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Abstract

A k-NN query finds thek nearest-neighbors of a given
point from a point database. When it is sufficient to mea-
sure object distance using the Euclidian distance, the key
to efficientk-NN query processing is to fetch and check the
distances of a minimum number of points from the database.
For many applications, such as vehicle movement along
road networks or rover and animal movement along terrain
surfaces, the distance is only meaningful when it is along
a valid movement path. For this type ofk-NN queries, the
focus of efficient query processing is to minimize the cost
of computing distances using the environment data (such as
the road network data and the terrain data), which can be
several orders of magnitude larger than that of the point
data. Efficient processing ofk-NN queries based on the
Euclidian distance or the road network distance has been
investigated extensively in the past. In this paper, we inves-
tigate the problem of surfacek-NN query processing, where
the distance is calculated from the shortest path along a
terrain surface. This problem is very challenging, as the
terrain data can be very large and the computational cost
of finding shortest paths is very high. We propose an effi-
cient solution based on multiresolution terrain models. Our
approach eliminates the need of costly process of finding
shortest paths by ranking objects using estimated lower and
upper bounds of distance on multiresolution terrain models.

1. Introduction
For a given set of point dataD, a distance functiond

and a query pointq, a k-NN query findsS ⊆ D such
that |S| = k and for anyp ∈ S and p′ ∈ D − S,
d(q, p) ≤ d(q, p′). We distinguish two types of spatialk-
NN queries. For aconstraint-freek-NN query, the distance
between two points can be calculated by using only their co-
ordinates (e.g., using the Euclidian distance function). This
type of k-NN query processing are useful for multimedia
databases where such a distance function is used to measure
object similarity, and for some geographical information
systems where it is sufficient to measure or approximate ob-

ject distances in Euclidian spaces. For aconstraint-based
k-NN query, the distance between two points can only be
calculated from their coordinates as well as some physical
environment data. Such queries can be found in many appli-
cations where the distance is only meaningful when objects
can be physically moved from the source to the destination,
such as vehicle movement along a road network, rover and
animal movement along the surface of a terrain. The focus
of constraint-freek-NN query processing is to minimize the
number of points inD, which is typically very large, to be
fetched and checked, in order to minimise the I/O cost, and
in the cases of high dimensional databases or when a com-
plex distance function is used, the CPU cost as well. For
a constraint-basedk-NN query, key efficiency issues to be
considered are quite different. We have both theenviron-
mentdata andobjectdata, and the size of environment data
can be several orders of magnitude larger than that of object
datasetD, and the distance between two points is typically
calculated from a valid shortest path. The cost of finding the
shortest path in the environment can be very costly (for both
I/O and CPU costs). A further complexity is the explorative
nature ofk-NN query processing, which means the search
space for a query is much larger than the size of the final
results, implying much higher overall CPU and I/O costs.

Efficient processing ofk-NN queries in large spatial
databases has been investigated extensively in the past,
mainly for constraint-freek-NN queries (using the Euclid-
ian distance) [16, 17]. Constraint-basedk-NN query pro-
cessing, concerning spatial networks such as road networks,
has been studied recently [12, 15]. In this paper, we investi-
gate a new type of constraint-basedk-NN queries concern-
ing moving objects on the surface of a terrain. We call this
type of query surfacek-NN query (sk-NN query). We are
motivated by environment protection applications, where
spatial analytical queries are used to identify animal group-
ings and their inhabitation areas (shapes and positions), re-
lationships with the environment (their nearest foraging and
water sources and human settlement activities) and migra-
tion trends. Surface distances are used for grouping fauna
and flora location data, andsk-NN queries are performed
frequently for clustering new sightings(according to their



surface distances to existing groups), validating existing
groupings once new location data becomes available, es-
timating maximum migration speed (using the shortest sur-
face distance), and predicting areas of potential sightings
and relationships with other types of animals and vegeta-
tion.

Technical motivations for this research include follows.
First, many methods proposed for traditionalk-NN query
processing algorithms are not applicable tosk-NN query
processing. Digital surface models1 can consist of millions
of points for an area of interest, so those techniques used
for organizing spatial objects to optimize I/O costs are not
effective here without a careful consideration of the under-
lying terrain model. Second, simple extensions to the tra-
ditionalk-NN query processing methods to limit the search
area where the terrain data needs to be fetched, such as us-
ing Euclidian distances to prune the search space, is difficult
to use and can be very inefficient. We found that the ratio of
the surface distance over Euclidian distance can vary from
200-300% times for rugged mountain areas, to just 20-40%
for some other areas. This could lead to using an unneces-
sarily large area for some cases, or repeated search area en-
largement (and shortest path calculations) for others. Third,
the cost of finding surface shortest path is extremely high.
For some moderately large areas (a few square kilometres),
the most efficient surface shortest distance algorithms [1]
can take tens of minutes on a modern PC machine to find the
shortest distance between one pair of points on the surface,
and one of the most efficient approximate surface shortest
distance algorithms [9] still takes several minutes. Note that
distance calculation is a fundamental and frequent operation
in anyk-NN query processing.

