
Location-based Spatial Queries
Jun Zhang§ Manli Zhu§ Dimitris Papadias§ Yufei Tao† Dik Lun Lee§

§Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{ zhangjun, cszhuml, dimitris, dlee}@cs.ust.hk

†Department of Computer Science
Carnegie Mellon University

Pittsburgh, USA
taoyf@cs.cmu.edu

Abstract
In this paper we propose an approach that enables mobile clients
to determine the validity of previous queries based on their
current locations. In order to make this possible, the server returns
in addition to the query result, a validity region around the client's
location within which the result remains the same. We focus on
two of the most common spatial query types, namely nearest
neighbor and window queries, define the validity region in each
case and propose the corresponding query processing algorithms.
In addition, we provide analytical models for estimating the
expected size of the validity region. Our techniques can
significantly reduce the number of queries issued to the server,
while introducing minimal computational and network overhead
compared to traditional spatial queries.

1. INTRODUCTION
Spatial databases have been extensively studied during the last
two decades and several spatial access methods (SAMs) have
been proposed [GG98]. Among the most popular ones is the R-
tree and its variations, notably the R*-tree [BKSS90]. R-trees can
be viewed as multi-dimensional extensions of B-trees. Figure 1
shows an exemplary R-tree for a set of points {a, b, c,…}
assuming a capacity of three entries per node. Points that are close
in space (e.g., a, b, c) are clustered in the same leaf node (E4)
represented as a minimum bounding rectangle (MBR). Nodes are
then recursively grouped together following the same principle
until the top level, which consists of a single root.

a b c d e f h g

E1 E2
E3

E4
E5 E6

E7
E8

Root

E9

i

E1
E2

E4 E5
E8

E

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

E f

omitted

1 E2e

d

c

a

g

E3

E5

E6

E4

E 7

8

contents

E9
iquery

window
q

Fig. 1: An R-tree example

R-trees (like most SAMs) were motivated by the need to
efficiently process window queries, which retrieve all the objects
that intersect a window (shaded area in Figure 1). The R-tree
answers a window query q as follows. The root is first retrieved
and the entries inside it are compared with q. The ones (e.g., E1,

E2) that intersect q may contain qualifying points and are
recursively searched until the leaf (data point) level. Entries not
intersecting the query window (e.g., E3) are not visited.

Another important type of spatial information processing is the
nearest neighbor query, which retrieves the data point that is
closest to a query point. Roussopoulos et al., [RKV95] propose a
branch-and-bound algorithm that searches the R-tree in a depth-
first manner. Specifically, starting from the root, all entries are
sorted according to their minimum distance (mindist) from the
query point, and the entry with the smallest value is visited first.
The process is repeated recursively until the leaf level where the
first potential nearest neighbor is found. During backtracking to
the upper levels, the algorithm only visits entries whose mindist is
smaller than the distance of the nearest neighbor already found. In
the example of Figure 2, the algorithm first visits the root entry E1
(since it has the minimum mindist), and then E4, where the first
candidate object (a) is retrieved. When backtracking to the
previous level, entries E5 and E6 are excluded, since their mindist
is greater than (or equal to) the distance of a. Then E2 and E8 are
accessed, where the actual nearest neighbor (point h) is found.
Samet and Hjaltason [HS99] develop an improved algorithm,
which only visits nodes that may contain the actual nearest
neighbor (i.e., in the previous example the algorithm would find
point h, without first retrieving a). Both algorithms can be easily
applied for the retrieval of k > 1 nearest neighbors.

E

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

E f1 E2e

d

c

a

g

E3

E5

E6

E4

E 7

8
E9i

query point
mindist()E2

h

= mindist()E8

mindist()E4 = mindist()a

mindist()E1

Fig. 2: Nearest neighbor example

The traditional scenario in spatial databases assumes that (i)
queries are static and (ii) each query returns a single output and
terminates. Consider now an alternative situation where a user
with a location-aware mobile device poses a continuous query
with respect to his/her current position (e.g., he wants to know the
closest restaurant as he moves along). The query is sent to the
server, where it is processed and the result is returned to the client
via the underlying wireless networks. Due to the mobility of the
user, the result may be invalidated immediately as the user's
position changes. The conventional approach to attain up-to-date
information is to pose a new query to the server after a position
update, which could lead to high network overhead and extra
processing effort.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD'2003, June 9-12, San Diego, California, USA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

Assume in Figure 3 that the user (at position q) issues a nearest
neighbor query returning point o. The motivation of this work is
that while the user remains in a certain area around the initial
position, called the validity region (shaded area), the result
remains the same. In addition to the query result, the server has to
return the validity region of the query, according to which the
mobile client is able to determine whether a new query should be
issued by verifying whether it is still inside the validity region.
Given that the mobile clients have limited storage and processing
capabilities compared to the server, it pays off to perform
additional processing on the server side (for the initial query) in
order to reduce the number of subsequent queries. Furthermore,
the representation of the validity region should be compact in
order to reduce the network cost, the storage requirements and the
computation that must be performed at the client side.

validity
region

q

o

Fig. 3: Validity region

In this paper, we study the problem of determining the validity
regions for moving nearest neighbor and window queries on static
point datasets, and propose appropriate representations for the
corresponding validity regions and query processing techniques.
The rest of the paper is organized as follows: Section 2 surveys
the related work, while Section 3 defines the validity regions and
describes algorithms for nearest neighbors queries. Section 4
discusses window queries, and Section 5 provides an analysis of
both query types and formulae for the expected size of the validity
regions. Section 6 experimentally evaluates the proposed
techniques and Section 7 concludes the paper with a discussion
for future work.

2. RELATED WORK
The first spatial query processing techniques for mobile
computing were proposed in [ZL01] and [SR01], both dealing
with moving nearest neighbor queries on static data. Zheng and
Lee [ZL01] pre-compute and store in an R-tree the Voronoi
diagram of the dataset. When a nearest neighbor query arrives at
the server, the Voronoi diagram is used to efficiently compute the
nearest neighbor (e.g., point o in Figure 4).

Fig. 4: Example of the [ZL01] technique

In addition to the result, the server sends back to the client the
validity time T of the result, which is a conservative
approximation assuming that the query's speed is below a
maximum value. In particular, T is the time that the query point

will cross the closest boundary of the Voronoi cell of object o (in
which case point a will become the nearest neighbor). A proper
value of the maximum query speed, however, is difficult to
estimate. A high value will lead to a very short T (reducing the
significance of the result), while a low value may cause false
misses. Furthermore, the method only deals with single nearest
neighbors, as the retrieval of k neighbors would require order-k
Voronoi diagrams (for all possible values of k), which are
complicated and incur large space overhead.

The technique of Song and Roussopoulos [SR01] does not
assume Voronoi diagrams and can be used for any number of
neighbors. When a k nearest neighbor query q arrives, the server
computes and returns to the client a number m > k of neighbors
(using existing algorithms such as [RKV95, HS99]). Let dist(k)
and dist(m) be the distances of the kth and mth nearest neighbor
from the query point q. If the client re-issues the query at a new
location q', it can be easily proven that the new k nearest
neighbors will be among the m objects of the first query, provided
that 2⋅dist(q,q') ≤ dist(m)-dist(k). Figure 5 shows an example for a
2-nearest neighbor query at location q, where the server returns
four results o, a, b and c (the nearest neighbors are o and a).
When the client moves to a nearby location q', the two nearest
neighbors are o and b. If 2⋅dist(q,q') ≤ dist(4)-dist(2), the client
can determine this by computing the new distances (with respect
to q') of the four objects, without having to issue a new query to
the server. An obvious problem of this approach (not discussed in
[SR01]) lies in obtaining a proper value of m. A high value will
increase the network overhead and the storage requirements at the
client, while a low value may be useless (if it does not reduce the
number of queries). In general, m depends on factors, such as data
distribution and query frequency, which are difficult to estimate.

