is 100% accurate, so some mechanisms should be put in

place to provide a bound to the error.

It is clear that many research problems have to be addressed and resolved before these re-
quirements can be met satisfactorily. In this paper, we focus on the query processing aspect of
location-dependent queries. A brief summary of work related to query processing is given in the

following subsections.

2.1 Caching

The client cache stores frequently used information on the client so that queries can be answered
without connecting to the server. In addition to providing answers quickly, the cache can also

provide a limited level of services when a connection is not available.

e Data caches: Just like a traditional cache in a database, a data cache stores recently
accessed data in the mobile client in order to save wireless bandwidth and improve access
time. For location-dependent information such as local traffic information, cached data should
also be validated when the client changes location. Xu et al. proposed a bit-vector approach
to identify the valid scope of the data, and investigated a couple of advanced methods of

validating caches based on this approach [15].

e Semantic caches: A semantic cache stores data and a semantic description of the data in
the mobile client [10]. The semantic description enables the cache to provide partial answers
to queries which don’t match the cache data exactly. As such, wireless traffic can be reduced
and queries may be answered even in the case of disconnections. This characteristic makes a
semantic cache an ideal scheme for location-dependent queries. A cache method was proposed
in [11]. A tuple S = (Sg,S4,Sp,SL,Sc) was used to record data in the local client. Sg and
S 4 are, respectively, the relationships and the attributes in S; Sp is the selection conditions
that data in S satisfy; Sy, is the bound of the location; and S¢ represents the actual content
of S. When a query is received by the client, it is trimmed into two disjointed parts: a probe
query that can be answered by some cached data in the client, and a remainder query that

has to be transmitted to the server for evaluation.

2.2 Continuous Queries

A location-dependent query becomes more difficult to answer when it is submitted as a continuous
query. For example, a client in a moving car may submit the query: “Tell me the room rate of all
the hotels within a 500 meter radius from me” continuously in order to find a cheap hotel. Since the
client keeps moving, the query result becomes time-sensitive in that each result corresponds to one
particular position and has a valid duration because of location dependency. The representation of
this duration and how to transmit it to the client are the major focuses of Continuous Queries (CQ).
Sistla et al. employed a tuple (S, begin, end) to bound the valid time duration of the query result
[13, 14]. Based on this method, they also developed two approaches to transmitting the results
to the client: an immediate approach and a delayed approach. The former transmits the results
immediately after they are computed. Thus, some later updates may cause changes to the results.
The latter transmits S only at time begin, so the results will be returned to the client periodically,
thus increasing the wireless network burden. To alleviate the limitations of both approaches, new
approaches, such as the Periodic Transmission (PT) Approach, the Adaptive Periodic Transmission

(APT) approach and the Mixed Transmission (MT) Approach, were proposed [5, 6].

2.3 Query Types

According to the mobility of the clients and the data objects to be queried by the clients, location-

dependent queries can be classified into three types:

e Mobile clients querying static objects: Queries like: “Tell me where the nearest gas
station is” and “Where is the nearest restaurant?” are popular queries in real-world applica-
tions. In general, the clients submitting this kind of queries are mobile and the data objects

are fixed. The main challenge of this type of queries is how to get the locations of the clients

4

and also guarantee the validation of the results when the client keeps moving during the query
evaluation process. Queries such as “Report all the available hospitals within a 500-meter

radius” are an extension of this type of query.

e Stationary clients querying moving objects: An example of this type of query is “Report
all the cars that pass gas station A in the next 10 minutes.” Here, gas station A is static and
the moving cars are the objects being queried. The result only depends on the location of
the moving cars. Actually, this is an extension of traditional database queries with dynamic
answers to the same query. This query is considered as a location-dependent query because the
data objects are all mobile and the answer to the query depends on the locations of the data
objects. Consequently, this type of query requires good representation of moving objects and
efficient indexing techniques. Usually, this type of query is interested in information about
the future, so later updates will cause some objects to become unqualified for the query
condition. As such, the real-time guarantee of the validity of the answer is also a challenge.
In an earlier paper [3], the authors mentioned the invalidation of results containing location-
dependent data caused by later updates, and considered that objects that satisfy the query

at one moment might become disqualified after being updated.

e Mobile clients querying mobile objects: That both the clients submitting the queries
and the data objects are continuously moving is the main characteristics of this kind of query.
For example, a query of this type: “Tell me all the cars that will pass me after 20 minutes”
while the client is driving on a highway, is very complicated since it is a combination of the
first two types. Even a simple query like: “Tell me all the cars that will pass me within the

next 20 minutes” bears the characteristics of CQs.