In this paper, we approach the problem of efficientsk-
NN query processing from two angles: using a multires-
olution terrain model such that estimated distances based
on lower resolution data can be used as a guide to restrict
areas where high resolution data is needed, and using fast
algorithms for distance ranking by considering lower and
upper bounds instead of using accurate distances obtained
from costly shortest surface distance calculation. The com-
bined advantage is thatsk-NN query processing can of-
ten be completed by accessing and processing the data at a
just-enoughLevel of Details (LOD) from ajust-enoughRe-
gion of Interest (ROI) without computing surface shortest
paths. To facilitate these, we propose two novel data struc-
tures built on the original terrain model: Distance Multires-
olution Mesh (DMTM) and Multi-solution Support Dis-
tance Network (MSDN). DMTM is a multiresolution tri-
angular mesh with distance information. It can be used to
derive a surface model from lower-than-original resolution
(for those applications that do not need high resolutions)

1In this paper, the item surface, surface model, surface mesh and terrain
model are used interchangeably.

to higher-than-original resolution (for surface shortest dis-
tance calculation). It can also be used to estimate the upper
bound of shortest distance at a particular resolution. An-
other data structure, MSDN, contains a set of support dis-
tance networks (SDN) at different resolution levels. An
SDN consists of the selected points from the original sur-
face model, and is used to estimate the lower bound of the
shortest distance at a given resolution. Using DMTM and
MSDN, a novelsk-NN query processing algorithm called
MR3 (Multi-Resolution Range Ranking) is proposed using
the filter-and-refine optimization strategy. Our experiments
using real terrain data show that MR3 approach outperforms
the benchmark algorithm by nearly an order of magnitude
in all cases.

The remainder of this paper is organized as follows. Fol-
lowing a review of related work in Section 2, we propose
DMTM and MSDN data structures in Section 3 and algo-
rithm MR3 in Section 4. A comprehensive empirical per-
formance study is reported in Section 5. We conclude this
paper and briefly discuss future directions in Section 6.

2 Related Work
In this section, we briefly introduce the related work in

the areas ofk-NN query processing, surface distance com-
puting and multiresolution terrain modelling.

k-NN query processing has been extensively investi-
gated in Euclidean spaces and spatial networks [6, 12,
16, 18], and in higher dimensional spaces [8, 21]. The
constraint-freek-NN query processing focus on minimizing
the number of object data accessed. Typically, a hierarchi-
cal spatial index (such as the R-tree) is used to prune the
search space by either depth-first or best-first traversal, with
the former only visits the index entries with distance smaller
than the visitedkth NN [16] while the latter only visits en-
tries with the smallest distance of all visited [6]. In high
dimensional spaces, the VA-file basedk-NN query process-
ing [21] proposes to use a distance ranking method. This
method uses approximation data to estimate lower bound
(lb) and upper bound (ub) of the distances from all objects
being approximated to the query pointq. Let the(k + 1)
nearest neighbors ofq be{p1, p2 . . . , pk, pk+1}. The search
terminates ifub(pk) ≤ lb(pk+1). Otherwise, a refinement
using accurate object data is required.

One type of constrainedk-NN query, networkk-NN
query, has received some attention recently [12, 15, 18].
Although a surface mesh can be considered as a network,
the existing networkk-NN techniques can not be directly
used to processsk-NN queries, because the surface model,
if regarded as a network, is a much more complex network
than road networks. For example, 1km2 surface model may
contain 30,000 segments and a normal surface model can
cover 100km2.

