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Abstract

A frequent type of query in spatial networks
(e.g., road networks) is to find the K near-
est neighbors (KNN) of a given query ob-
ject. With these networks, the distances be-
tween objects depend on their network con-
nectivity and it is computationally expen-
sive to compute the distances (e.g., shortest
paths) between objects. In this paper, we pro-
pose a novel approach to efficiently and accu-
rately evaluate KNN queries in spatial net-
work databases using first order Voronoi di-
agram. This approach is based on partition-
ing a large network to small Voronoi regions,
and then pre-computing distances both within
and across the regions. By localizing the pre-
computation within the regions, we save on
both storage and computation and by per-
forming across-the-network computation for
only the border points of the neighboring re-
gions, we avoid global pre-computation be-
tween every node-pair. Our empirical experi-
ments with several real-world data sets show
that our proposed solution outperforms ap-
proaches that are based on on-line distance
computation by up to one order of magnitude,
and provides a factor of four improvement in
the selectivity of the filter step as compared
to the index-based approaches.
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1 Introduction

Many researchers have focused on the problem of K
nearest neighbor (KNN) queries in spatial databases.
This type of query is frequently used in Geographi-
cal Information Systems and is defined as: given a set
of spatial objects (or points of interest), and a query
point, find the K closest objects to the query. An ex-
ample of KNN query is a query initiated by a GPS de-
vice in a vehicle to find the 5 closest restaurants to the
vehicle. With spatial network databases (SNDB), ob-
jects are restricted to move on pre-defined paths (e.g.,
roads) that are specified by an underlying network.
This means that the shortest network distance (e.g.,
shortest path, shortest time) between objects (e.g., the
vehicle and the restaurants) depend on the connectiv-
ity of the network rather than the objects’ locations.

The majority of the existing work on KNN queries
are based on either computing the distance between a
query and the objects on-line, or utilizing index struc-
tures. The solution proposed by the first group is
based on the fact that the current algorithms (e.g.,
Dijkstra) for computing the distance between a query
object q and an object O in a network will automati-
cally result in the computation of the distance between
q and the objects that are (relatively) closer to q than
O. These approaches apply an optimized network ex-
pansion algorithm (e.g., [9]) with the advantage that
the network expansion only explores the objects that
are closer to q and computes their distances to q dur-
ing expansion. However, the main disadvantage of
these approaches is that they perform poorly when
the objects are not densely distributed in the network
because then they require to retrieve a large portion
of the network for distance computation. The second
group of approaches is designed and optimized for met-
ric or vector spatial index structures (e.g., m-tree and
r-tree, respectively). These approaches require pre-
computations of the distances between objects and ob-
ject groups based on their distances to some reference
nodes (this is more intelligent as compared to a naive



approach that pre-computes and stores distances be-
tween all the node-pairs in the network). These solu-
tions filter a small subset of possibly large number of
objects as the candidates for the closest neighbors of
q, and require a refinement step to compute the ac-
tual distances between q and the candidates to find
the actual nearest neighbors of q. The main drawback
of applying these approaches on SNDB is that they
do not offer any solution as how to efficiently compute
the distances between q and the candidates. Moreover,
applying an approach similar to the first group to per-
form the refinement step in order to compute the dis-
tances between q and the candidates will render these
approaches, which traverse index structures to provide
a candidate set, redundant since the network expan-
sion approach does not require any candidate set to
start with. In addition to this drawback, approaches
that are based on vector index structures are only ap-
propriate for spaces where the distance between ob-
jects is only a function of their spatial attributes (e.g.,
Euclidean distance) and cannot properly approximate
the distances in a network (see [12]).

A comprehensive solution for spatial queries in
SNDB must fulfill these real-world requirements: 1)
be able to incorporate the network connectivity to
provide exact distances between objects, 2) efficiently
answer the queries in real-time in order to support
KNN queries for moving objects, 3) be scalable in or-
der to be applicable to usually very large networks, 4)
be independent of the density and distribution of the
points of interest, 5) be adaptive to efficiently cope
with database updates where nodes, links, and points
of interest are added/deleted, and 6) be extendible to
consider query constraints such as direction or range.

In this paper, we propose a novel approach that ful-
fills the above requirements by reducing the problem of
distance computation in a very large network, in to the
problem of distance computation in a number of much
smaller networks plus some additional table lookups.
The main idea behind our approach, termed Voronoi-
based Network Nearest Neighbor (VN3), is to first par-
tition a large network in to smaller/more manageable
regions. We achieve this by generating a first-order
network Voronoi diagram over the points of interest.
Each cell of this Voronoi diagram is centered by one
object (e.g., a restaurant) and contains the nodes that
are closest to that object in network distance (and
not the Euclidian distance). Next, we pre-compute
the intra and inter distances for each cell. That is, for
each cell, we pre-compute the distances between all
the edges (or border points) of the cell to its center.
We also pre-compute distances only across the border
points of the adjacent cells. This will reduce the pre-
computation time and space by localizing the compu-
tation to cells and handful of neighbor-cell node-pairs.
Now, to find the k nearest-neighbors of a query object
q, we first find the first nearest neighbor by simply lo-

cating the Voronoi cell that contains q. This can be
easily achieved by utilizing a spatial index (e.g., R-
tree) that is generated for the Voronoi cells. We prove
that the next nearest neighbors of q are within the ad-
jacent cells of the previously explored ones (see Section
4.1), which can be efficiently retrieved from a lookup
table. We then utilize the intra-cell pre-computed dis-
tances to find the distance from q to the borders of the
Voronoi cell of each candidate, and finally the inter-cell
pre-computed distances to compute the actual network
distance from q to each candidate (see Section 4.2).
The local pre-computation nature of VN3 also results
in low complexity of updates when the network is mod-
ified.

Note that the application of the Voronoi diagrams
to KNN queries have been extensively studied in com-
putation geometry. The solution is based on cal-
culating the K-th order Voronoi diagrams of a net-
work. This solution is impractical for real-world sce-
narios since it requires that the value of K be predeter-
mined. Moreover, K-th order Voronoi cells have com-
plex shapes and the corresponding algorithms have a
very high complexity. However, our proposed VN3 ap-
proach utilizes only the first order Voronoi diagrams
to only answer the first NN queries. The other (k−1)
neighbors are found efficiently by utilizing our proven
properties and the pre-computed distances.

To the best of our knowledge, the Incremental Net-
work Expansion (INE) approach presented in [9] is the
only other approach that efficiently supports the exact
KNN queries on spatial network databases. However,
this approach suffers from poor performance when the
objects (e.g., restaurants) are not densely distributed
in the network. Our empirical experiments with real-
world data sets (presented in Section 5) show that VN3

outperforms INE in query processing time by a factor
of 1.5 to 12 depending on the density of the points
of interest. Moreover, we show that the size of the
candidate set generated by the filter step of VN3 has
lower variance and is up to four times smaller than that
generated by the traditional approaches optimized for
vector index structures. Also, we show that VN3’s
performance is independent of the density and distri-
bution of the points of interest, and the location of
the query object. Finally, we show that the required
computation and space for the pre-computation com-
ponent of VN3 is three orders of magnitude less than
that of the naive solution that pre-computes all the
node-pair distances.