Fig. 5: Example of the [SR01] technique

Given a query moving with steady velocity, [BJKS02, TPS02]
return all nearest neighbor results (up to a future timestamp), i.e.,
the output is a set of tuples <Ri,Ti> , where Ri is the set of nearest
neighbors during future interval Ti. For this situation (i.e., steady
client velocity), the concept of time-parameterized (TP) queries
[TP02] can be applied for both window and nearest neighbor
queries. In particular when the server receives a request from a
client, it executes a TP query and returns <R,T,C>, where R is the
set of objects satisfying the corresponding spatial query (i.e.,
current result), T is the validity time of R, and C is the result
change at T. From the set of objects in R, and the set of objects C
that will cause changes, the client can incrementally compute the
next result. Consider, for instance, that a client moving east with
speed 1 issues a window query (shaded window of Figure 6a).
The server returns <{b},1,{-b}> meaning that object b currently
intersects the query window, but after 1 time unit it will stop
doing so (therefore, b should be removed from the result, which
will become empty).

20 4 6 8 10

2

4

6

8

10

x axis

y axis

a

b

e

c

d

the query q

influences at ∞

influences
at 1

∞

influences at 2

influences
influences
at at current time

moving east
at speed 1

at 3

 20 4 6 8 10

2

4

6

8

10

x axis

y axis

a

b

ec

d

the query q

g

f
at current time

moving east
at speed 1

influences at

influences
at

influences at

∞

∞

∞

influences at 3

influences at 1.5

influences at 4.5

influences ∞

(a) TP window query (b) TP nearest neighbor

Fig. 6: Examples of the TP technique

The result of a spatial query changes in the future because some
objects “influence” its correctness. For instance, if an object (e.g.,
b) satisfies the query at the current time, it may influence the
result when it no longer satisfies it in the future (at time 1). On the
other hand, an object not currently in the result (e.g., d) may
influence the query when it becomes a part of the result (at time
2). Figure 6a shows the influence time of all objects. Some
objects, such as a and c, may never change the result, in which
case their influence time is set to ∞. The concept of “influence
time” also applies to other types of queries. Figure 6b shows a TP
nearest neighbor where the query point q is moving east with
speed 1. Point d is the current nearest neighbor of q. In this case,
the influence time of an object should be interpreted as the time
that it starts to get closer to the query than the current nearest
neighbor. For example, the influence time of point g is 3, because
at this time g will come closer to q than d. Notice that a non-
infinite (i.e., different from ∞) influence time does not necessarily
mean that the object will change the result; g will influence the
query at time 3, only if the result does not change before due to
another object (actually at time 3 the nearest neighbor is object f).

Let TINF(o, q) be the influence time of an object o with respect to a
query q. The expiry time of the current result is the minimum
TINF(o,q) of all objects. Therefore, the time-parameterized
component (i.e., C and T) of a TP query can be reduced to a
nearest neighbor problem by treating TINF(o,q) as the distance
metric: the goal is to find the objects (C) with the minimum TINF
(T). These are the candidates that may generate the change of the
result at the expiry time (by adding to or deleting from the
previous answer set). TINF for intermediate entries E is defined in
a way similar to mindist in nearest neighbor search: TINF(E,q) is
the minimum influence time TINF(o,q) of any object o that may lie
in the subtree of E. Thus, traditional nearest neighbor algorithms
(e.g., [RKV95, HS99]) can be applied with appropriate
transformations (for details see [TP02]).

These techniques ([TP02, BJKS02, TPS02]), however,
presuppose that the future locations of the clients can be
calculated using their current movements (i.e., the velocity of the
client is known and constant during the lifespan of the query).
This assumption may not hold for many applications, where the
query velocities are continuously updated as the users change
their speed or direction of movement. Motivated by this, in the
sequel we describe location-based spatial queries where, instead
of time, the validity of the result is determined by the users'
location in space. Our methods can capture both nearest neighbor
and window queries without any knowledge of the client's
velocity.

3. LOCATION-BASED NEAREST NEIGHBORS
In this section, we study the validity regions for nearest neighbor
queries and discuss processing algorithms. We start with single
nearest neighbor queries, and later we extend our approach to k-
nearest neighbors. For the following discussion we assume that
there exists a spatial index (e.g., R-trees) for the data objects, but
no specialized structures (e.g., Voronoi diagrams) for nearest
neighbor search. The reasons for this assumption are: i) spatial
indices are useful for all query types and not only nearest
neighbors; ii) Voronoi diagrams cannot deal efficiently with
updates (i.e., a large part of the diagram has to be re-computed for
each object update); iii) Voronoi diagrams are inapplicable if the
number k of neighbors to be retrieved is not known in advance
and iv) even if k is known, order-k Voronoi diagrams are very
expensive to compute and incur high space requirements (the
server should keep a Voronoi diagram for each possible k).

3.1 Validity Region and Influence Sets
Figure 7 shows a single nearest neighbor query q whose result
(the nearest object of q) is point o. Let a be an arbitrary data
point; the perpendicular bisector la of a and object o splits the
plane into two half-planes. If the query point q moves inside the
half-plane which contains point o, the distance from q to o is
always smaller than the distance to a. The intersection of the half-
planes, created by object o and all other objects in the dataset,
constitutes the validity region of the nearest neighbor query.
Formally, we observe that for nearest neighbor queries:

Observation: The validity region V(q) of a nearest neighbor query
q is the intersection of the half-planes formed by the
perpendicular bisectors of the nearest neighbor of the query point
and all the other objects, or equivalently, V(q) is the Voronoi cell
[BKOS97] VC(o) of the nearest neighbor point o of q.

Fig. 7: Single nearest neighbor query example

The representation scheme for validity regions should (i) be as
small as possible to reduce the network cost (provided that it
captures accurately the shape of the validity region) and (ii) it
should facilitate the validity checking which is performed on the
client with limited computational capability. We characterize the
region by the set of points that determine its edges.

Definition 1: An influence object of a query q is a data point that
contributes at least one edge (called the contribution edge) to the
validity region V(q). The set of all influence objects is called the
influence set Sinf(q) of q.

In other words, the influence set is the minimal set of objects
which determines the validity region. Although adding some other
objects to the set does not change the representative region, it is
important to eliminate extra objects to reduce the transfer cost. In
Figure 7, the influence objects of query q are those whose
perpendicular bisectors with object o constitute the edges of the
Voronoi cell VC(o).

Since we do not have the Voronoi diagram for the dataset, we
must compute VC(o) on the fly. To illustrate this process, consider
the query in Figure 7, which moves towards direction l. When the
query reaches position q', its nearest neighbor changes from o to
a. Object a, as well as, the distance between q and q′ can be
obtained by issuing a time parameterized nearest neighbor
(TPNN) query with direction l and an arbitrary speed. The TPNN
query returns <R,T,C>, where R={o}, T corresponds to the time
needed to reach q′, and C={-o, +a}. The distance between q and
q' is computed by multiplying the query speed and T.