From a set of terrain data points (e.g. surface elevation
samples), a terrain model can be constructed by applying
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Figure 1. Terrain with different resolutions

a surface triangulation algorithm. The high resolution ter-
rain is usually very large (containing millions of vertices)
such that it is approximated with maximum similarity at
a lower resolution tailored for an application (see [4] for
a survey). Fig. 1 shows two terrain models with differ-
ent resolutions with different number of triangles. One of
the main challenges of multiresolution database indexing
is to efficiently retrieve terrain data with just-enough LOD
from a just-enough ROI according to application require-
ments. Progressive Meshes (PM) [7] is a representative of
such a multiresolution terrain model, where the data at any
required LOD and ROI can be derived on-the-fly from a
single set of terrain data stored in the database following
a tree structure progressively. Direct Mesh (DM) [22] im-
proves query processing performance using PM by allow-
ing partially materialized surface information using a low-
overhead connectivity-encoding scheme. As a result, DM
does not need to fetch all internal nodes from the root of
the mesh tree in order to obtain the connectivity informa-
tion. The existing multiresolution terrain models are de-
signed only for the purpose of visualization and contain no
distance information. They are not capable to support effi-
cientsk-NN query processing.

Computing the shortest path on a polyhedral surface rep-
resented by a triangular mesh is a well-studied problem
(see [14] for a survey). The Chen and Han algorithm [1]
computes exact surface distance inO(n2) time, wheren
is the number of points in the surface model. This algo-
rithm, however, is not feasible for large and high-resolution
terrain surfaces [2]. Further, it is not easy to extend this al-
gorithm to use multiresolution terrain models (e.g., [5]) be-
cause surface distances do not change in a monotonic man-
ner (i.e., when the exact distance on a low resolution sur-
face model is computed by the Chen and Han algorithm, it
doesn’t guarantee that the distance between the same pair of
points computed using a higher resolution data willalways
be longer or shorter, thus the search cannot be terminated
using low resolution data). There are several approximate
algorithms [9, 20]. The Kanai and Suzuki algorithm [9]
is popular due to its simplicity and efficiency. A so-called
pathnet, which is created by inserting Steiner points into
the original surface model, is used. For two given vertices,
the shortest path search operation is performed repeatedly
on thepathnetwith increasing level of resolutions in a se-
lectively refined region until reaching the required accuracy.
This algorithm enjoys a high level of accuracy in practice. A
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Figure 2. Ranking by distance range bounds

recent study [2] proposes an accurate surface shortest path
algorithm such that the problem of finding the shortest path
between two points can be completed in a local region, in-
stead of checking the entire surface as other algorithms do.

3 Data Structures
We usedN anddE to denote network distance and Eu-

clidian distance respectively. Thenetwork distanceis the
length of the shortest network path (along edges) between
two vertices on a given network (i.e., the surface model
in this paper). Thesurface distance, denoted asdS , is
the length of the shortest surface path on a surface model,
where a path is not confined to along edges (i.e., it can cut
through a triangle). Note that for approximation-based sur-
face shortest path algorithms (e.g., [9, 20]),dS is approx-
imated bydN which is computed from a sufficiently high
resolution surface model (by inserting a sufficient number
of Steiner points into the original surface model).

3.1 Distance Ranking
The key idea of our approach is to use an MTM such that

the surface distance can be estimated efficiently at an as low
as possible LOD. For any two pointsa andb on a terrain sur-
face,dS(a, b) is estimated at resolutionr as lbr(a, b) and
ubr(a, b) such that the conditionlbr(a, b) ≤ dS(a, b) ≤
ubr(a, b) is held. Clearly,sk-NN query processing can
sometimes be done by only using the estimated distance
bounds, without using computationally very expensive sur-
face shortest distance algorithms. In Fig. 2,a, b, c andd
are candidates and the underlying line segments are their
distance ranges. Such distance range estimation is suffi-
cient for answering ak-NN query from query pointq where
k ≥ 2. However, this set of estimated distance ranges is not
sufficient fork = 1 query, as the estimated distance ranges
from q to a andb overlap. In this case, the actual distance
dS(q, a) anddS(q, b) may need to be computed, using the
highest LOD data for accurate surface distance computing
(this is often called therefinementstep, referring the previ-
ous step of distance estimation as thefiltering step which
can typically be done very efficiently). We argue that, us-
ing an MTM, it is often sufficient to go to the next LOD,
instead of the highest LOD, to refine distance range estima-
tion. To support this, an MTM must support fast distance
range estimation, as well as allow progressive improvement
of the accuracy of estimated distance ranges when data with
a higher LOD is used. For this reason, while some network-
based shortest distance algorithms can be used to estimate
the upper bound and the Euclidian distance (in either 2D or
3D) can always be used as a lower bound, they do not sat-
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Figure 3. An example of MTM tree

isfy the property of continuous improvement (i.e., the dis-
tance computed using a shortest distance algorithm may not
monotonically decrease when higher LOD data is used; and
for the Euclidian distance, it does not change with LOD). In
this section, we propose two new data structures, DMTM
and MSDN, to support fast and monotonic distance range
estimation.