The remainder of this paper is organized as follows.
We review the related work on K nearest neighbor
queries in Section 2. We then provide a review of
the Voronoi diagrams, the basis of our proposed VN3

approach, in Section 3. In Section 4, we discuss our
proposed VN3 approach and its extensions. Finally,
we discuss our experimental results and conclusions in
Sections 5 and 6, respectively.



2 Related Work

Numerous algorithms for k -nearest neighbor queries
are proposed. This type of queries is extensively used
in geographical information systems, shape similarity
in image databases, pattern recognition, etc. A ma-
jority of the algorithms are aimed at m-dimensional
objects and are based on utilizing one of the variations
of multidimensional vector or metric index structures.
There are also other algorithms that are based on pre-
calculation of the solution space or the computation of
the distance from a query object to its nearest neigh-
bors on-line and per query. In this section, we consider
each group in turn.

The algorithms that are based on index structures
usually perform in two filter and refinement steps and
their performance depend on their selectivity in the
filter step. These approaches can be divided in two
group: vector and metric index structures.

Vector Index structures: Roussopoulos et al. in [10]
present a branch-and-bound R-tree traversal algorithm
to find nearest neighbors of a query point. The main
disadvantage of this approach is the depth-first traver-
sal of the index that incurs unnecessary disk accesses.
Korn et al. in [7] present a multi-step k -nearest neigh-
bor search algorithm. The disadvantage of this ap-
proach is that the number of candidates obtained in
the filter step is usually much more than necessary,
making the refinement step very expensive. Seidl et
al. in [11] propose an optimal version of this multi-
step algorithm by incrementally ranking queries on the
index structure. Hjaltason et al. in [4] propose an
incremental nearest neighbor algorithm that is based
on utilizing an index structure and a priority queue.
All of these approaches are designed to utilize spa-
tial index structures and aimed to minimize number
of candidates, index nodes and disk accesses required
to obtain candidates. There are two major shortages
with these approaches that render them impractical
for networks. first, networks are metric space, i.e., the
distance between two objects depends on the connec-
tivity of the objects and not their spatial attributes;
however, the filter step of these approaches is based on
Minkowski distance metrics (e.g., Euclidean distance).
Hence, the filter step of these approaches cannot be
used for, or properly approximate exact distances in
networks. Second, these approaches do not propose
any method to calculate the exact network distance
between objects and the query in their refinement step,
rather they assume that the distance function can be
easily calculated.

Metric Index structures: These approaches are also
based on a filter and refinement process, but as op-
posed to the vector index structures, they index and
filter the objects considering their metric distance.
Chiueh in [2] proposes Vantage Point (VP) tree struc-
ture for image indexing. This algorithm partitions a
data set according to the distances between the objects

and a reference (vantage) point. The median value of
the distances is used to separate the objects into bal-
anced subsets and a recursive algorithm is applied on
each subset. This approach builds the tree based on a
top-down recursive process, which does not guarantee
a balanced tree. Ciaccia et al in [3] propose M-tree, a
balanced tree that partitions objects based on their rel-
ative distances and stores these objects into fixed-sized
nodes. The main disadvantage of these approaches is
that they do not offer any solution on how to efficiently
compute the distances between the query and the can-
didates (i.e., the same as the second shortage of the
approaches based on vector index) which is required
by the refinement step.

Berchtold et al. in [1] suggest precalculating, ap-
proximating and indexing the solution space for the
nearest neighbor problem in m dimensional spaces.
Precalculating the solution space means determining
the Voronoi diagram of the data points. The exact
Voronoi cells in m dimensional space are usually very
complex, hence the authors propose indexing approx-
imation of the Voronoi cells. This approach is only
appropriate for the first nearest neighbor problem in
high-dimensional spaces. Jung et al. in [6] propose an
algorithm to find the shortest distance between any
two points in a network. Their approach is based
on partitioning a large graph into layers of smaller
subgraphs and pushing up the pre-computed shortest
paths between the borders of the subgraphs in a hi-
erarchical manner to find the shortest path between
two points. This approach can potentially be used in
conjunction with one of the approaches that are based
on metric index; however, the main disadvantage of
this approach is its poor performance when multiple
shortest path queries from different sources are issued
at the same time.

Jensen et al. in [5] propose a data model and defini-
tion of abstract functionality required for NN queries
in SNDB. They use algorithms similar to Dijkstra to
calculate the shortest distance from a query to an
object on-line. Finally, Papadias et al. in [9] pro-
pose a solution for nearest neighbor queries in net-
work databases by introducing an architecture that in-
tegrates network and Euclidean information and cap-
tures pragmatic constraints. Their approach is based
on generating a search region for the query point that
expands from the query. The advantages of this ap-
proach are: 1) it offers a method that finds the exact
distance in networks, and 2) the architecture can sup-
port other spatial queries like range search and closest
pairs. Since the number of links and nodes that need to
be retrieved and examined are inversely proportional
to cardinality ratio of entities and number of nodes in
the network, the main disadvantage of this approach
is a dramatic degradation in performance when the
above cardinality ratio is (far) less than 10%, which is
the usual case for real world scenarios (e.g., the real



data sets representing the road network and different
types of entities in the State of California show that
the above cardinality ratio is usually between 0.04%
and 3%). This is because spatial databases are usually
very large and small values for the above cardinality
ratio will lead to large portions of the database to be
retrieved. This problem also happens for large values
of K (see Section 5 for a thorough comparison).

3 Background: Voronoi Diagram
Our proposed approach to address the nearest neigh-
bor queries is based on the Voronoi diagram. A
Voronoi diagram divides a space into disjoint polygons
where the nearest neighbor of any point inside a poly-
gon is the generator of the polygon. In this section,
we review the principles of the Voronoi diagrams. We
start with the Voronoi diagram for 2-dimensional Eu-
clidean space and present only the properties that are
used in our approach. We then discuss the network
Voronoi diagram where the distance between two ob-
jects in space is their shortest path in the network
rather than their Euclidean distance and hence can be
used for spatial networks. A thorough discussion on
regular and network Voronoi diagrams is presented in
[8].