The problem is how to select the directions l, in order to obtain
the influence points with the minimum number of TPNN queries.
The outline of our solution is as follows: (i) the initial validity
region is assumed to be the data universe; (ii) a TPNN query with
a specific direction l (to be discussed shortly) is executed to find
an influence object; (iii) the new validity region becomes the
intersection of the previous region and the half-plane introduced
by the new influence object; (iv) the algorithm terminates when
no new influence objects can be found.

Consider a location-based nearest neighbor query q (whose
nearest object is o), as shown in Figure 8a. The initial validity
region is the data universe defined by vertices v1 to v4. One of the
vertices (e.g., v1) is selected at random, and a TPNN query is
issued starting from q and pointing towards the chosen vertex.
Assume that a new influence object a is found by the query, and
let la be its perpendicular bisector with object o. The validity
region is then updated to the intersection of the half-plane
introduced by la and the data universe. The new (triangular)
validity region is defined by vertices v4, v5 and v6 in Figure 8b.

(a) Before query processing (b) The first TPNN query

(c) Subsequent TPNN queries (d) Confirmed vertices

Fig. 8: Computation of validity region for nearest neighbor

Next, we choose any one of the three vertices (e.g., v5) and pose a
new TPNN query that retrieves influence object b and updates the
validity region accordingly. Similarly, we perform the same
procedure on v6, retrieving object c. Figure 8c shows the validity
region after v5 and v6 are processed. Subsequent TPNN queries for
vertices v4, v7, v8, v9 and v10 (see Figure 8d) either re-discover
existing influence objects (e.g., point a for v7), or fail to discover
any point (e.g., v4). The vertices that do not lead to the discovery
of new influence objects are confirmed and not considered again.
The algorithm terminates when all vertices are confirmed.

Lemma 3.1: The above method: (i) discovers all the influence
objects and (ii) does not include any false hits (i.e., the final result
does not contain any non-influencing objects) ■

To prove the first part, consider that there is at least an influence
object which is not found by the algorithm. Figure 9 shows such
an example, where v1, v2, v3, v4, v5 and v6 are the confirmed
vertices of the validity region and a∈ Sinf is not discovered by the
algorithm. Since a is an influence object, the perpendicular
bisector of a and o cuts the current validity region, meaning that
at least one of the existing vertices v (e.g., v1) will be removed by
the TPNN query pointing towards v (which will discover a). This
contradicts the fact that v is confirmed because the confirmation
implies that the TPNN query towards v did not discover any new
point. Since each TPNN query by definition, either returns an
influence object or fails to discover any new object, the proof of
the second part of the lemma is trivial.

Fig. 9: Illustration for Lemma 3.1

3.2 Query Processing
The server processes a location-based nearest neighbor query in
three steps: (i) it performs a nearest neighbor query to obtain the
result (i.e., nearest neighbor of the query point); (ii) it iteratively
performs TPNN queries to find the influence objects (iii) it returns
the query result and the influence set to the client.

Step (i) applies one of the existing nearest neighbor algorithms
[RKV95, HS99]. Step (ii) uses the method discussed in Section
3.1 to obtain all the influence objects. A vertex set V records all
the vertices of the current validity region and each vertex is
associated with a flag indicating whether it is confirmed. Initially,
V contains the four vertices of the data universe. The algorithm
then arbitrarily chooses a vertex v from V and performs the
corresponding TPNN query. If the query confirms v, its flag is set;
otherwise, if the TPNN query returns a new influence object o, o
added to Sinf. The new validity region is computed and V is
updated accordingly. The same process is repeated until all the
vertices of V are confirmed. Figure 10 shows the pseudo-code for
finding the influence set.

Algorithm Retrieve_Influence_Set_1NN (q, o)
/* q is the query point, o is the nearest neighbor of q */
1. Sinf = ∅ // initialize the influence set
2. V = {universe boundary vertices} // initialize the vertex set
3. while (V contains non-confirmed vertex)
4. v = any non-confirmed vertex in V
5. oinf = TPNN(q, v, o) // query from q and pointing to v
6. if (oinf = ∅ or oinf ∈ Sinf) confirm v
7. else // a new influence object oinf is discovered
8. Sinf = Sinf ∪ {oinf}

9. update V
10. return Sinf
End Retrieve_Influence_Set_1NN

Fig. 10: Algorithm for retrieving the influence set (1NN query)

Lemma 3.2: The algorithm performs ninf + nv TPNN queries,
where ninf is the number of influence objects and nv is the number
of vertices in the final validity region. ■

When the algorithm terminates, there are ninf influence objects and
nv vertices in the validity region. The number of queries required
for finding these influence objects is ninf. Furthermore, nv TPNN
queries (that do not discover new influence objects) must be
performed to confirm nv vertices. Since each TPNN query can
either find a new influence object or confirm a non-confirmed
vertex, the total number of queries is ninf + nv. Notice that if each
edge of the validity region is formed by an influence object, ninf =
nv; otherwise, ninf<nv, because some edges of the validity region
are contributed by the universe boundary (e.g., in Figure 8, ninf = 3
and nv = 5).

Finally, the server returns the query result to the client along with
the influence objects. The validity checking at the client side is
performed by examining whether the new user location is inside
the half-plane formed with respect to each influence point, which
is equivalent to checking whether the query focus lies in the
Voronoi cell of the result.

3.3 Extensions to k Nearest Neighbor Queries
The proposed methods can be easily applied to k nearest neighbor
(kNN) queries, where the validity region is the maximal area
around the query, where each point has the same set of k nearest
neighbors (we assume that the order of these k neighbors is not
important). Figure 11 shows a 2-nearest neighbor query q whose
result is o1 and o2. Let a be an arbitrary data point. Consider the
intersection of two half-planes, one obtained by la1 (the bisector of
a and o1), the other by la2 (the bisector of a and o2) as shown in
Figure 11. If the query point q moves inside the intersection
region, the distances from q to o1 and o2 are always smaller than
the distance to a. The intersection of the half-planes, generated by
the 2-nearest neighbors of q (o1 and o2) and all the other objects in
the dataset, forms the validity region of the 2-nearest neighbor
query.

Observation: The validity region V(q) of a kNN query q is the
intersection of the half-planes formed by the perpendicular
bisectors of all the k nearest neighbors of the query point and all
the other objects, or equivalently, V(q) is the order-k Voronoi cell
kVC(q) [BKOS97] of the query q.

Fig. 11: 2-nearest neighbor query example

The algorithm for computing the influence objects and the validity
region, shown in Figure 12, is similar to the one for 1NN queries
in Figure 10. The differences are explained as follows: the TPNN
query in line 5 of Figure 10 is replaced with a TPkNN query.
Besides oinf, the TPkNN query returns one of the k nearest
neighbors (denoted as or) such that oinf and or define the bisector
that is nearest to query q in the given direction (i.e., from query q
towards vertex v). Consequently, the check on whether oinf is
already in Sinf (line 6 of Figure 10) is changed to determining

whether the pair <oinf, or> has been discovered before. An
influence pair set Sinf_p is used to store the pairs already found.