3.2 Distance Multiresolution Mesh
DMTM is a multiresolution terrain model from which

an approximate surface model can be constructed at vari-
able resolutions. Essentially, it contains aDistance Direct
Mesh(DDM) which improves Direct Mesh (DM) [22] by
selectively recording distance information, plus apathnet
which is obtained by inserting Steiner points into the orig-
inal surface model (as in [9]). DDM and thepathnetare
unified into a single tree structure, containing nodes which
form the original terrain mesh, as well as nodes representing
vertices at resolutions both higher and lower than the origi-
nal LOD. Those nodes with lower-than-original LOD form
the DDM, which is used to support progressive upper bound
estimation; and those with higher-than-original LOD form
the pathnetwhich is used to support approximate surface
distance computing.

DDM is built on DM by introducing distance informa-
tion. It follows the DM’s construction process and connec-
tivity encoding scheme to efficiently derive an approximate
terrain model of any ROI and LOD. We refer the reader to
[22] for the process of DM construction and DM-based (vi-
sualization) query processing, but give a brief introduction
below to make this paper self-contained. In DM, the terrain
data is organized into a binary tree, see Fig. 3(b). All the
leaf nodes form the original terrain mesh, and each non-leaf
node represents a lower resolution approximation of its de-
scendants. DM construction is a bottom-up process. Each
vertex in the original terrain mesh is represented by a leaf
node. Then, a pair of connected nodes are selected to col-
lapse to form their parent node if the resultant terrain after
the merger causes minimum approximation error according
to some error measure (e.g., the quadric error matrices [5]).
Such approximation errore is recorded with every non-leaf
node. For example, nodesv1 and v2 collapse intov9 in
Fig. 3. This process continues until a tree is formed (so
the entire terrain is approximated by one point). In this pa-

per, approximation error, resolution and LOD are used in-
terchangeably (a higher LOD means a high resolution and
smaller approximation error).

The process of reconstructing a surface mesh for a given
LOD and ROI is a top-down process. It starts from the
root and expands following the tree until the required LOD
and ROI conditions are met. Unlike other MTM methods
such as PM [7], DM implements a compact connectivity-
encoding scheme, to let each nodev record a list of iden-
tities (IDs) of the nodes to whichv may connect and they
have asimilar LOD. Two nodes are said to have a similar
LOD if their LOD intervalsoverlap; the LOD interval of
nodev is [v.children.e, v.parent.e), wherev.parent.e is
the approximation error ofv’s parent node andv.children.e
is the maximum approximate error ofv’s two children
nodes. This connectivity encoding scheme used in DM
abolishes the need of level-by-level tree expansion starting
from the root of an MTM tree (in order to obtain connectiv-
ity information among the nodes), and the concept of sim-
ilar LOD is used to limit the number of nodes to which a
node needs to record connectivity information.

DM is designed for terrain visualization. It does not sup-
port fast distance estimation, nor to guarantee monotonic
change when distances are computed at different LOD.
DDM can support both of them, by adding distance infor-
mation to each edge based on the same DM connectivity-
encoding scheme. A distance value is recorded during DM
tree construction. Whena andb are both leaf nodes (i.e.,
from the original mesh) and connected with each other, the
length of the edge betweena andb in the original mesh is
used as the distance between them and is recorded in both
nodesa andb, and each node’srepresentative nodein the
original mesh, of course, is itself. Every node in DDM has a
representative node in the original mesh. The importance of
this property will be discussed later. LetN(v) be the set of
neighboring nodes of nodev (i.e., to these nodesv needs to
record connectivity information in DM). When nodesa and
b are selected by the DM construction algorithm to collapse
into c, N(c) = N(a) ∪ N(b) (same as the DM construc-
tion algorithm). The representative node ofc is set to be the
representative node of eithera or b (say,a). For each node
w ∈ N(c), d(c, w) is defined as:

d(c, w) =
{

d(a,w) if w ∈ N(a)
d(b, w) + d(a, b) if w ∈ N(b)−N(a)

The second part of DMTM is apathnet, which is cre-
ated by inserting Steiner points into the edges of the orig-
inal surface model. This is a common technique used by
approximate surface shortest path algorithms (e.g., [9, 20]).
The network in Fig. 4(a) is the part of the original surface
model, and Steiner points split the edges shown in Fig. 4(b).
The links among these points and the original vertices in
the same triangular facet create new edges in the original
surface model shown as the dashed lines in Fig. 4(b).Path-
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netprovides passageways crossing the inside of the triangu-
lar facet, which are not traversable before. If more Steiner
points are inserted, the network distance can approach the
exact surface distance to a very high level of accuracy. More
details of this method can be found in [9, 20].