3.1 Definition
Consider a set of limited number of points, called gen-
erator points, in the Euclidean plane (in general, gener-
ators can be any type of spatial object). We associate
all locations in the plane to their closest generator(s).
The set of locations assigned to each generator forms
a region called Voronoi polygon or Voronoi cell, of
that generator. The set of Voronoi polygons associated
with all the generators is called the Voronoi diagram
with respect to the generators set. The Voronoi poly-
gons of a Voronoi diagram are collectively exhaustive
because every location in the plane is associated with
at least one generator. The polygons are also mutu-
ally exclusive except for their boundaries. The bound-
aries of the polygons, called Voronoi edges, are the set
of locations that can be assigned to more than one
generator. The Voronoi polygons that share the same
edges are called adjacent polygons and their generators
are called adjacent generators. The Voronoi polygon
and Voronoi diagram can be formally defined as: As-
sume a set of generators P = {p1, ..., pn} ⊂ <2, where
2 < n < ∞ and pi 6= pj for i 6= j, i, j ∈ In = {1, ..., n}.
The region given by:

V P (pi) = {p | d(p, pi) ≤ d(p, pj)} for j 6= i, j ∈ In

where d(p, pi) specifies the minimum distance be-
tween p and pi (e.g., length of the straight line connect-
ing p and pi in Euclidean space), is called the Voronoi
Polygon associated with pi, and the set given by:

V D(P ) = {V P (p1), ..., V P (pn)}
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Figure 1: Example of a Voronoi diagram

is called the Voronoi Diagram generated by P . Fig-
ure 1a shows an example of a Voronoi diagram, its
polygons and generators.

3.2 Properties
We review four of the basic geometric properties of the
Voronoi diagrams. The proofs for these properties are
presented in [8]. These properties are the basis for the
extended properties we introduce in Section 4.

Property 1: The Voronoi diagram of a point set
P , V D(P ), is unique.

Property 2: The nearest generator point of pi

(e.g., pj) is among the generator points whose Voronoi
polygons share similar Voronoi edges with V P (pi).

Property 3: Let n and ne be the number of gen-
erator points and Voronoi edges, respectively, then
ne ≤ 3n− 6.

Property 4: From property 3, and the fact
that every Voronoi edge is shared by exactly two
Voronoi polygons, we notice that the average num-
ber of Voronoi edges per Voronoi polygon is at most
6, i.e., 2(3n − 6)/n = 6 − 12/n ≤ 6. This means that
on average, each generator has 6 adjacent generators.
We use this property to derive the complexity of our
algorithm.

3.3 Network Voronoi Diagram
A network Voronoi diagram ([8]), termed NVD, is de-
fined for graphs and is a specialization of Voronoi di-
agrams where the location of objects is restricted to
the links that connect the nodes of the graph and dis-
tance between objects is defined as the length of the
shortest distance (e.g., shortest path or shortest time)
in the network rather than their Euclidean distance.
Spatial networks (e.g., road networks) can be modeled
as weighted graphs where the intersections are repre-
sented by nodes of the graph and roads are represented
by the links connecting the nodes. The weights can be
the distances of the nodes or they can be the time it
takes to travel between the nodes (representing short-
est times).

Assume a weighted graph G(N, L) that consists of
a set of nodes N = {p1, ..., pn, pn+1, ..., po}, where the
first n elements (i.e., P = {p1, ..., pn}) are the gener-
ators (e.g., points of interest in a road network), and
a set of links L = {l1, ..., lk} that connects the nodes.
Also assume that the network distance from a point
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(NVD)

p on a link in L to pi in N , dn(p, pi), is defined as
the shortest network distance from p to pi. For all
j ∈ In \ {i}, we define:

Dom(pi, pj) = {p|p ∈
k⋃

o=1

lo, dn(p, pi) ≤ dn(p, pj)}

b(pi, pj) = {p|p ∈
k⋃

o=1

lo, dn(p, pi) = dn(p, pj)}

The set Dom(pi, pj), called the dominance region of
pi over pj on links in L, specifies all points in all links
in L that are closer to pi or of equal distance to pj . The
set b(pi, pj), called bisector or border points between
pi and pj , specifies all points in all links in L that
are equally distanced from pi and pj . Consequently,
the Voronoi link set associated with pi and network
Voronoi diagram are defined as following, respectively:

Vlink(pi) =
⋂

j∈In\{i}
Dom(pi, pj)

NV D(P ) = {Vlink(p1), ..., Vlink(pn)}
where Vlink(pi) specifies all the points in all the

links in L that are closer to pi than any other gen-
erator point in N . Similar to V D defined in Section
3.1, elements of NV D are also collectively exhaustive
and mutually exclusive except for their border points.
Note that b is a set of points which unlike Voronoi
diagram in Euclidean space, cannot directly generate
polygons. However, by properly connecting adjacent
border points of a generator g to each other without
crossing any of the links, we can generate a bound-
ing polygon, called network Voronoi polygon, we term
NVP(g), for that generator. Note that generation of
NV P (g) only requires local network information, i.e.,
the links and nodes that are in the area between g and
its adjacent generators are used to generate NV P (g).

An example of NVD is shown in Figure 2. Fig-
ure 2a depicts the original graph where p1, p2 and p3

are the generators. We can assume that the set of
generators is the set of points of interest (e.g., hotels,
restaurants,...) and p4 to p16 are the intersections of
a road network that are connected to each other by
the set of streets L. Figure 2b shows the NVD of the
graph where each line style corresponds to a Voronoi

link set of a generator. As shown in the figure, some
links are completely contained in Vlink of a genera-
tor (e.g., the link connecting p6 and p9 is completely
inside Vlink(p1)), while others are partially contained
in different Vlink’s (e.g., the link connecting p4 and
p5 is divided between and contained in Vlink(p1) and
Vlink(p2)). The figure also shows how adjacent border
points should be connected to each other: if two adja-
cent border points are between two similar generators
(e.g., b5 and b7 are between p1 and p3), they can be
connected with an arbitrary line that does not cross
any of the members of L. Three or more adjacent bor-
der points (e.g., b2, b3 and b5) can be connected to
each other through an arbitrary auxiliary point (e.g.,
v in the figure). By using arbitrary lines and auxiliary
points, NVPs will become non-unique. However, since
objects in a graph can only be located on links, differ-
ent NVPs will contain exactly identical Voronoi link
sets and hence are unique in this respect. Moreover,
as shown in the figure and unlike Voronoi polygons
in the Euclidean space, common edges between two
NVPs may contain more than two border points and
are not necessarily straight lines. Despite this, prop-
erties 3 and 4 of Section 3.2 are still valid for NVPs as
shown in [8].