Algorithm Retrieve_Influence_Set_kNN (q, So)
/* q is the query point, So is the set of nearest neighbors of q */
1. Sinf_p = ∅ // initialize the influence pair set
2. V = {universe boundary vertices} // initialize the vertex set
3. while (V contains non-confirmed vertex)
4. v = any non-confirmed vertex in V
5. <oinf, or> = TPkNN(q, v, So) // query from q pointing to v
6. if (oinf = ∅ or <oinf, or> ∈ Sinf_p) confirm v
7. else // a new influence object oinf is discovered
8. Sinf_p = Sinf_p ∪ {<oinf, or>}

9. update V
10. Sinf = all oinf in Sinf_p
11. return Sinf
End Retrieve_Influence_Set_kNN

Fig. 12: Algorithm for retrieving the influence set (kNN query)

As an example, consider the 2NN query q (whose 2 nearest
neighbors are o1 and o2) in Figure 13a. Assume that the algorithm
first picks v1 to perform the TP2NN query, which returns
influence object a together with o2 (meaning that when the query
crosses the bisector of a and o2, object a will replace o2 in the
result). The pair <a, o2> is added to the influence pair set Sinf_p
and the validity region shrinks as depicted in Figure 13b. The next
TP2NN query (towards v3) discovers pair <c, o1>. No pair is
found by the query pointing to v4, and v4 is confirmed. The
subsequent queries towards v6 and v7 return pairs <b, o2> and <a,
o1> as shown in Figure 13c. Finally, all the vertices are confirmed
and the final validity region is obtained as illustrated in Figure
13d.

(a) Before query processing (b) The first TPNN query

(c) Subsequent TPNN queries (d) Confirmed vertices

Fig. 13: Computation of validity region for k nearest neighbor

In addition to the influence objects, the algorithm must now send
to the client the associated neighbor(s) for each influence object,
so that the client can determine if its location is in the appropriate
half-planes. It’s trivial to adopt Lemma 3.1 to prove the
correctness of the algorithm. Similar to Lemma 3.2, Lemma 3.3
gives the number of TPkNN queries performed. Notice that the

applicability of the algorithm is beyond the current problem, since
it can be used to compute Voronoi cells on-the-fly, using the
underlying R-tree.

Lemma 3.3: The algorithm performs ninf_p + nv TPkNN queries,
where ninf_p is the number of influence pairs and nv is the number
of vertices in the final validity region. ■

Notice that ninf_p equals the number of edges of the final validity
region that are not formed by the boundary of the data universe.
The number of influence objects is smaller or equal to ninf_p,
because an influence object (e.g., a) may contribute multiple
pairs, each with respect to a different neighbor.

4. LOCATION-BASED WINDOW QUERIES
The focus f of a window query is the centroid of the query
window. The validity region V(q) of a query q is the maximal area
around the query focus (i.e., f ∈ V(q)) where the query result R(q)
does not change. Using the methodology in Section 3, we first
define the validity region and influence set, and then propose
query processing algorithms.

4.1 Validity Regions and Influence Sets
Let q be a window query with focus f. We call the points that
satisfy q inner objects, while the points outside the query window
outer objects. Figure 14 shows an example query where a, b and c
constitute the result (i.e., inner objects). The Minkowski region of
each point (e.g., a) is a rectangle (ra) identical to the query
window whose centroid lies on the corresponding point (a).
Observe that when f moves inside ra, the query result always
contains object a. A similar argument also applies to the other
inner objects, e.g., when the query focus lies in rb, b is always in
the query result. The intersection of the inner Minkowski regions
(shaded area in Figure 14) corresponds to the inner validity
region, i.e., the maximal area around f where the inner objects will
remain in the result. If the query focus exits the inner validity
region, the current result is immediately invalidated since at least
one of the inner objects will cease to be inside the query window.

Fig. 14: Inner validity region

Lemma 4.1: The inner validity region of a window query is a
rectangle that contains the query focus. ■

Since all inner Minkowski regions contain the query focus, f
belongs to their common intersection. Furthermore, the common
intersection of a set of rectangles is also a rectangle1.

The inner validity region is actually a superset of the actual one,
since a query window whose focus is in the inner validity region

1 If all inner points lie on the boundary of the query window, the
inner validity region may be a line parallel to the x- or y- axis at f,
or a point (i.e., f, if the inner points are at the corner points of the
query window).

may also contain some additional points (e.g., d and e). In
particular, the query starts containing an outer object (e.g., d), if
and only if, f enters the corresponding Minkowski region (rd).
Thus, the final validity region (in Figure 15) is the inner validity
region after subtracting the outer Minkowski rectangles, i.e., a
polygon whose sides are parallel to the x- and y- axes.

Fig. 15: Validity region

According to Definition 1, the influence set Sinf(q) is the minimal
set of objects which determines the validity region. Sinf(q) for a
window query is retrieved in two steps: (i) we first find the set
Cinf(q) of candidate objects that may influence the result (i.e.,
Sinf(q) ⊆ Cinf(q)) and (ii) we compute the final influence set Sinf(q)
from Cinf(q). Lemma 4.2 and Corollary 4.3 identify the inner
points that belong to Cinf(q).

Lemma 4.2: An inner point is a candidate influence object only if
the boundary of its Minkowski region intersects the boundary of
the inner validity region. ■

If the Minkowski region ro (e.g., rc in Figure 14) of an inner
object o (c) does not intersect the boundary of the validity region,
then it totally contains it. This, implies, that o does not influence
the query, as the result will change before the query focus exits ro.

Corollary 4.3: The number of inner points in Cinf(q) (and Sinf(q))
is at most 4.

Since the inner validity region is a rectangle, each of its four
edges is contributed by one inner point (but an inner point may
contribute multiple edges). Actually the inner points in Cinf(q) are
the ones with the largest/smallest coordinates on the two axes. In
the example of Figure 14, a and b contribute two edges each to
the inner validity region (because they are the top-left and the
bottom-right inner objects). Thus, computing the inner candidate
objects reduces to finding the left (right, top, bottom)-most
objects. Notice that these points do not necessarily belong to
Sinf(q), since some edges (e.g., the leftmost edge in Figure 15) of
the inner validity region may be eliminated by the insertion of
outer points in Sinf. In order to compute the candidate outer points,
we use Lemma 4.4.

Lemma 4.4: An outer point is a candidate influence object only if
its Minkowski region intersects the inner validity region. ■

If the Minkowski region ro of a candidate outer object o does not
intersect the inner validity region, the result will expire before the
query focus enters ro; thus, o cannot influence the result. Points d
and e in Figure 15 are candidate outer objects, while g ∉ Cinf(q).

In summary, Lemma 4.2 and 4.4 identify the inner (a,b) and outer
(d,e) objects, respectively, that belong to Cinf(q). The next step is
to find the subset of Cinf(q) that comprises Sinf(q). Similar to the
case of nearest neighbor search, we perform TP window queries
on Cinf(q) to determine the influence objects. Figure 16a shows an
example where Cinf(q) contains six candidate influence objects o1

to o6. The initial validity region is the inner validity region
defined by the vertices v1 to v4. One of the vertices (e.g., v1) is
selected, and a TP window query (TPWQ) is issued starting from
the query focus f, pointing towards the chosen vertex as depicted
in Figure 16b. Object o1 is returned since its Minkowski region
(ro1) is closest to f in the direction from f to v1. Clearly, o1 is an
influence object because the intersection of ro1 and the inner
validity region cannot be totally covered by other Minkowski
rectangles. After o1 is added to Sinf(q):

(i) The current validity region is updated by subtracting ro1. In the
example of Figure 16b, the new validity region is defined by
vertices v2 to v7.