Of course, all the queries listed above can also contain conditions querying about location-
independent attributes, such as: “Tell me the nearest restaurant providing Chinese food.” Since
these queries can be broken down into two parts: one for location-dependent information and the
other for location-independent attributes, we only consider queries on location-dependent informa-
tion as the others can be retrieved by traditional query-processing methods.

Most, if not all, of the location-dependent queries can be categorized as one of the three types
described above. We can analyze each type separately in order to define the scenario clearly and
simplify the problem. The rest of this paper will focus on the first type since some research on
the second type has already been done [7, 8], and research on the third type can be simplified if
solutions to the first two types have been found. However, to the best of our knowledge, no previous
research has been done on type one queries. The remainder of this paper will introduce a technique

in order to solve the first type of query.

Figure 1: Voronoi Diagrams used in nearest neigh- Figure 2: Semantic Caches in Voronoi Diagrams

bor queries

3 Voronoi-Diagram-Based Indexing

From the example queries in the previous section, we can see that queries to find the nearest service
are very useful and popular. In this section, we present a method for retrieving the nearest service
efficiently in a mobile environment. An assumption of our work is that the location of a client is
known from GPS. When a user submits a query, its current location and speed together with the

timestamp are also submitted.

3.1 Basic Data Structure

Our method makes use of Voronoi Diagrams (VDs), which, by nature, are suitable for nearest-
neighbor queries. A Voronoi Diagram records information about what is close to what. Let P =
{p1,p2,---,pn} be a set of points in the plane (or in any n-dimensional space), each of which we
call a site. Define V(p;), the Voronoi cell for p;, to be the set of points ¢ in the plane such that
dist(q,p;) < dist(q,p;). That is, the Voronoi cell for p; consists of the set of points for which p; is

the unique nearest neighbor of ¢:

V(pi) = {q|dist(q,p;) < dist(q,p;),Vj # i} (1)

As shown in Figure 1, all the points in the shadowed region Area; have the same nearest fixed
point, namely, O;.

Since a VD is a traditional data structure in computational geometry, adequate structures for
storing a VD and efficient point location methods for locating a point in a region are available
[4]. As such, we assume without further description that a standard structure for representing the
information in a VD and a corresponding location method are available.

In the scenario of finding the nearest restaurant, the restaurants are the fixed sites and the
mobile clients are the points needing to be located. Once the mobile client is located in one area,

the unique fixed site of this region is its nearest neighbour. The good thing about this type of

query is that all the services are fixed and only change occasionally. Furthermore, the location
information of the services is available before query submission. Thus, preprocessing can be done
to construct the corresponding VD of different services. Three data structures are used to record
the preprocessed data. The first one is edge, denoted by (id, z1,y1, Z2,y2), which is used to record
the segment id and the endpoints of a segment. The second one is service object; it records the
position of the service object (i.e., the site in the definition of Voronoi Diagrams) and its bounding
edges. It is a tuple (id, z,y, number, list), where z and y are the coordinates of the site, number
is the number of edges bounding this site, and list is the list that records the ids of all the edges.
The last one is edge_service, which records the information between the service objects and the
edges using a tuple (segment_id, serv_object_id, serv_object_idy). Since the return set of point
location algorithm that we use is the edge that is just below that point, the mapping relationship
between the edge and corresponding site should be maintained. id; and ids are the sites above and
below this edge respectively. Currently, this method is just like the traditional static data cache

for nearest neighbor queries, but there are two major differences:

1. The client submitting the query is always mobile, so the query processing method should
handle the validation of the answers while the location of the client changes. It should also
predict the possible future answer according to the direction and speed of the mobile client,

i.e., the result of our method is dynamic while the traditional answer is static.