Assuming that both DM and apathnetare necessary to
support multiresolution terrain applications, the extra stor-
age overhead of DMTM is very small (just adding a distance
value to each stored edge in DM).

Next, we will discuss how to use DMTM to estimate dis-
tance upper bound, and demonstrate that the upper bounds
estimated using DMTM can be improved monotonically
with the increase of LOD. A surface approximation for a
given LOD and ROI can be derived from DDM, just as in
DM. A surface mesh is a network, thus Dijkstra’s short-
est path algorithm [3] can be used to compute the upper
bound between a pair of object points. Dijkstra’s algorithm
is much faster than Chen and Han’s algorithm, because Di-
jkstra’s algorithm computesdN , notdS and the number of
edges in a surface mesh is much less thatn2 (n is the num-
ber of nodes). When an object point is not a vertex in the
surface model, anembeddingprocess is used to add the
point as a new vertex in the surface model by connecting
it to the vertices of the same triangular facet. While a path
found at a low resolution mesh may contains points that do
not exist in the original surface mesh, the distance values in
DMTM are computed using representative nodes which are
part of the original mesh. Therefore, the distance between
two nodes in an approximate mesh network, as explained
next, is computed from a valid network path on the original
surface. Thus, this distance must be greater than or equal to
dS(a, b) by definition, and can be used asubr(a, b).

Using the above method to estimate the upper bound, it
can be guaranteed that for LOD levelsr′ andr, ubr(a, b) ≥
ubr′(a, b) if r′ > r. This property, again, comes from the
fact that every node in DMTM has a representative node in
the original surface and all distances recorded are between
their representative nodes on the surface. As a lower LOD
terrain is obtained by merging some points, the set of all
representative nodes at LODr is a subset of the represen-
tative nodes at LODr′ > r. Therefore, the path corre-
sponding to the shortest network path found at levelr re-
mains as a valid network path in the surface model at level
r′. The fact thatubr′(a, b) is computed from the shortest

path at LODr′, including that shortest path found at LOD
r, impliesubr(a, b) ≥ ubr′(a, b). When the resolution level
increases over the original surface resolution, this property
can be proved in a similar way.

3.3 Multiresolution Support Distance Network
MSDN, inspired by the plane-sweep algorithm, is de-

signed to support fast and progressively improvable lower
bound estimation. It consists of a set of Support Distance
Networks (SDN) at different resolutions.

We explain the intuition behind SDN first. While
dE(a, b) can be used as a safe lower bound ofdS(a, b), it
is not tight and its accuracy cannot be improved by using
higher LOD environment data. Consider a terrain in 3D
space, where thez-axis represents the height. Assume that
a.y < b.y. Using a 2D planey = y0, a.y < y0 < b.y, to
cut though the terrain, a polylinel (called acrossing line)
can be obtained by intersecting the plane with the terrain
surface. Then, any surface path froma to b must passl
at least once. For pointp on l, if dE(a, p) + dE(p, b) ≤
dE(a, p′) + dE(p′, b) for any other pointp′ on l, then
dE(a, p)+dE(p, b) is a better lower bound ofdS(a, b). The
accuracy oflb estimated in this way can be improved when
morey-planes are used. Clearly, ay-plane is not useful if
a.y = b.y; and in this case,x-planes should be used. To
cater for arbitrarily positioned points, bothx- andy-planes
need to be prepared, and the angle between the projection of
(a, b) on the (x,y)-plane and thex-axis is used as a heuris-
tics to choose which set of planes to be used. That is, the
angle is less than45o, a set ofy-planes will be used;x-
planes otherwise.

Denote the crossing line obtained by intersecting the ter-
rain (at the original resolution) and planey = y0 as ly0 .
ly0 is a sequence of points{(x, y0, z)}. We define its reso-
lution as 100%. A polyline can be approximated by fewer
points. This can be done using some line simplification al-
gorithm such as [13] which can reduce the number of points
while maintaining a maximum level of similarity between
the lines before and after simplification. We do, however,
need to modify such an algorithm to ensure that MSDN
can be used to estimate the lower bound with monotonic
increase of accuracy with higher resolution data. Consid-
ering two consecutive points in a crossing line as a MBR,
our modification is to ensure that the MBR of the simpli-
fied line segment must fully enclose the MBRs of every line
segment from the line segment before simplification. Ifl′y0

is an approximation ofly0 usingr% points ofly0 , we say
the resolution ofl′y0

is r. Placing a set ofx- andy-planes in
the space, the set of crossing lines obtained from intersect-
ing them with the original surface form an SDN (with 100%
resolution). An SDN at resolution levelr is obtained from
simplifying every crossing line in the 100% resolution SDN
by usingr% points for each crossing line. MSDN is then
defined as a collection of SDNs at a number of resolutions.