(ii) Some objects in Cinf(q) are eliminated because the
intersections of their Minkowski regions and the inner validity
region are totally covered by the intersection of ro1 and the inner
validity region (these objects cannot contribute to the final
validity region). In the example of Figure 16b, the objects in the
upper-left quadrant of o1 (i.e., o2), as well as o1 itself, are removed
from Cinf(q).

Sinf = {o1}
(a) Before query processing (b) TPWQ for v1

Sinf = {o1, o3}

Sinf = {o1, o3, o4}
(c) TPWQ query for v5 (d) TPWQ for v8

Sinf = {o1, o3, o4, o5}

(e) TPWQ for v7

Fig. 16: Computation of validity region for window query

Next, we perform the same procedure on another vertex over the
updated Cinf(q). Assume v5 is selected as illustrated in Figure 16c.
The corresponding TP query retrieves o3 as another influence
object. The current validity region is then updated by eliminating
vertex v4 and v5, and adding v8 and v9. We remove o3 from Cinf(q)
to avoid considering it again. The subsequent TP window query
for vertex v8 discovers influence object o4 and shrinks the validity
region accordingly, as depicted in Figure 16d. Cinf(q) is updated

by removing object o4. The next TP query towards vertex v11 does
not retrieve any object and v11 is confirmed as a vertex of the final
validity region (the same happens for v2). Influence object o5 is
found by the TP query for v7 as illustrated in Figure 16e. Adding
o5 into the influence set does not update the validity region since
o5 is a candidate inner influence object. Thus, v7 is immediately
confirmed. Finally, the algorithm confirms the remaining vertices
v10, v9, v6 and terminates with Sinf = {o1, o3, o4, o5}.

Lemma 4.5: The above method: (i) discovers all the influence
objects and (ii) does not include any false hits. ■

The proof of Lemma 4.5 is a similar to that of Lemma 3.1 and
omitted.

Lemma 4.6: The algorithm performs at most 4+3⋅ninf TP window
queries, where ninf is the number of influence objects. ■

Initially the inner validity region contains 4 vertices. After each
influence object is found, we add at most 3 vertices. Thus, the
total number of vertices is no more than 4+3⋅ninf. On the other
hand, for any vertex, we perform at most one TPWQ towards it.
Therefore, the number of TP window queries is no larger than
4+3⋅ninf.

4.2 Query Processing
Once the server receives a window query from a client it performs
the following steps: (i) retrieves the query result (i.e., all the inner
objects); (ii) computes the candidate inner influence objects; (iii)
finds the set of candidate outer influence objects; (iv) among the
objects in Cinf, selects the ones that belong to Sinf, and (v) returns
the result and the influence set to the client.

Step (i) is based on traditional window query algorithms (and is,
therefore, trivial). Then, the inner candidate objects - step (ii) - are
the ones with the minimum/maximum coordinates (Lemma 4.2).
In order to find the outer candidate set (step iii) we have to
retrieve all objects whose Minkowski regions intersect the inner
validity region (Lemma 4.4). This is achieved by applying a new
"window" query on the point dataset, where (1) the centroid is the
same as that of the inner validity region; (2) the extent on each
dimension is the sum of extents of the inner validity region and
the initial query; (3) the region of the original window query is
subtracted (in order to avoid retrieving the inner objects). Figure
17 illustrates the new query window, continuing the example in
Figure 14. It is easy to verify that the Minkowski regions of the
points retrieved (e, d) intersect the inner validity region.

Fig. 17: Obtaining the candidate outer influence points

The elimination of candidate influence objects (step iv) is
performed using the algorithm of Figure 18. Main memory TP
window queries are repeatedly issued towards the non-confirmed
vertices. A vertex is confirmed when the TP query towards it: (i)
does not find any influence object; or (ii) discovers an inner
influence object.

Algorithm Influence_Checking (Cinf(q))
1. Sinf = ∅ // initialize the influence set
2. V = {inner validity region vertices} // initialize the vertex set
3. while (V contains non-confirmed vertex)
4. v = any non-confirmed vertex in V
5. oinf = TPWQ(q, v, Cinf(q)) // TPWQ from f to v over Cinf(q)
6. if (oinf = ∅) confirm v
7. else
8. Sinf = Sinf ∪ {oinf}

9. if (oinf is an inner object)
10. Cinf(q)= Cinf(q) - {oinf}

11. confirm v

12. else
13. Cinf(q)=Cinf(q)-{objects in pruning region of oinf}-{oinf}

14. update V
15. return Sinf
End Influence_Checking

Fig. 18: Algorithm for checking the influence objects

Finally the server returns to the client the result of the query,
together with Sinf. The client can then determine whether the query
result is still valid by examining if the focus f' of a future query is
inside the validity region. This checking does not require the
actual shape of the validity region, i.e., the previous result is still
valid if f' is inside the Minkowski rectangles of all influence inner
objects and outside the Minkowski rectangles of all outer
influence objects. Since, as shown in the experimental evaluation,
the number of influence objects for the vast majority of window
queries is 4, the computational cost at the client side is minimal.

A last remark concerns the situation that the query result is empty
(i.e., there is no inner object), in which case the inner validity
region corresponds to the whole data space. The problem now is
that there is no "bound" on the how far from the query focus we
should search for outer influencing objects. In Figure 19, for
instance, depending on the movement of the user, all data objects
(o1 to o11) may potentially influence the query, i.e., the validity
region is the whole data space except the Minkowski rectangles
(ro1 to ro11). Clearly, returning all those points to the client is too
expensive and such cases are handled separately. In particular, we
perform a nearest neighbor query and find the Minkowski region r
that is closest to f. Then, the validity region is approximated by a
circle centered at f with radius mindist(r). This process is
illustrated in Figure 19 where the shaded region is the
conservative approximation of the validity region.

Fig. 19: Conservative validity region

5. ANALYSIS OF LOCATION-BASED QUERIES
The expected size of the validity region is very important for
several reasons. First, if the expected size is very small it may not
be worth the extra computation performed at the server, or the
additional network cost for transferring the validity region.

Furthermore, the size of the validity region determines the cost (in
terms of the number of disk accesses) at the server; hence, it is
needed for query optimization. In this section, we discuss the
expected size of the validity region and the query cost of both
query types on uniform and non-uniform data. We assume the
cardinality of the dataset is N.

We start our discussion with location-based NN queries. The
validity region for a NN query is a Voronoi cell (or an order-k
Voronoi cell). The expected area E(AVR) of an order-k (k≥1)
Voronoi cell for uniform data [OBSC00]:

() []
1

(2 1)VRE A
k N

= −
 (5-1)

The derivation of the cost of location-based nearest neighbors is
straightforward given the previous results for kNN and TP kNN
queries [BBKK97, WSB98, B00, BBK+01, TP02]. Recall that, as
shown in Lemma 3.2 (3.3), a single (k) NN involves one ordinary
nearest neighbor query, followed by ninf + nv (ninf_p + nv) TP
queries. Hence, the total number of node accesses is the sum of
every individual (nearest neighbor or TP) query.