2. Our method supports the semantic cache that is not provided in a traditional database.

3.2 Data Preprocessing

Although VD is the most suitable mechanism to find the nearest neighbor, it is seldom used in
real applications because of the expensive maintenance of the structure when updating occurs.
Fortunately, in the context of this paper, the chance of having to change a real service (moving or
rebuilding) is very small. Furthermore, a large geographic area is likely to be divided into small
regions, each of which is usually a cell covered by a base station in the wireless system. Within each
region, we can classify the services into different kinds such as restaurants, hospitals, gas stations,
etc. For each kind of service, a VD index is constructed based on the data structures described
above. Overall, the maintenance cost of a VD index is reasonable considering the gain in query

performance.

3.3 Query Processing and Semantic Caching

Now we consider how to answer the query: “Tell me where the nearest restaurant is.” When

answering this query, we report the nearest restaurant from the VD index. Based on the known

speed of the client, the next nearest restaurant can also be predicted. As denoted in Figure 2, point
P is the mobile client and the arrow indicates the direction of the client’s movement. Currently,
the nearest restaurant to P is O; and after P crosses the line between O; and Oy, the nearest
restaurant should be O4. Knowing the length of the dash line and the speed of P, we can estimate
the time when P crosses the line, say, two minutes later. Then the answer should be presented as
(01,2,04). The first object of this tuple is the answer according to the current location of client
P, the second element is the time interval during which the first answer is valid, and the last one
is the predicted new answer after the valid time interval.

One thing to notice is that the client may change its speed and direction. Thus, the valid
duration of the first answer cannot be guaranteed using this mechanism. One way to prevent any
false answers is to resubmit the query when the client changes its speed or direction. Here we
propose a better alternative that uses the maximum speed and the shortest distance to guarantee
a valid duration. The shortest vertical distance between the current position of the client and the
bounding edges of this site divided by the maximum speed of the mobile client can be guaranteed
to be valid. This method may make the valid duration of the answer shorter than the real one, but
it will not produce any invalid results.

A circle in Figure 2 should also be noted. This is the maximal circle having P as its center and
the whole circle is within the region of O1. Actually, the radius of this circle is the shortest distance
that we used in our scheme to get the valid duration of the first answer. We store the location
of P, the radius of the circle, and also O; in the client cache as (P.z, P.y,radius,O1). From the
above example, we can see that the cache actually contains information about many circles. If the
position of the client submitting the query is within one of the circles, then the nearest restaurant
within this circle is the answer to the query, which can be answered without connecting to the
server. For simplicity, the predicted answer is omitted for clients who can get the result from a
local cache. In other cases , we should transmit the whole query to the server and create one new
record in the cache after we get the result.

In summary, the following steps are taken by both the client and the server to answer a query:

1. The local cache is checked to see whether the information is available. If there are no suitable
cache records corresponding to the location of the client, one should proceed to the third step.

Otherwise, one should continue.

2. If there is some related information, the most appropriate piece can be retrieved from the

cache and then this query is finished.

3. The current location of the client and also the speed of it are transmitted to the server. The
server will first locate this client in the VD index and find the nearest restaurant, and then

compute the maximal circle around it within this region.

4. Based on the region of the nearest restaurant and the speed of the client, we can identify the

time when this client moves to another region.
5. The result is returned to the client.

6. After the client gets the result from the server, a new cache record is inserted into the local

cache.

In Step 4, we use the first scheme (which assumes a constant speed and direction). If the second
scheme that can guarantee the valid duration described above is used, the maximum speed rather

than the current speed of the client should be used.

4 Simulation Model

In order to evaluate the performance of the proposed method, a simple simulation model has been
established using CSIM [12]. In the following section, the model setting is described first and then

the performance evaluation result is presented.

4.1 Model Setting

In our simulation model, we simulate one cell, i..e., one base station covering a number of clients.
The cell has a limited geographical coverage and the clients have a speed limit. When a client crosses
the border of the cell, it is deleted and a new client lying within the cell is produced randomly. In
other words, the number of clients within one cell is constant. The server answers queries according
to the order of which the requests arrived. It takes ServiceTlime to finish one query. The client
sends out a new query only after the current one has been answered. It can send out the new query
immediately or after some time. The longest duration is denoted as Max_Thinktime. ServNum
means the number of the facilities available within this cell. Assuming that we are interested in the
nearest restaurant, the facility here is the restaurants and ServNum is the number of restaurants
within the cell. Table 1 is a summary of the setting. In the following experiments, the setting is
used unless otherwise stated.