4 Voronoi-Based Network Nearest
Neighbor: VN3

In this section, we describe VN3 as our proposed ap-
proach to evaluate the nearest neighbor queries in
spatial networks. VN3 is based on the properties of
the Network Voronoi diagrams and also localized pre-
computation of the network distances for a very small
percentage of neighboring nodes in the network. The
intuition is that the NVPs of an NVD can directly be
used to find the first nearest neighbor of a query object
q. Subsequently, NVPs’ adjacency information can be
utilized to provide a candidate set for other nearest
neighbors of q. Finally, the pre-computed distances
can be used to compute the actual network distances
from q to the generators in the candidate set and con-
sequently refine the set. The filter/refinement process
in VN3 is iterative: at each step, first a new set of can-
didates is generated from the NVPs of the generators
that are already selected as the nearest neighbors of
q, then the pre-computed distances are used to select
“only the next” nearest neighbor of q. Hence, the fil-
ter/refinement step must be invoked k times to find
the first k nearest neighbors of q. Note that this is dif-
ferent from the usual filter/refinement process where
the two steps are invoked consecutively. VN3 consists
of the following components:

1. Pre-calculation of the solution space: As a major
component of the VN3 filter step, the NVD for the
points of interest (e.g., hotels, restaurants,...) in a
network must be calculated and its corresponding
NVPs must be stored in a table. Note that sep-



arate NVDs and set of NVPs must be generated
for different types of points of interest.

2. Utilization of an index structure: In the first stage
of the filter step, the first nearest neighbor of q is
found by locating the NVP that contains q (e.g.,
using Contain(q) function in spatial databases).
This stage can be expedited by using a spatial in-
dex structure generated on the NVPs. Note that
although an NVD is based on the network dis-
tance metric, its NVPs are regular polygons and
can be indexed using index structures that are
designed for the Euclidean distance metric (e.g.,
R-tree). This means that the Contain(q) function
invoked on an R-tree index structure on NVPs will
return the NVP whose generator has the mini-
mum network distance to q.

3. Pre-computation of the exact distances for a very
small portion of data: The refinement step dis-
cussed in Section 4.2 requires that for each NVP,
the network distances between its border points
be pre-computed and stored. These pre-computed
distances are used to find the network distances
across NVPs, and from the query object to the
candidate set generated by the filter step.

4.1 VN3 Filter Step
Our proposed approach to generate the candidate set
for nearest neighbors of a query point is based on the
first two components of VN3 discussed in Section 4.
This requires the pre-calculation of NVD and genera-
tion of a spatial index structure for NVPs of the NVD.
We first introduce the following properties that can
be concluded from properties 1 to 4 in Section 3.2.
These two properties help the filter step to constraint
its search space to only the adjacent Voronoi polygons.

Property 5: Property 2 suggests that the second
nearest generator to “any location” inside a Voronoi
polygon V (pi) is among the adjacent generators of pi.
Proof: This property can be proved by contradic-
tion. Consider Figure 1b where the first nearest neigh-
bor of an arbitrary point q is p4 (i.e., q is inside
V (p4)). Now suppose that the second nearest neigh-
bor of q is p3 /∈ {adjacent generators of p4}. This
requires that the shortest path between q and p3,
L(q, p3), intersects with at least one of the adjacent
polygons of V (p4) ( L(q, p3) in Figure 1b intersects
V (p2) at points b1 and b2). Note that in case of NVD,
L(q, p3) may not be a straight line as shown in the
figure. From the definition of the Voronoi polygons
we know that dn(b2, p3) = dn(b2, p2). We also know
that the shortest path in networks and Euclidean dis-
tance functions obey triangular inequality, meaning
that dn(b1, b2) + dn(b2, p2) ≥ dn(b1, p2). We can con-
clude that dn(b1, b2) + dn(b2, p3) ≥ dn(b1, p2), and by
adding dn(q, b1) to both sides of the inequality, we can
ultimately conclude that dn(q, p3) ≥ dn(q, p2). This
means that p2 is a closer generator to q than p3, or
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at least has the same distance, which contradicts our
initial assumption.

Property 6: Let G = {g1, ..., gk} ∈ P be the set
of the first k nearest generators of a location q inside
V (g1), then gk is among the adjacent generators of
{G \ gk}. This property is in fact the generalization of
Property 5.
Proof: The proof of this property by contradiction
is similar to the proof of the previous property. We
know that the shortest path from q to gk, L(q, gk),
must intersect with one of the edges of V (gk), e.g., Ek.
Suppose L(q, gk) intersects Ek at point bk, and Ek is
a common edge between V (gk) and V (x) where the
contradiction of this property requires that x /∈ {G \
gk}. It is clear that L(q, gk) must also intersect with
V (x) at at least another point like bx. By comparison
with Property 5, we can conclude that dn(bx, x) ≤
dn(bx, bk) + dn(bk, gk), suggesting that x is closer to q
than gk and hence x ∈ {G \ gk}. This contradicts our
initial assumption.

Using a hypothetical NVD shown in Figure 3, we
can now easily describe our filtering approach to gen-
erate the candidate set, C, for nearest neighbors of a
query point q. The definition of NVD requires that the
first nearest neighbor of q be P1 since V (P1) contains q,
hence P1 can be found by issuing the Contain(q) func-
tion on an index structure generated for the NVPs of
the NVD. Property 5 suggests that the second near-
est neighbor of q is among the adjacent generators of
P1, i.e., C = {P2, P3, P4, P5, P6}. Note that during
the generation of NVD, the adjacent generators/NVPs
are determined. We store the adjacency information
of the NVPs in a lookup table. Hence, finding ad-
jacent NVPs does not require any spatial operation,
rather, they can easily be found from a lookup table
by one disk block access. At this stage, we need to
invoke the refinement step (see Section 4.2) to com-
pute the exact distances between q and all the gener-
ators in C to find the second nearest neighbor. Let
us assume that the second nearest neighbor of q is P3.
Property 6 requires that the third nearest neighbor of
q be among the adjacent generators of {P1, P3}, i.e.,
C = {P2, P4, P5, P6, P10, P11, P12}. Note that P12 is
adjacent to P3 as their polygons share the same ver-
tex. Consecutive nearest neighbors of q can then be
found using the same iterative approach.

4.1.1 Analysis
In this section, we analyze the complexity of the filter
step of VN3 with respect to the size of the candidate



set as well as the number of disk block accesses.
Size of the Candidate Set: As described in Sec-

tion 4.1, the first neighbor is found by applying the
contain() function on an R-tree index that is gener-
ated for NVPs, and hence does not require any dis-
tance computation. Property 4 in Section 3.2 suggests
that on average, 6 generators have to be examined to
explore the second nearest neighbor. Property 6 sug-
gests that at least one of the adjacent generators of any
newly found neighbor must have already been explored
as a nearest neighbor. Hence, from the second near-
est neighbor on, exploration of a new nearest neighbor
will lead to only 5 (on average) new generators that
must be examined to find the next nearest neighbor.
This will lead to a candidate set with an average size
of (5K + 1), equal to complexity of O(K). This is a
conservative bound as our experimental results (Sec-
tion 5) show that the average size of the candidate set
is usually much smaller than (5K + 1), and becomes
very close to K as the value of K increases.