We continue with window queries on data uniformly distributed
in a square unit universe. Figure 20 illustrates an example query q
with focus f over a dataset of points (a, b, …, e, g). Let dist(θ) be
the distance that q must travel towards a direction with angle θ
(0≤θ<2π) before it reaches the boundary of the validity region
V(q) (at which time the result of q is invalidated). If f′ is the
location where the focus crosses the boundary of V(q) (at angle θ),
dist(θ) equals the distance between f and f′. Figure 20 also
demonstrates the corresponding query q′ located at f′, which
covers point e, and changes the initial result {a,b,c} to {a,b,c,e}.

f

e

a
b

d

g

c

f '

boundary of V(q)

query at f '

original query q

θ

l
θ

the sweeping
region

distance traveled by query q

Fig. 20: The sweeping region of a window query q

The area AVR of the validity region can be obtained by integrating
dist(θ) over all θ in [0, 2π) as shown in equation (5-2).

() ()
2 2

2 2

0 0

1

2 2VR

d
A dist dist d

π πθπ θ θ θ
π

= ⋅ = ⋅ ∫ ∫ (5-2)

Hence, the expected area E(AVR) of the validity region can be
represented as:

() ()
2

2

0

1

2VRE A E dist d
π

θ θ = ⋅
 ∫ (5-3)

To derive E[dist(θ)2] (along a fixed direction angle θ), we need
the probability P{dist(θ)≤ξ} that the query focus travels no more
than distance ξ before crossing the boundary of V(q). It is easier to
compute the complement probability P{dist(θ)>ξ} (=1−
P{dist(θ)≤ξ}) that the query focus must travel at least ξ (to cross
the boundary). We define the sweeping region SR(ξ,θ) as the area
swept by the edges of q during traveling distance ξ at direction θ
(shaded area in Figure 20).

A crucial observation is that dist(θ)>ξ if and only if there cannot
be any point lying inside SR(ξ,θ) (otherwise the result of the

query would have changed earlier). Consequently, P{dist(θ)>ξ} =
(1−Psingle)

N, where Psingle is the probability that a single data point
falls in SR(ξ,θ), and equals the area of the sweeping region (since
we assume uniformity), or formally:

() ()22 cos sin cos sinsingle y xP q qξ θ θ ξ θ θ= + − (5-4)

where qx and qy denote the extents of q along the x- and y-axes,
respectively. From equation (5-4), P{l(θ)>ξ} can be obtained as:

(){ } () ()21 1 2 cos sin cos sin
N

y xP dist q qθ ξ ξ θ θ ξ θ θ ≤ = − − + −

Taking the derivative of P{dist(θ)≤ξ} with respect to ξ, we obtain
its probability density function p(dist(θ)=ξ), after which we are
ready to derive E[dist(θ)2]:

()() ()()2 2

0

E dist p dist dθ ξ θ ξ ξ
∞

= ⋅ =∫ (5-5)

Equation (5-5) holds for all direction angles θ. Hence, by applying
it to equation (5-3) we obtain the expected size of the validity
region E(AVR).

The above analysis can be extended to predict the number of node
accesses in answering a location-based window query using R-
trees. Recall that our algorithm consists of two steps: the first step
retrieves the inner points covered by the query and calculates the
inner validity region; the second step searches for the candidate
outer points in a “marginal” rectangle computed based on the
inner validity (see Figure 17). The number of node accesses in the
first step is merely the cost of a traditional window query, which
has been studied extensively in the literature [TSS00]. To estimate
the cost of the second step, we need to obtain the expected extent
of the inner validity region (which as mentioned in Section 4 is a
rectangle). As illustrated in Figure 21 (using the dataset and query
of Figure 20), the distance between the left boundary of the inner
validity region and the original query window equals the distance
distx+ that q travels (towards the positive direction of the x-axis)
until its left edge hits any inner point (i.e., point c in Figure 21).

f

e

a
b

d

g

c

inner validity region
original query q

f 'sweeping region
query at f '

lx+

distx+

Fig. 21: The extents of the inner validity region

The expected distance of distx+ should be such that, the number of
points in the sweeping region (which in this case is the area swept
by the left edge of q) contains exactly one data point. Thus, for
uniform data, distx+ can be obtained by solving the equation
qy⋅distx+=1/N, where qy is the query extent on the y-axis. Similarly,
we can obtain the expected distances distx-, disty+, disty- that the
query needs to travel towards the other directions before its result
is invalidated for the first time. Let qx be the query extent on the
x-axis. Then, we have:

() ()
1 1,x x y y

xy

dist dist dist dist
N qN q− + − += = = = ⋅⋅

 (5-6)

The search region (i.e., the marginal rectangle) in the second step
of query processing corresponds to an extended rectangle q′ with
extents (qx+distx++distx-) and (qy+disty++disty-) on the x- and y-
axes respectively, minus the original query q. Hence the number

of node accesses for the second query equals the number of R-tree
nodes NAintrsct(q′) that intersect q′, minus the number of nodes
NAcont(q) that are fully contained in q. Given the extents of q′ and
q, NAintrsct(q′) and NAcont(q) can be computed using existing
models.

The above analysis for nearest neighbor and window query can be
adopted for non-uniform data with the aid of histograms. For
example, Minskew [APR99] partitions the space into a set of
disjoint buckets, such that each bucket corresponds to a
rectangular region in which the data distribution is almost
uniform. Every bucket stores the number of points that fall inside
its extent. Our formulae can be applied in conjunction with
Minskew (or other histograms) by replacing the data cardinality N
in the models with N' obtained from the buckets which contain the
data required for the query. Let b.N and b.Area be the number of
points in bucket b and the area of its region, respectively. If a
query visits buckets b1, b2, …, bn, N' is given by the following
formula:

1 1

' . .
n n

i i
i i

N b N b Area
= =

=∑ ∑ (5-7)

For nearest neighbors, we start with the bucket containing the
query point and we gradually include its neighboring buckets,
until they contain enough points (with respect to the number of
neighbors to be retrieved). For window queries, b1, b2, …, bn are
the buckets that intersect the boundary of the query window.

6. EXPERIMENTS
In this section, we evaluate the effectiveness of location-based
queries and the efficiency of the proposed algorithms. We use
uniformly distributed points in a square unit universe, and two
real datasets [Web]: (i) GR that contains 23,268 points obtained
by taking the centroids of street segments in Greece in a data
space 800km×800km; (ii) NA containing 569,120 populated
places of North America in a data universe of approximately
7000km×7000km. The performance of the algorithms is measured
by executing workloads of 500 queries, whose distribution
conforms to the distribution of the data objects; window queries
have square shape. For real datasets, we employ the analytical
models of Section 5 in conjunction with the Minskew histogram.
The number of buckets for each histogram is set to 500
(constructed from 10,000 initial cells). The R*-tree
implementation is based on [BKSS90] with a page size of 4k
bytes resulting in a node capacity of 204 entries.