Given ServNum, the positions of the service objects are produced randomly, and the cor-
responding Voronoi diagrams are produced using an available program Triangle [1], which uses
O(n x log(n)) space to build a VD of n service points.

Figure 3 shows a set of 20 nodes (i.e., ServNum = 20) produced randomly by the system.
Figure 4 shows the corresponding Voronoi Diagram produced. Based on the VD produced, all the

necessary data can be precomputed and stored in the memory for the simulation program to use.

Parameter Description Setting
SimNum No. of queryies answered by the server in one simulation. When | 5000 — 45000
the server answers SimNum queries, the simulation is finished.
ClientNum No. of clients 1000
ServNum No. of service objects 10, 20, 30
UpperBound_Y | the maximal value of the y_coordinate 1000
LowerBound_Y | the minimal value of the y_coordinate 0
RightBound X | the maximal value of the x_coordinate 1000
LeftBound_X the minimal value of the x_coordinate 0
Max_Speed the maximal speed of the client 10
ServiceTime the time the server used to answer one query and also send 1.0
the request
Max_Thinktime | the maximal time duration between one client’s receiving the 20.0
answer to the original query and its sending out the next request
CacheSize the size of the client’s cache 10

Table 1: Simulation model setting

4.2 Simulation Results

In our simulation, a large number of tests have been carried out. However, due to limitations of
space, only some of the performance graphs are shown. For those which are not shown, we describe

the observations whenever necessary.

4.2.1 Client cache types

The cache has a significant impact on the performance of this method. We tested the average
waiting time for the clients using different cache schemes: no cache means that the client submits
every query to the server and does not store any answers for later use; normal data cache means
that the client just stores the answer to a query in the local cache and the cached answer can be
reused when it submits the same query at the same location, and semantic cache means that the
client stores not only the answer in the local cache but also the description of the valid area of this
answer.

The performance of these three cache schemes is given in Figure 5 and Figure 6 with 10 and 50
service objects, respectively. We also performed a simulation using 20 and 30 service objects and

found that the results were similar. We observed that for clients using no cache, the performance

10

Figure 3: The Location of the restaurants Figure 4: Corresponding Voronoi diagrams

is the worst, whereas the semantic cache produces the best result. This result is consistent with
common sense because for no cache, every query must be submitted to the server; for a normal
data cache, the chance that a client submits the same query at the same location is nearly zero,
and so is the probability of reusing cached answers; and for a semantic cache, the client has a much
higher probability of remaining in the area where the cached answer is valid and thus experiencing
the best performance.

In the simulation, the positions and the speeds of the clients are produced by CSIM randomly.
At the beginning of the simulation, the whole system is not in a steady state since there are fewer
requests. Thus, the average waiting time during the initial period is shorter than the average in
the stable state. In Figures 5 and 6, the difference between the first and the second points is
very obvious. For a cell with a different number of service objects, the warm-up duration is also
different. Basically, the average waiting time of a semantic cache decreases with the increase of the
simulation time as long as it has not arrived at the maximum cache hit rate.

We also conducted the simulation using another benchmark program called GSTD, which gen-
erates sets of moving points or rectangular data following an extensive set of distributions [9].
Figure 7 is the result. A large number of snapshots indicate that GSTD regenerates the set of

moving clients at a higher frequency (i.e., a higher temporal resolution).

4.2.2 Number of service objects

From the results of the above experiments, the conclusion is that the number of service objects can
also affect the average waiting time. For clients with no cache, the impact is negligible, but for
those with a semantic cache, the impact is obvious. This is because in one fixed-size cell, the more
service objects there are, the smaller is the area in which cached data remain valid. This means
a lower cache hit rate and a longer average waiting time. Figure 8 illustrates the negative impact
of the number of objects on the cache hit rate. It can also be observed that the cache hit rate

increases with the rise of the simulation time.