Disk Block Accesses: Usage of the Contain()
function on the R-tree index to find the first near-
est neighbor incurs a complexity of O(log(n)), where
n is the number of generators of the network. We
also showed that O(K) generators have to be exam-
ined and hence retrieved from the database. Hence,
the complexity of the number of disk block accesses
required by the filter step becomes O(K + log(n)).

4.2 VN3 Refinement Step
As we discussed in Section 4.1, once a nearest neighbor
of a query point q is found and the candidate set C is
updated, the distances from q to all the elements of
C must be computed in order to find the next nearest
neighbor. In this section, we discuss alternative ap-
proaches that are based on properties of NVPs to find
the distances between q and the elements of C.

The intuition behind all the proposed approaches is
that in an NVD, all possible paths that can connect
an object from outside an NVP to a node inside it,
including the polygon’s generator, must pass through
the border points of the polygon. In the sequel we use
BoP (e) to specify the set of border points of an entity
e. During the generation of the NVPs (described in
[8]), the shortest distance between the border points
of a Voronoi polygon to the polygon’s generator is de-
termined and stored in a lookup table. Hence, if we
calculate the distance from the outside object to the
border points of a Voronoi polygon, we can find the
minimum distance from the object to the generator of
the polygon. As an example, consider the NVD shown
in Figure 4 where N = {P1, ..., P14} are the gener-
ators of the NVD, e.g., points of interest in a road
network. Note that only the nodes and links inside
NV P (P1) are drawn. In the figure, B = {b1, ..., b40}
specify the border points of the NVPs. An example
that describes the intuition is the distance compu-
tation between q and P9. The values of dn(P9, b34),

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11P

12

P
13

P
14

q

b
1

b
2b

3

b
4

b
5

b
6

b
7

b
8

b
9

b
10

b
11

b
12

b
13

b
14

b
15

b
16

b
17b

18

b
19

b
20b

21

b
22

b
23

b
27

b
25

b
26

b
24

b
28 b

29
b
30

b
31

b
32

b
33

b
34

b
36

b
35

b
37b

38

b
39

b
40

n
1

n
2

n
3

Figure 4: Sample network Voronoi diagram

dn(P9, b35) and dn(P9, b36) are determined during the
generation of NV P (P9). Hence, we can compute the
distance between q and P9 as:

dn(q, P9) = min(dn(q, b34) + dn(b34, P9),
dn(q, b35) + dn(b35, P9),
dn(q, b36) + dn(b36, P9))

Trivially, we need to have the distance from q to b34,
b35, and b36 in order to find dn(q, P9). As stated above,
q can only be connected to {b34, b35, b36} through
{b1, ..., b8}, which are the border points of the NVP
that contains q, BoP (NV P (q)). This means that:

dn(q, b34) = min( dn(q, b1) + dn(b1, b34) , ... ,
dn(q, b8) + dn(b8, b34) )

As shown above, finding the network distance from
q to P9, or in general to all the elements of C, requires:
1) Query to border computation: computing the net-
work distances from q to BoP (NV P (q)) and 2) Border
to border computation: for the set of generators that
are candidates for the next nearest neighbor, g, com-
puting the network distances from BoP (NV P (q)) to
the border points of the NVPs of g, BoP (NV Ps(g)).
We address these two requirements in the following
sections.
4.2.1 Query to Border Computation

We propose two alternative approaches to compute the
distances from a query point q to the border points of
its surrounding NVP, BoP (NV P (q)).

1. On-line Progressive Expansion, OPE:
With this approach, we use a method similar to what
proposed in [9] to find the distance between q and
BoP (NV P (q)). The average number of disk block ac-
cesses required by this approach is n

mb (m points of
interest, n nodes in the network, b connected nodes on
one disk block) which grows rapidly for large networks
with small number of points of interest (see Section 5.
Due to lack of space and because our chosen approach
in the experiments is OPC, we do not include the dis-
cussion for this approach. See the full-paper or [9] for
details.

2. Off-line Precalculation, OPC: This ap-
proach suggests that in addition to the third compo-
nent of VN3 discussed in Section 4, the distances from
each border point to all the nodes inside the polygons
that contain the border point be pre-computed in an
off-line process.For example, for the NVD shown in
Figure 4, this approach suggests that in addition to
the distances from (b1, ..., b8) to each other and to P1,
their distances to (n1, n2, n3) be pre-computed. Note



that unlike the figure, number of border points of an
NVP in a real world scenario is much less than the
number of nodes inside the NVP (see results in Sec-
tion 5). Also note that each border point is shared by
at least two NVPs and hence its distances to all the
nodes in these NVPs have to be computed, e.g., the
distances from (b6, b7) to the nodes inside NV P (P6)
should also be computed.

The main advantage of this approach is a significant
boost in performance since it eliminates the need for
both the execution of complex algorithms (e.g., Dijk-
stra in OPE) and retrieving large amount of data for
distance computations. Rather, the distance from q
to BoP (NV P (q)) can be retrieved from a lookup ta-
ble in one disk block access. The disadvantage of this
approach is the requirement for an off-line process to
pre-calculate and store the above network distances.
However, we believe that this approach has a low over-
all computation and space complexity (similar to the
discussion in Section 4.2.2). Our experimental results
in Section 5 confirm this intuition, where they show
that the network distances for only less than 0.5% of
the network (as compared to pre-computing the dis-
tances between all the nodes in the network) must be
calculated and stored.

4.2.2 Border to Border Computations
To find the network distances from BoP (NV P (q))
to the border points of the NVP of any generator,
BoP (NV P (g)), we propose pre-computing the point-
to-point network distances between the border points
of each NVP “separately” (the third component of
VN3 discussed in Section 4). For example, this ap-
proach suggests that for the NVD shown in Figure 4,
the point-to-point network distances among {b1, ..., b8}
(corresponding to NV P (P1)) be pre-computed. It
also suggests that the point-to-point network dis-
tances among {b1, b2, b14, ..., b19} (corresponding to
NV P (P3)) be pre-computed. Note that each border
point (e.g., b1) belongs to at least two NVPs (e.g.,
NV P (P1) and NV P (P3)) and hence, its distances
to all the border points of two NVPs must be pre-
computed. The intuition for this approach is that once
the point-to-point network distances among the bor-
der points of “each” NVP is computed, these distances
can be used to find the network distances between the
border points of “any” two NVPs. The other intuition
is that this approach has low complexity with respect
to both space and computation. The reasons are: 1)
The pre-computation is only performed for the bor-
der points of each NVP separately, and in real world
scenarios (as opposed to the example shown in Figure
4), the ratio of the total number of the border points
to the total number of the nodes in the network is
small (see Section 5), and 2) the pre-computation is
performed for each NVP separately and not across all
NVPs, and the border points of each NVP are fairly
close to each other.

The first stage to find the network distances from
BoP (NV P (q)) to BoP (NV P (g)) is to find those
NVPs through which the shortest path from q to g
will pass. In order to find these NVPs, we introduce
the following properties that can be concluded from
properties 5 and 6 in Section 4.1.