Using an SDN at resolutionr to estimatelbr(a, b) needs
to use Dijkstra’s network shortest distance algorithm. A
network is constructed from the SDN by treating each line
segment as a node and there is an edge to link a node with
each of the nodes which are line segments from the neigh-
boring crossing lines. The length of an edge is the mini-
mum Euclidian distance between the MBRs of the two line
segments. Pointsa and b also need to be embedded into
the network by connecting them with the nodes from the
first crossing lines on the plane they encounter when mov-
ing one point to another along a straight line. Note that
only the SDN from a restricted area is required for lower
bound computation for two given points (see the next sec-
tion for detailed discussions), and not all planes need to be
used for low resolution estimation. Therefore, it is unnec-
essary to materialize the connection information for entire
SDN, which can be very large; they are computed on-the-fly
when they are retrieved for lower bound estimation. Be-
cause of the way we compute the distance between two
nodes when building the network (i.e., using the minimum
distance between the MBRs of two line segments), such a
shortest distance computed using Dijkstra’s algorithm is a
low bound of the shortest surface distance. It is easy to see
that, when more planes are used, or higher resolution SDN
is used, such an estimatedlb is getting longer and further
approaching the shortest surface distance.

The planes used to generate MSDN can be placed strate-
gically according to terrain roughness (i.e., more dense
planes for more rugged region). To ensure an estimated dis-
tance using MSDN can be as close as todS , the planes can
be placed at the highest density for some region with the
interval that is equal to the average length of edges in the
original surface mesh. MSDN data can be stored in a spatial
database (as line segments with extra information to record
their resolution level and to which plane they belong to). To
retrieve a set of MSDN data for a given region at a given
resolution can be efficiently supported by most commercial
spatial database systems (using a conventional spatial in-
dex). In addition, for a request of low resolution SDN data,
we reduce the density of crossing lines selected too.

4 sk-NN Query Processing
In this section, we present Algorithm MR3, an efficient

algorithm forsk-NN query processing based on multireso-
lution data and distance ranking. We first give an outline of
the algorithm. Then we discuss in detail for optimizing I/O
regions and how the estimation ofub andlb can be improved
by using higher resolution data but in a reduced region.

4.1 Algorithm MR3

Given a set of object dataD, a terrain surfaceS, a query
pointq on the surface, and an integerk, our task is to find the
k nearest neighbors ofq on the surface fromD. In order to

perform this task, Algorithm MR3 needs to use the follow-
ing data structures: 1)Dxy contains a set of points which are
the projections of each point in theD on the (x,y)-plane; 2)
a DMTM; and 3) a MSDN (at a pre-determined number of
resolutions). Both DMTM and MSDN are derived fromS.
This algorithm is sketched as below:

1. 2D k-NN Query: Let q′ be the projection ofq on the
(x,y)-plane. Perform a 2Dk-NN search inDxy to find
C1[1..k] ⊆ D whose projections to the (x,y)-plane are
thek nearest neighbors toq′.

2. Surface Distance Calculation: Thek points inC1 will
be ranked to find thekth neighbor ofq on S, using
the algorithm described in the next section, based on
DMTM and MSDN. Let this point beb (and the esti-
mated distance upper bound isub(q, b)).

3. 2D Range Query: A normal range query will be per-
formed onDxy usingq′ as the center andub(q, b) as
the radius, and all the points retrieved is in setC2 ⊆ D.

4. Surface Distance Ranking: All the points inC2 will
be ranked, using the same algorithm as in step 2, such
that the estimated upper bound of thekth neighbor of
q is not greater than the lower bound of the(k + 1)th

neighbor ofq in C2.