The first set of experiments demonstrates the experimental and
estimated sizes of the validity regions for location-based nearest
neighbor queries. We first measure the (estimated and
experimental) area of the validity region for uniform datasets. In
Figure 22a we fix the number k of nearest neighbors to 1 and vary
the data cardinality from 10k to 1000k. As expected, the area of
the validity region drops linearly with cardinality since the
number of Voronoi cells increases (while the area of the data
space remains constant). In Figure 22b, queries with different k
values are performed on the uniform dataset with N=100k. The
validity region shrinks almost linearly with k, which agrees with
the observation [OBSC00] that the expected area of an order-k
Voronoi cell for uniform data is inversely proportional to 2k-1.
Similar results, regarding the size of the validity region versus k,
are obtained from the real datasets as shown in Figure 23. The
estimations are accurate in all cases.

1E-7

1E-6

1E-5

1E-4

1E-3

10K 30K 100K 300K 1000K
N

area of
V(q) actual estimated

1E-8

1E-7

1E-6

1E-5

1E-4

1 3 10 30 100
k

area of
V(q) actual estimated

(a) Area of V(q) vs. N (b) Area of V(q) vs. k

Fig. 22: Area of the V(q) of nearest neighbors (uniform data)

1E+3

1E+4

1E+5

1E+6

1 3 10 30 100
k

area of
V(q) 2 (m) actual estimated

1E+5

1E+6

1E+7

1E+8

1 3 10 30 100
k

area of
V(q) 2 (m) actual estimated

(a) GR dataset (b) NA dataset

Fig. 23: Area of V(q) vs. k (real data)

Figure 24a (b) illustrates the number of edges in the validity
region as a function of N (k) for uniform datasets with k=1 (N
=100k). Since validity checking at the client involves determining
whether the current position of the client is still inside all the half-
planes, the number of edges is a measure for the computation cost
at the client side. This number is around 6 under all settings,
which is consistent with previous findings [A91, OBSC00] that
the average number of edges in a Voronoi cell (or an order-k
Voronoi cell) is 6 for uniform datasets.

0

2

4

6

8

10K 30K 100K 300K 1000K
N

num of edges

0

2

4

6

8

1 3 10 30 100
k

num of edges

(a) number of edges vs. N (b) number of edges vs. k

Fig. 24: Number of edges of V(q) of nearest neighbors (uniform)

Figure 25 studies the number of influence objects |Sinf| for uniform
datasets. As shown in Figure 25a, |Sinf| for single nearest neighbor
queries is approximately 6 for all cardinalities, which is expected
since the number of influence objects for a single nearest neighbor
query equals the number of edges of the corresponding Voronoi
cell. According to Figure 25b, |Sinf| decreases to 4 for k ≥ 10
(N=100k). This is because for k > 1, an influence object may
contribute more than one edge (since it can form a perpendicular
bisector with any of the k nearest objects of the query), while the
total number of edges remains around 6. The same results are
confirmed by the real datasets in Figure 26.

Next we evaluate the cost of nearest neighbor search on the server
side using uniform datasets. Figure 27a (b) shows the number of
node (page) accesses as a function of cardinality for k=1 (using an
LRU buffer equal to 10% of the R-tree size). The number of node

accesses for TPNN queries is about 12 times that of the regular
nearest neighbor query because, on the average we need 6 TPNN
queries to retrieve the influence objects and another 6 queries to
confirm the vertices of the validity region. The buffer reduces the
actual cost of the TP queries significantly, since all the queries
access similar parts of the data space. Thus, given a relatively
small buffer, the overhead imposed by location-based nearest
neighbor queries is not significant.

0

2

4

6

8

10K 30K 100K 300K 1000K
N

 |Sinf |

0

2

4

6

8

1 3 10 30 100
k

 |Sinf |

(a) |Sinf| vs. N (b) |Sinf| vs. k

Fig. 25: |Sinf| of nearest neighbor queries (uniform data)

0

2

4

6

8

1 3 10 30 100
k

num of inf
objs

0

2

4

6

8

1 3 10 30 100
k

num of inf
objs

(a) GR dataset (b) NA dataset

Fig. 26: |Sinf| vs. k (uniform data)

0

10

20

30

40

50

60

10K 30K 100K 300K 1000K
N

NA
NN query
TPNN queries

0

0.5

1

1.5

2

10K 30K 100K 300K 1000K
N

PA
NN query
TPNN queries

(a) NA vs. N (b) PA vs. N

Fig. 27: Cost of location-based nearest neighbors (uniform data)

In Figure 28 we evaluate the cost of query processing with
different values of k using the real datasets (node and page
accesses using 10% LRU buffer). Although the number of TPNN
queries performed is almost constant (about 12 independently of
k) the number of node accesses increases with k, because the cost
of each TPNN (and regular nearest neighbor) query increases. The
buffer, however, absorbs most of the cost of TPNN queries.

0

20

40

60

80

100

1 3 10 30 100
k

NA
NN query
TPNN queries

0

1

2

3

4

1 3 10 30 100
k

PA
NN query
TPNN queries

(a) NA vs. k (GR dataset) (b) PA vs. k (GR dataset)

0

20

40

60

80

100

1 3 10 30 100
k

NA
NN query
TPNN queries

0

1

2

3

4

5

1 3 10 30 100
k

PA
NN query
TPNN queries

(c) NA vs. k (NA dataset) (d) PA vs. k (NA dataset)
Fig. 28: Cost of location-based nearest neighbors (real data)

The remaining experiments refer to location-based window
queries. Figure 29a fixes the size qs of the query window to 0.1%
of the data space area, and varies the dataset cardinality N for
uniform data. Figure 29b shows the size of the validity region as a
function of qs for the 100K dataset. The size of the validity region
decreases both with N and qs. Large N implies high data density,
meaning that the results change frequently as the query focus
moves. Similarly, a large query is likely to contain numerous
objects near the boundary of the window, which will lead to its
invalidation. The estimated values are very accurate in all cases.

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

10K 30K 100K 300K 1000K

N

area of
V(q) actual estimated

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

0.01% 0.1% 1% 10%

area of
V(q) actual estimated

q
s

(a) Area of V(q) vs. N (b) Area of V(q) vs. qs
Fig. 29: Area of V(q) for window queries (uniform data)

Figure 30 shows the size of the validity region for the two real
datasets as a function of qs, which ranges in 100km2~10000km2.
The trends are similar to Figure 29b, and the estimation is again
accurate despite the large skewness of the datasets. Notice that the
sizes of the validity regions are rather large (9,100m2~1.7×106m2
for GR and 17,000m2~2.1×106m2 for NA), indicating the
applicability of the proposed techniques in realistic settings.

1E+3

1E+4

1E+5

1E+6

1E+7

100 300 1000 3000 10000

area of
V(q) actual estimated

2 (km)

2 (m)

qs

1E+4

1E+5

1E+6

1E+7

100 300 1000 3000 10000

actual estimated
area of
V(q) 2 (m)

2 (km)qs
(a) GR dataset (b) NA dataset

Fig. 30: Area of V(q) vs. qs for window queries (real data)

Next, we evaluate the number of influence objects |Sinf| for
window queries. Figure 31a shows |Sinf| as a function of dataset
cardinality with qs = 0.1% of the data universe. Figure 31b
illustrates |Sinf| as a function of qs for a uniform dataset of 100k
points. Figure 32 shows |Sinf| for datasets GR and NA by varying qs
from 100km2 to 10000km2. Under all settings, there exist on the
average two outer and two inner influence objects, implying that
the extra network cost for transmitting the validity region

(influence objects) is negligible and that the validity checking at
the client side incurs little computational overhead.