Property 7: In a Voronoi diagram, if (g1, g2)
is the set of first two nearest generators of q, then
the shortest path from q to g2 can only go through
{V (g1), V (g2)} and hence, through the common edge
of {V (g1), V (g2)}.
Proof: The proof of this property is by contradiction.
If the shortest path from q to g2 crosses a Voronoi poly-
gon V (gk) where gk /∈ {g1, g2}, then the portion of the
shortest path that is inside V (gk) is closer to gk than
g2 and consequently, q will become closer to gk than
g2. This contradicts our assumption that g2, after g1,
is the nearest generator to q. As an example, consider
Figure 1b and suppose that {p4, p2} is the set of first
two nearest generators of q. Suppose that the shortest
path from q to p2 is the line L =< q, b3, b4, p2 >, which
crosses NV P (p1) at points b3 and b4. Since any point
on the line segment < b3, b4 > is closer to p1 than p2,
this requires that p1 must be a closer generator to q
than p2, contradicting our assumption about the set of
first two nearest generators of q. Note that in network
Voronoi Diagrams, the shortest network path from q
to g2 can only cross the common edge of V (g1) and
V (g2) at one of their common border points.

Property 8: In a Voronoi diagram, if (g1, ..., gk)
is the set of first k nearest generators of q, then
the shortest path from a location q to gk can only
go through a combination of {V (g1), ..., V (gk)} and
hence, through a combination of the common edges of
{V (g1), ..., V (gk)}.
Proof: This property is the generalization of Property
7 and its proof is similar to the proof of Property 7.

Property 9: In a Voronoi diagram, if the shortest
path from q to a generator gk passes through NV P (gi),
then gi is closer to q than gk.
Proof: Property 8 suggests that the shortest path
from q to gk can only pass through a combination of
{V (g1), ..., V (gk−1)}. Hence, gi must be a member of
{V (g1), ..., V (gk−1)} and subsequently, it is closer to q
than gk.

Using the hypothetical NVD shown in Figure 4, we
now describe our progressive approach to find the dis-
tances from q to BoP (NV Ps(CG)) (CG are candi-
dates for the next nearest generator of q). As shown
in the figure, the first nearest generator of q is p1 since
NV P (p1) contains q. Property 7 suggests that the
shortest path from q to its second nearest generator,
say pi, can only go through the common edges between
NV P (p1) and the NV P (pi). Hence, to find the second
nearest generator of q, we first compute the minimum
possible network distances, dmpn, from q to (p2, ..., p6)
through each of the generators’ shared border points



with p1:
dmpn(q, p2) = dn(q, b8) + dn(b8, p2)
dmpn(q, p3) = min[ dn(q, b1) + dn(b1, p3) ,

dn(q, b2) + dn(b2, p3) ]
...
dmpn(q, p6) = min[ dn(q, b6) + dn(b6, p6) ,

dn(q, b7) + dn(b7, p6) ]
Formally, the minimum possible network distance

from q to pi, dmpn(q, pi), is the minimum distance
from q to pi for a path that only passes through
any of the NVPs whose generators are already se-
lected as the nearest generators of q. Hence, the
path can only crosses the common edges between those
NVPs. Note that all of the above dn’s are either pre-
computed (as we proposed in Section 4.2.2) or calcu-
lated using one of the approaches discussed in Sec-
tion 4.2.1. The generator with the shortest dmpn is
then selected as the second nearest generator of q.
Note that because of the triangular inequality prop-
erty, dmpn(q, pi) ≥ dn(q, pi). However, Property 7
(and 8) require that dmpn(q, pi) = dn(q, pi) when pi

is the next nearest generator of q. Let us now assume
that p2 is the second nearest generator of q. Prop-
erty 8 suggests that the shortest path from q to the
third nearest neighbor, pi ∈ (p3, p4, p5, p6, p7, p8, p10),
can only go through one of the { BoP ({NV P (p1) ∪
NV P (p2)}) ∩ BoP (NV P (pi)) }. For example, the
property requires that at this stage, the path from q
to p6 can only go through b6, b7, or b9:

dmpn(q, p6) = min[ dn(q, b6) + dn(b6, p6) ,
dn(q, b7) + dn(b7, p6) ,

dn(q, b8) + dn(b8, b9) + dn(b9, p6) ]
Note that the actual shortest path from q to b9

may pass through a different point set than (b8) (e.g.,
SP (q, b9) may pass through (b1, b15)). However, at this
stage, where only p1 and p2 are found as the nearest
generators of q, Property 8 suggests if SP (q, p6) does
indeed go through b9, then SP (q, b9) must go through
b8. In other words, the ”only possible” path from q
to b9 at this stage is through b8 and hence, only the
length of this path must be computed for dmpn(q, p6).
This significantly simplifies our approach by replacing
the need to compute the “actual shortest” network
distances from q to BoP (NV Ps(CG)), with the need
to only compute their “minimum possible” network
distances. If we assume that p3 is the third nearest
generator of q, then Property 8 suggests that the min-
imum possible shortest path from q to b9, in addition
to going through b8, can pass through a combination
of (b1, b2) and (b14, b15) as well.

We now propose two alternative approaches to find
dmpn from a query point to BoP (NV Ps(CG)). The
intuition for both of the approaches is that at each
step k, we find the dmpn from q to BoP (p), where
P = {NV P (g1) ∪ NV P (g2) ∪ ... ∪ NV P (gk−1)} and
{g1, ..., gk−1} is the set of the (k− 1)-st nearest gener-
ators of q.

1. NVP Expansion, NVP-E: This approach

works as follows. For the NVD shown in Figure 4, first
we generate an auxiliary network, AN1, containing
nodes N = {b1, ..., b8, q} (i.e., BoP (NV P (p1)) and the
query object). Note that all of the elements of AN1 are
connected to each other and their distances are equal
to their network distances in the original network that
are either pre-computed as part of the third compo-
nent of VN3 (Section 4), or are calculated by one of the
approaches discussed in Section 4.2.1. We use the dis-
tances from q to {b1, ..., b8} to find the second nearest
generator (assume P2 is the second nearest generator).
We then generate a new auxiliary network, AN2, con-
taining nodes N = {b8, ..., b15} (i.e., BoP (NV P (P2))).
Note that based on Property 6, the NVP of the k-
th nearest generator must have at least one common
edge/border point with the NVPs of the first (k−1)-st
nearest generators. Hence, we generate a new network
from AN1 and AN2, AN = {AN1 ∪ AN2}, and using
Dijkstra’s algorithm, compute the distances from q to
the nodes in the new network AN . Note that comput-
ing the network distances between all the nodes in AN
is not necessary. At this stage, we have the minimum
possible network distances from q to the nodes in AN ,
i.e., BoP ({NV P (p1)∪NV P (p2)}). Consequently, the
minimum possible network distances for the k-th step
can be found by generating AN = {AN1∪...∪ANk−1}.
The intuition here is that the average number of border
points for each NVP is small (our experimental results
in Section 5 confirms this), and hence, this approach
can be efficiently executed in memory.