11

Average Waiting Time

Average Waiting Time

980
960
940
920
900
880
860
840
820
800
780
760
740 3
720
700
680
660

—&— No Cache
—— Normal Data Cache
Semantic Cache

1 2 3 4

Number of Queries (*104)
Number of Service Objects:10, Cache Size:10

(&)

Figure 5: Average waiting time given 10 objects

980 +

960

940 +

920 +

900

880 +

860

840

820 +

800

/-
/

e

o
o

—&— No Cache
—— Normal Data Cache
Semantic Cache

2 3 4

Number of Queries (*104)
Number of Service Objects:50, Cache Size:10

- -

Figure 6: Average waiting time given 50 objects

12

Average Waiting Time

Average Cache Hit Rate

1000

800 +

600 +

400

200

—&— No Cache
—&— Normal Data Cache
Semantic Cache

0 20 40 60 80 100

Number of Snapshots

Number of Service Objects:20, Number of Queries:4.5*104

Figure 7: Average waiting time given 20 objects

T T T T T T T T
—&— Object Number:10
—@— Object Number:20 —

Object Number:30
—w— Object Number:50 /'

\
\0\.

Number of Queries(*104)
Cache Size:10 Cache Replacement Scheme:Area

Figure 8: Average cache hit rate

13

o

In summary, when the number of service objects is limited, a semantic cache and a VD index
are very efficient. When the number becomes very large, the semantic cache can only contain a
very limited area and the cache hit rate is reduced. As such, the advantages of a semantic cache

are not obvious.

4.2.3 A cache replacement scheme

Since the size of a local cache is usually limited, a cache replacement scheme is needed. For our

method, three different cache replacement schemes have been devised.

e Area: Since the cached data are represented by many circles, this scheme is based on the
areas of the circles. The newly-added data always replaces cached data corresponding to the
smallest area, with the aim of making the total area corresponding to the cached data the

largest.

e Dist: Based on the distance between any two centers of the cached data, this scheme replaces
the cache item that has the shortest distance from the item to be inserted into the cache.

This is based on the assumption that the client will soon cross the nearest voronoi cell.

e (ComA: This scheme replaces the circle that has the biggest common area with the newly-
added one. The objective of this scheme is to make the relatively changed area less, this is a

modification of the Area scheme.

From the simulation results (Figure 9 and Figure 10), Area and ComA have almost identical
performance whereas Dist does not work as well as the other two. In the simulation result presented

in the following subsections, we adopt Area as the cache replacement method.

4.2.4 Frequency of updating speed

Using the benchmarking algorithm GSTD, we can control the number of snapshots. The larger the
number, the more frequent the client changes its speed. Observing the simulation result presented
in Figure 11, this also has a significant impact on the cache hit rate: the more frequent the change,

the lower the cache hit rate.

4.2.5 Range of the think time

The Max_Thinktime indicates the frequency that a client submits queries. The higher the frequency,
the more queries need to be answered, so the longer the waiting time is. If nearly all the clients
submit a query after a long duration, the number of queries that one server needs to answer will

be less, so the average waiting time will be shorter. This can be observed in Figure 11.

14

Average Cache Hit Rate

Average Cache Hit Rate

0.16 T T T T T T T T T
| o?‘]
0.14 - ./. _
] o?'/ -
n
0.12 ./ |
/I/
4 =/ J
0.10 /Q/ N
0.08 4 '/ —&— Semantic Cache:Area i
' / —®— Semantic Cache:ComA
] o Semantic Cache:Dist]
0.06 —w— Normal Data Cache -
0,04 v/v/yfaviviviv’—'viv |
T T T T T T T T T
0 1 2 3 4 5

Number of Queries(*lOA)
Number of Clients:1000, Cache Size:10

Figure 9: Average cache hit rate given 30 objects

0.12 r T r T r T r T r
N]

0.11 - _

. ‘?./. .

0.10 — -

. ./

0.09 /u/ -

] "/]

0.08 / .