0

1

2

3

4

5

6

10K 30K 100K 300K 1000K
N

inner inf objs
outer inf objs |Sinf |

0

1

2

3

4

5

6

0.01% 0.1% 1% 10%

inner inf objs
outer inf objs |Sinf |

qs
(a) |Sinf| vs. N (b) |Sinf| vs. qs
Fig. 31: |Sinf| for window queries (uniform data)

0

1

2

3

4

5

6

100 300 1000 3000 10000

inner inf objs
outer inf objs

2 (km)qs

 |Sinf |

0

1

2

3

4

5

6

100 300 1000 3000 10000

inner inf objs
outer inf objs

2 (km)qs

 |Sinf |

(a) GR dataset (b) NA dataset
Fig. 32: |Sinf| vs. qs for window queries (real data)

In order to explain this, consider the example of Figure 33, where
an outer object (e.g., a) lies in one of the shaded regions of the
extended query window (used to retrieve the candidate outer
objects as shown in Figure 17). The Minkowski region of the
object eliminates an entire edge of the inner validity region, i.e.,
the outer object replaces an inner candidate for the influence set,
meaning that the total number of influencing objects remains 4.
Only objects at the corners of the extended query window can
result in non-rectangular validity regions. In general such points
are few and for most queries they do not exist.

Fig. 33: An example of a window query

Finally, we study the I/O cost (which is the dominant factor) of
location-based window queries at the server side. Figure 34a
shows the number of node accesses (NA) as a function of N for
uniform datasets. The processing involves two window queries,
one for retrieving the result and one for the (candidate) outer
influence objects. In Figure 34b we repeat the same experiment
using an LRU buffer equal to 10% of the R-tree size (the numbers
on the columns are the page faults caused by the queries for the
candidate outer objects). Clearly, the cost of the second query
drops significantly because most of the accessed nodes are already
in the buffer after the first query has been performed. The same
can be observed from Figure 35, which shows the number of page
accesses for the real datasets as a function of qs. The only case that
the second query has non-trivial cost is for the GR dataset and qs
= 10,000, because, due to the large query size, the buffer is not

enough for all nodes around the query region. In summary, the
experiments confirm that our approach incurs minimal overhead
to the server if a buffer is used.

0

5

10

15

20

25

30

35

10K 30K 100K 300K 1000K
N

NA query for result
query for inf objs

query for result
query for inf objs

0

2

4

6

8

10

12

14

10K 30K 100K 300K 1000K
N

PA 0.04

0.041

0.047
0.0810.094

(a) NA vs. N (b) PA vs. N

Fig. 34: Cost of window queries vs. N (uniform data)

0

5

10

15

20

100 300 1000 3000 10000

PA

0.39

0.26
0.230.20

query for result
query for inf objs

4.9

2 (km)qs

0

10

20

100 300 1000 3000 10000

PA query for result
query for inf objs

0.29

0.28

0.23
0.150.115

15

2 (km)qs
(a) GR Dataset (b) NA Dataset

Fig. 35: Page accesses of window queries vs. qs (real data)

7. CONCLUSION
This paper proposes the concept of location-based spatial queries
for mobile computing environments. When a client issues such a
query, the server returns, in addition to the result, a validity region
for which this result is valid. Thus, before the client issues a new
query at another location, it checks whether it is still in the
validity region of a previous query; if yes, it can re-use the result.
The experimental evaluation confirms the applicability of the
proposed approach and shows that the computational and network
overhead with respect to traditional queries is small.

We believe that this work is a first but important step towards an
important research area. Although spatial queries have been
extensively studied, to the best of our knowledge, there exists no
previous work that studies validity regions. This concept can be
extended to other types queries; for instance, region queries (e.g.,
find all restaurants within a 5km radius). In this case, the problem
is more complex, conceptually and computationally, since the
validity region is defined by arcs resulting from cycle
intersections.

The incremental computation of the query result based on validity
regions is another interesting topic for future work. Consider that
a mobile client sends a query to the server immediately after it
exits the validity region. It is likely that the new result has
significant overlap with the previous one. The incremental
computation of the query results and the transfer of the delta (i.e.,
the new objects added into the result and the objects removed
from it) can dramatically reduce the transmission overhead. In
summary, location-based queries will play a central role in
numerous mobile computing applications. We expect that research
interest in such queries will grow as the number of mobile devices
and related services continue to increase.

ACKNOWLEDGEMENTS
This work was supported by grants HKUST 6081/01E, HKUST
6079/01E, HKUST 6197/02E and HKUST 6255/02E from Hong
Kong RGC.

REFERENCES
[A91] Aurenhammer, F. Voronoi Diagrams: A Survey of a

Fundamental Geometric Data Structure. ACM
Computing Surveys, Vol 23(3), 345-405, 1991.

[APR99] Acharya, S., Poosala, V., Ramaswamy, S. Selectivity
Estimation in Spatial Databases. SIGMOD, 1999

[B00] Bohm, C. A Cost Model for Query Processing in
High Dimensional Data Spaces. ACM TODS, Vol.
25(2), pp. 129-178, 2000.

[BKSS90] Beckmann, N., Kriegel, H. P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[BBKK97] Berchtold, S., Bohm, C., Keim, D.A., Kriegel, H. A
Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space. PODS, 1997.

[BBK+01] Berchtold, S., Bohm, C., Keim, D., Krebs, F.,
Kriegel, H.P. On Optimizing Nearest Neighbor
Queries in High-Dimensional Data Spaces. ICDT,
2001.

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S.
Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. IDEAS, 2002.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[BKOS97] de Berg, M., van Kreveld, M., Overmars, M.,
Schwarzkopf, O. Computational Geometry. pp. 145-
161. Springer, 1997.

[GG98] Gaede, V., Günther, O. Multidimensional Access
Methods. ACM Computing Surveys, 30(2), 1998.

[HS99] Samet, H., Hjaltason, G. Distance Browsing in
Spatial Databases. ACM TODS, 1999.

[OBSC00] Okabe, A., Boots, B., Sugihara, K., Chiu, S. Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams. pp. 291-410. John Wiley, 2000.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. SIGMOD, 1995.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor
Search for Moving Query Point. SSTD, 2001.

[TP02] Tao, Y., Papadias, D. Time Parameterized Queries in
Spatio-Temporal Databases. SIGMOD, 2002.

[TPS02] Tao, Y., Papadias, D., Shen, Q. Continuous Nearest
Neighbor Search. VLDB, 2002.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T. Efficient
Cost Models for Spatial Queries Using R-trees.
TKDE, 12(1):19-32, 2000.

[Web] dias.cti.gr/~ytheod/research/datasets/ spatial.html
[WSB98] Weber, R., Schek, H.J., Blott, S. A Quantitative

Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces. VLDB,
1998.

[ZL01] Zheng, B., Lee, D. Semantic Caching in Location-
Dependent Query Processing. SSTD, 2001.

	page1: 443
	page2: 444
	page3: 445
	page4: 446
	page5: 447
	page6: 448
	page7: 449
	page8: 450
	page9: 451
	page10: 452
	page11: 453
	page12: 454