2. Distance Computing Optimization, DCO:
The use of the Dijkstra’s algorithm in NVP-E requires
that the distances from q to all the nodes in AN be
recalculated every time a new nearest generator is ex-
plored. This is unnecessary because once a new nearest
generator of q is found and its NVP is added to AN ,
dmpn from q to only a very small number of borders in
AN must be reexamined. The distance dmpn from q to
the border points of an NVP may “only” change if the
distance from q to at least one of the border points
of that NVP is changed. Consequently, DCO works
as follows: suppose {g1, ..., gn−1} is the set of the first
(n−1)-st nearest generators of q and dmpn’s from q to
all the BoP (V = {NV P (g1) ∪ ... ∪NV P (gn−1)}) are
computed. When the next nearest generator, gn, is ex-
plored, first the length of the minimum possible paths
from q to BoP (NV P (gn)) are computed. These paths
can only pass through BoP ({NV P (gn) ∩ V}). Next,
only dmpn for the NVPs whose border point(s) have a
new smaller value of dmpn are re-examined. This will
reduce the computation complexity by eliminating un-
necessary distance computations.

4.3 VN3 Storage Schema

Figure 5 shows an example of a simple schema needed
for the NVD of Figure 4. The proposed schema con-
sists of a spatial component ( NVPs component in the
figure) that is used to find the first NN of a query, and
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Figure 5: Example of VN3 data structures

three look up tables: an adjacency component that is
used for the filter step of VN3, a pre-computed compo-
nent that is used for the refinement step, and a border
point component.

4.4 VN3 Updates

The intuition for updates in VN3 is that the modi-
fication of the original network may require changes
in the original NVPs or may require some of the net-
work distances to be recomputed. Due to “local pre-
computation” nature of VN3, an update in the net-
work does not result in updating the entire network
Voronoi diagram; rather, it only affects the NVPs in a
local scope.

a. Adding/Removing Links/Nodes: Suppose
a link L or a node N is added to or removed from
a network. If L/N is contained in one NVP, the
distances from the border points of that NVP to
each other is recomputed. If these distances stay the
same as before, then the NVP’s shape will remain
the same; otherwise, the NVP must be recomputed.
Subsequently, if the distances from the border points
of adjacent NVPs are also changed, those NVPs are
re-examined. If L is contained in a set of NVPs, N ,
then the adjacent NVPs of N may change and hence
must be regenerated.
b. Adding/Removing Points of Interest:
Suppose a point of interest P is added to, or re-
moved from the network. Then only the NV P (P )
and (some of) its adjacent NVPs will change (i.e.,
become smaller/larger). For example, for the NVD
shown in Figure 5, if a new point of interest P
located in NV P (p1) is added to the network, then
NV P (p1) and some of the {NV P (p2), ..., NV P (p6)}
will change. Similarly, if p1 is removed, then
the area covered by NV P (p1) will be covered by
{NV P (p2), ..., NV P (p6)}.

5 Performance Evaluation

We conducted several experiments to: 1) compare the
performance of VN3 with its only competitor, the INE
approach presented in [9], 2) evaluate the overhead
of the pre-computations proposed in Sections 4 and
4.2.1, and 3) compare the performance of the filter
step of VN3 with that of the traditional approaches

optimized for spatial index structures. We used two
real-world data sets. The first data set is obtained
from NavTech Inc., used for navigation systems with
GPS devices installed in cars, and represents a net-
work of approximately 110,000 links and 79,800 nodes
of the road system in the downtown Los Angeles. The
second data set is obtained from USGS and consists
of a set of points representing hospitals, major build-
ings, and churches in the US containing approximately
5200, 14000 and 126000 objects, respectively. The ex-
periments were performed on an IBM ZPro with dual
Pentium III processors, 512MB of RAM, and Oracle
9.2 as the database server. We present the average re-
sults of 1000 runs of K nearest neighbor queries where
K varied from 1 to 500.

1. Overall Performance of VN3:

Our experiments show that the total query response
time of VN3 is up to one order of magnitude less than
that of INE. Table 1 shows the results of comparing
query response time between VN3 and the INE ap-
proach proposed in [9]. The first and second columns
specify the entities (or points of interest) and their
population and cardinality ratio (i.e., the number of
entities over the number of links in the network), re-
spectively. Note that for the given data set, restau-
rants and hospitals represent the entities with the max-
imum and minimum cardinality ratios. As shown in
the table, when K = 1, and regardless of the density
of the entities, VN3 generates the result set almost in-
stantly. This is because a simple contain() function
is enough to find the first NN. However, depending
on the density of the entities, INE approach requires
between 0.49 to 12.4 seconds to provide the first NN.
Also, both approaches have almost similar CPU pro-
cessing times (values inside “()”), with VN3’s CPU
time tend to be more than INE’s for larger values of
K. This is because the major computation component
in INE is maintaining a sorted queue which grows for
larger values of K (e.g., for auto services, the queue
size is 50 for K = 5 and 6600 for K = 250). However,
VN3 has a more complex computation requirement as
it requires computation of the distances from the query
to the borders of a newly found neighbor every time
a new neighbor is explored. However, as shown in the
table, the time required by the database to retrieve
the links from network is the dominant factor and the
CPU times are almost negligible. Depending on the
density of the entities, the time incurred by INE to
retrieve the network from the database is between 1.5
(for high densities and larger Ks) and 12 (for low den-
sities and higher values of K) times more than that
incurred by VN3. This is because for lower densities
of entities, INE requires larger portion of the network
to be retrieved. For example, while there are only 340
links retrieved from the database to find the 10 clos-
est restaurants to a query, 17900 links (equal to 16%
of the network) need to be retrieved to find the 10



Query Processing Time (Sec.)
K=1 K=5 K=10 K=25 K=50 K=100

VN3 INE VN3 INE VN3 INE VN3 INE VN3 INE VN3 INE
Qty (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu) (cpu)

Entities (density) disk disk disk disk disk disk disk disk disk disk disk disk

Hospital 46 (0) (0.3) (1.5) (1.7) (4.5) (3.8) (15.3) (10.1) - - - -
(0.0004) 0.018 12.4 6.5 78.3 14.0 165.1 35.1 430.2 - - - -

Shopping 173 (0) (0.09) (0.45) (0.5) (1.3) (1.1) (3.4) (3.1) - - - -
Centers (0.0016) 0.020 3.6 3.3 21.1 6.9 44.0 18.1 118.0 - - - -
Parks 561 (0) (0.03) (0.15) (0.2) (0.37) (0.3) (1.4) (0.8) (2.5) (1.6) - -