The first 3 steps are illustrated in Fig. 5. Note that step 1
and step 3 are 2D spatial queries, which can be processed
efficiently. For example, for 2Dk-NN query, it can be per-
formed using one of several 2Dk-NN query processing
methods (e.g., [6, 8, 16]) if|Dxy| is very large. Note that
the first and third steps can be done inD (i.e., to perform
a 3Dk-NN query using the Euclidian distance). However,
we found that the performance improvement from using 3D
Euclidian distance instead of 2D Euclidian distance is very
small. So we decide to use 2Dk-NN query in this paper.
The processes for step 2 and 4 are the same, except that
step 2 needs an extra step to calculate an as tight as possible
upper bound for thekth neighbor, as this distance will be
used as the search radius in step 3, which in turn supplies
the points that need to be ranked in step 4.

The correctness of MR3 is straightforward. Any points
not selected inC2 must have their Euclidean distance toq
longer thanub(q, b), and there are alreadyk points found
which have their upper bound distance less thanub(q, b).

4.2 Surface Distance Ranking
Now we describe the process of surface distance rank-

ing to rank a set of given points (called candidate points)
by their estimated distance ranges, based on DMTM and
MSDN. This is used in both step 2 and 4 in MR3. First,
the initial resolution levels of SDN and DMTM are deter-
mined (from a pre-set, very low LOD). The lower bound
for each candidate point is initially set to be the Euclidean
distance betweenq and the point. The search region (ROI,
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and is called I/O region hereafter) for each point is the area
from which the environment data needs to be retrieved for
distance range estimation. The I/O region is initially set to
the entire terrain (we will further discuss this in the next
two subsections). Then DMTM and MSDN are retrieved
according to the values of ROI and LOD. From here, the
upper and lower bounds are estimated alternately for each
candidate point until thekth neighbor ofq can be safely
identified. Details of estimating the upper and lower bounds
using DMTM and MSDN, and the way to embedq, have
already been described in Section 3. If thekth neighbor
cannot be determined by the current set of estimated dis-
tance ranges, a higher resolution data (for both DMTM and
MSDN) is required, but with potentially few number of re-
maining candidates (i.e., those points which can be ranked
safely as in or out of the final solution set can be dropped),
and the search region for them will be reduced again (the
details in refining the search region for DMTM and MSDN
will be discussed in the next two subsections). As there may
have multiple candidate points to be considered at each it-
eration, their I/O regions (For each candidate point, its I/O
region is the MBR of the search region) can be combined if
they are significantly overlapped (e.g., over 80%) in order to
reduce I/O cost. The algorithm terminates either when the
kth neighbor has been identified, or the highest resolution
of both DMTM and MSDN have been used.

4.2.1 Estimating Upper Bound

For each candidate, the upper bound estimation starts from
the initialized resolution. In order to find the first global op-
timum upper bound (corresponding to the global optimum
shortest network path) on this resolution level, we use the
entire DMTM surface model as the search region2. If a can-
didate cannot be ranked, the upper bound estimation pro-
cess continues to use the next higher level of DMTM data
(at a pre-determined increase interval; see Section 5 for the
impact of choosing such intervals). The search region will
be reduced to the area whose projection inside the (x, y)-

2The first global optimum upper bound can also be found by using
method proposed in [2]. For description clarity, we use the entire surface
as the initial search region. Notice that the computation cost is not high, as
the initial resolution is very low (e.g.0.5% of the original one).
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for next upper border computation:

I/O region & global optimum search  region Refined Search Region

Path of current

upper border

a

bb

Figure 6. I/O and search region for upper bound
computation in higher resolution

plane is an ellipse-like area instead of the entire surface (as
in [2]). This is shown in see Fig. 6(a). The ellipse’s foci are
the projections ofq and the candidate point on the (x,y)-
plane. The ellipse’s constant is the current estimated upper
bound value. Therefore, as the DMTM surface model reso-
lution increases, the estimated upper bound becomes more
accurate (i.e., smaller). This leads to a reduced search re-
gion. Because only the ellipse-like search region needs to
be processed in next computation, its MBR will be used as
the I/O region.

Although the ellipse-like search region is a fraction of
the entire surface, it might be still very large considering the
Dijkstra’s O(n2) complexity, in particular when the ellipse
is approximated by its MBR. We observe that the surface
model with low resolution retains the major geographical
characteristics of the original one since DMTM modelling
algorithm minimizes the approximation errors. Therefore,
given two objects, it is more likely that the shortest sur-
face path on the higher resolution surface model follows the
similar track to that on the low resolution surface model.
Motivated by this observation, without losing the DMTM’s
property the ellipse-like search region can be further pruned
to a selectively refined search region. In Fig. 6(b), the re-
fined search region is a set of MBRs formed by the descen-
dant nodes, in the DMTM tree, of the vertices which lie on
the path of current upper bound. The refined search region
gradually becomes narrower. If it is too narrow to compute
the shortest network path, its area will be expanded by dou-
ble each vertex’s MBR. Note that, when using a collection
of smaller MBRs instead a large MBR for the ellipse, the
CPU and I/O costs can be reduced but the estimatedub may
be not as tight as the case when all the data from the ellipse
area is used. Nonetheless, anyub estimated in this way re-
mains as a valid upper bound. We must point out that these
smaller MBRs will be combined into integrated I/O regions
(with all other active candidates).