] p —&— Semantic Cache:Area]

0.07 4 / —— Semantic Cache:ComA -

E & Semantic Cache:Dist 1

0.06 —w¥— Normal Data Cache -

0.05 - E

i VvV V—V—V—V—V i

v—V

0.04 v i
r T r T r T r T r

0 1 2 3 4 5

Number of Queries (*104)
Number of Service Objects:50, Cache Size:10

Figure 10: Average cache hit rate given 50 objects

15

124 Max Think Time:

1 —&—20 —e— 100 1

1.0 4 . 500 —w— 1000 —
g °\'\- 5000 —<— 10000 | |
(6 \
X 0.8 . n E
T] \ \]
) ° n
£ 0.6 v .
©
g]
O 0.4 o— -
=] i
© i
s] T]
>
<

0.2 4 \ -

0.0 <

0 20 40 60 80 100

Number of SnapShots
Cache Replacement Scheme:Area, Number of Queries:?».S*lO4

Figure 11: Average cache hit rate given 20 objects

0.26 ———1T17—
0.24 f\ Number of Service Objects: .
1 / - —=— 10 —e—30 1
0.22 . \ 50 -
® . .
T 0.20 " -
g] \]
T 0.18 1 E
[0} 4 J
S 0.16- \ i
S] " RN .
o 0.14 - o//°*°**‘<l—l—l—l—l—- n |
o o® e—eo—0—0—0—0 °
S 4 /. 4
0 012 o .
< B B
0.10 -
4 o 4
0.08 -
T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80
Cache Size

Number of Queries:3.5%10°, Number of Clients:1000 Cache Replacement Scheme:Area

Figure 12: Cache size vs performance

16

4.2.6 Cache size

The size of the cache plays an important role in its performance. Usually, the larger its size, the
better its performance. The results show that the performance does not increase with the size of
the cache monotonously. Figure 12 shows the simulation result. Here, we can notice that given the
number of service sites, an optimized cache size can be obtained. How to get this optimized one is

a question we will address in future research.

5 Conclusion

In this paper, we presented an indexing and semantic cache method for location-dependent queries
based on the Voronoi Diagrams. Various cache replacement strategies were proposed and evaluated.
We conducted a simulation to evaluate the performance of the proposed methods under different
parameter settings. We concluded that the semantic cache method performs much better than the
normal data cache method.

In this paper, we only considered a single cell where the clients and objects are produced
randomly. In future research, we will consider the handoff problem and cache invalidation methods
in a multiple cell environment. Furthermore, since the positions of the clients and data objects as
well as the speed of the clients are produced randomly, we will investigate the performance of the

proposed schemes using different distributions.

References

[1] Triangle: A two-dimensional quality mesh generator and delaunay triangulator.

http://www.cs.cmu.edu/~quake/triangle.html.

[2] D. Barbara. Mobile computing and databases-a survey. IEEE Transactions on Knowledge and
Data Engineering, 11(1), January -February 1999.

[3] Budiarto, K. Harumoto, M. Tsukamoto, and S. Nishio. Position locking: Handling location de-
pendent queries in mobile computing environment. In Proceeding of the Wordwide Computing
and Its Applications, 1997.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications, chapter 7. Springer-Verlag, 2000.

[5] H. G. Gok. Processing of continuous queries from moving objects in mobile computing systems.

Master’s thesis, Bilkent University, 1999.

17

[6]

[10]

[11]

[12]

[13]

[14]

[15]

H. G. Gék and O. Ulusoy. Transmission of continuous query results in mobile computing

systems. Information Sciences, 125, 2000.

G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile environment.

In International Workshop on Spatio- Temporal Database Management, September 1999.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In 18th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, May 1999.

M. Nascimento and Y. Theodoridis. Benchmarking spatial-temporal databases: The gstd
software. http://www.cti.gr/RD3/GSTD/.

Q. Ren and M. H. Dunham. Semantic caching in mobile computing. Submitted, under revision,
2000.

Q- Ren and M. H. Dunham. Using semantic caching to manage location dependent data in
mobile computing. In The Sizth Annual International Conference on Mobile Computing and

Networking, August 2000.
H. Schwetman. Csim User’s Guide (version 17). MCC Corporation, 1992.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In
Thirteenth International Conference on Data Engineering, April 1997.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the Uncertain Position of Moving
Objects, pages 310-337. Springer Verlag, 1998.

J. L. Xu, X. Y. Tang, D. L. Lee, and Q. L. Hu. Cache coherency in location-dependent informa-
tion services for mobile environment. In The First Conference on Mobile Data Management,

December 1999.

18