(0.0053) 0.021 1.4 1.5 8.2 2.8 15.3 6.4 36.4 13.3 71.1 - -
Schools 1230 (0) (0.015) (0.06) (0.07) (0.18) (0.14) (0.7) (0.36) (1.9) (0.7) - -

(0.0115) 0.027 0.6 0.75 3.5 1.46 6.6 3.9 15.6 7.5 32.2 - -
Auto 2093 (0) (0.013) (0.01) (0.05) (0.09) (0.09) (0.58) (0.23) (1.65) (0.44) (2.78) (0.87)
Services (0.0326) 0.30 0.57 0.65 2.43 1.4 4.3 2.95 10.0 6.68 19.4 13.1 38.00
Restaurants 2944 (0) (0.01) (0.01) (0.03) (0.04) (0.06) (0.26) (0.15) (0.8) (0.3) (1.85) (0.6)

(0.0580) 0.032 0.49 0.57 1.34 1.48 2.7 2.8 6.8 6.1 13.3 12.8 26.0

Table 1: Query processing time of VN3 vs. INE

closets hospital to the same query object. Note that
INE does not retrieve the required links in one step,
rather, only a small number of links are retrieved from
the database at each step. Note that VN3 also re-
quires pre-computed values to be retrieved from the
database, and the number of required pre-computed
values increases for lower densities of the entities and
larger values of K. However VN3 retrieves the required
data in only one step, resulting in much faster data re-
trieval time.

Table 2 shows the overhead incurred by the pre-
computations proposed as the third component of
VN3. As shown in the table, for entities with higher
densities (e.g., restaurants) which generate smaller and
more number of NVPs, the average number of nodes
inside each NVP and number of border points per
NVP are less. This will lead to faster pre-computation
process since the pre-computations are performed in
smaller size local areas. The third column of the ta-
ble shows the total number of border-to-border pre-
computations, which is almost constant for entities
with different densities. This is because when there
are more number of NVPs (e.g., restaurants), the av-
erage number of border points are smaller and when
there are less number of NVPs (e.g., hospital), the
average number of border points are larger. Finally,
the suggested pre-computations for off-line precalcula-
tion method (Section 4.2.1), fourth column in the ta-
ble, increases for entities with smaller densities. This
is because the average number of nodes inside each
NVP grows rapidly. Note that a naive approach that
pre-computes all the pair node distances in the given
network requires 3.2 billion pre-computations. How-
ever, in VN3, the highest number of pre-computations
required by OPC method is still three order of magni-
tude less than that of the naive approach.

2. Performance of the VN3 Filter Step: Fig-
ure 6 depicts the performance of the VN3 filter step
with respect to the size of the candidate set when KNN
queries are performed for the second data set. For each
value of K (x-axis) we performed 1000 queries where
the location of the query point is randomly selected,
and we averaged the results. Two observations can

Points Average Number of Number of
inside BPs per Pre-comp. Pre-comp.

Entities each NVP NVP Bor-Bor OPC
Hospital 1698 52 232,000 8,781,000
Shopping 458 25 225,600 4,653,000
Parks 142 14 239,500 2,630,000
Schools 64 10 246,000 1,787,000
Auto Svc. 38 7 239,900 1,611,000
Restaurants 27 6 243,600 1,348,000

Table 2: Overhead of pre-computations

be made from the figure. First, the ratio of the size
of the candidate set (we term SKS) over K decreases
as K increases. For example, while 13 candidates are
selected when K=3 (4.3 times the value of K), only
25 candidates are selected when K=10 (2.5 times the
value of K). The figure also shows that for large values
of K, the size of the candidate sets become very close
to K. The reason for this is that as K increases, once
a generator g is explored as the K-th nearest neighbor
of a query object q, the possibility that some of its
adjacent generators have already been explored as the
(K − 1)-st nearest neighbors and no longer need to be
examined increases. This is a very important feature
of VN3’s filter step since for large values of K, the aver-
age number of points of interest that must be examined
significantly decreases. The second observation is that
the VN3 filter step behaves independently from the
density of the points of interest and their distribution
in the network. For example, while Churches have a
cardinality ratio of almost 24 times the Hospitals, the
difference between the corresponding generated candi-
date sets is only 1.5% (for K=1000) to 11% (for K=3).
This means that whether the points of interest are very
dense or sparsely scattered in the network, the perfor-
mance of the VN3 filter step does not change. This
is because the average number of adjacent generators
specified in Property 4 is “independent” of the density
of the points of interest, their distribution, and the
underlying network.

We also performed KNN queries on the second data
set using the approaches proposed in [11] and [4]. Fig-
ure 7 compares the minimum and maximum values of
SKS

K for VN3 with those of [11] and [4], which are rep-
resented in the figure by “Seidl” and “Hjaltason”, re-
spectively. As shown in the figure, there is a significant
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Figure 6: Performance of the filter step of VN3
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Figure 7: VN3 filter step vs. Seidl & Hjaltason

difference between the minimum and maximum values
of SKS

K , e.g., while the minimum sizes of the candi-
date sets generated by Seidl and Hjaltason are equal
to K when K=5, their maximum sizes are 15 and 22
times larger than K, respectively. The average size of
the candidate set generated by these approaches are
up to 4 times larger than that of VN3. We conclude
that VN3 filter step outperforms approaches optimized
for index structures by providing better average values
and a lower variance on the size of the candidate set,
resulting in a more deterministic query response time.

6 Conclusion
In this paper we presented a novel approach for K near-
est neighbor queries in spatial network databases. Our
approach, VN3, is based on precalculating the network
Voronoi polygons (NVP) and pre-computing some net-
work distances. We showed that since NVPs preserve
network distances, they can immediately be used to
find the first nearest neighbor of a query object. We
also introduced new properties of NVPs that prove
the nearest neighbors of the query object are within
the adjacent NVPs of the previously explored nearest
neighbors. Subsequently, we proposed alternative ap-
proaches that utilize the pre-computation component
of VN3 to compute the exact network distances from
the query object to its potential nearest neighbors. We
finally discussed how VN3 can cope with database up-
dates. The main features of VN3 are as follow.

• VN3 outperforms INE in query response time by
a factor of 1.5 to 12 depending on the value of K
and density of the points of interest.

• The VN3’s filter step results in up to 4 times less
number of candidates as compared to that of the

traditional approaches. In addition, the size of
VN3’s candidate set has less variance across dif-
ferent locations of the query points and densities
of the points of interest, resulting in more deter-
ministic query response time.

• Although VN3 is built on complex properties to
prove its correctness, but it is a straightforward
approach to implement by utilizing simple data
structures such as R-tree and lookup tables.

• The pre-computation required by VN3 has low
computation and space complexities due to per-
forming the pre-computations in local areas as op-
posed to across the entire network. This also re-
sults in reasonable update costs.

We plan to extend VN3 to address similar KNN
queries such as group and continuous KNN.
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