4.2.2 Estimating Lower Bound

As already mentioned, the lower bound is firstly initialized
as the Euclidean distance. If an object’s rank cannot be



identified using the initialized one, the computation starts
at a low resolution SDN and iterates at a higher resolution
until this object’s rank is identified. For each candidate, its
ellipse-like upper bound search region can also serve as its
lower bound search region. Thus, the lower bound I/O re-
gion is the same as the upper bound’s as well. However,
for the purpose of estimatinglb, the ellipse area cannot be
reduced as what we did for estimatingub. Thus, our op-
timization focus is to reduce the CPU costs (recall that we
use Dijkstra’s shortest path algorithm to find the shortest
path for lb estimation in an SDN). Once alb(q, a) is esti-
mated for a candidate pointa to q from the lower resolution
SDN, the following process will be used to reduce the CPU
cost. This is done by using the concept ofdummy lower
bound, which is estimated using a small part of the ellipse-
like search region. This can be done by building anenve-
lope from extending thelb path identified from the previ-
ous round (i.e., by making it “thicker”), and use those SDN
nodes (and edges) that are enclosed by the envelope. The
rational is that, alb estimated in this way is greater than or
equal to thelb estimated using the entire ellipse-like search
region of SDN. Thus, if the distance range using the es-
timatedub with this lb cannot differentiate this candidate
point, a truelb (estimated by using the entire ellipse-like
search region SDN) is not possible to differentiate either
(as it can only increase the extent of distance range over-
lapping). Thus, more accuratelb estimation is required by
using next higher resolution SDN. Otherwise, the truelb
on SDN at this resolution level needs to be estimated with
entire ellipse-like search region to confirm the result of the
dummy lower bound. If it is confirmed, lb estimation for
this point should terminate for the current SDN. Clearly, for
the first round, a complete estimation in the entire ellipse-
like search region is necessary (but with very low resolution
SDN).

5 Performance Evaluation
In this section, MR3 algorithm is evaluated against a

benchmark algorithm, for the response time, CPU cost and
the number of disk pages accessed, with varying values of
k, object densityo (i.e., number of objects perkm2) and
resolution step lengths (i.e., the resolution difference be-
tween two consecutive iterations).

5.1 Experiment Setup
The experiments are conducted on a PC (ADM Athlon

XP 2400+ CPU, 1.3 GB memory). Oracle Enterprise Edi-
tion Release 9.2.0.1 is used, but Oracle Spatial Option
and object-features are not used in order to have a better
control and understanding of the query execution perfor-
mance. All spatial indexes used in our experiments are im-
plemented by us. Two real world large scale terrain sur-
face models, BH and EP, are created from USGS DEM files
(data.geocomm.com) for two regions: Bearhead Mountain

(WA) and Eagle Peak area (WY), USA. Both datasets cover
an area around10.7km × 14km and contain about 1.5 and
1.4 million elevation sample points respectively. The Bear-
head area has more mountains than Eagle Peak. The object
points are uniformly distributed on the surface with vary-
ing object density1 ≤ o ≤ 10. DMTM is pre-created and
a clustering B+ tree index is used. Specifically, DDM is
built by adapting simplification tool [5] with the Quadric Er-
ror Metrics to add distance and representative information
to each node and thepathnet is created by inserting one
Steiner point into each edge to the original surface. Both
DMTM and MSDN data are stored in the Oracle database.

5.2 The Benchmark Algorithm
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Figure 7. Algorithm CH vs. Algorithm EA

To calculate the surface distance forub estimation, one
can either use the exact algorithm or an approximate algo-
rithm, as discussed in Section 2. The Chen and Han al-
gorithm is one of the best and only feasible exact surface
distance algorithms. This algorithm can be used on the
original surface model to directly compute the surface dis-
tance. We test this approach (denoted as CH) using the im-
plementation by Kaneva and O’Rourke [10]. An alternative
approach is to use the Kanai and Suzuki algorithm. This
method starts from the original surface model and contin-
ues to thepathnetlevel for ub estimation. The 100% res-
olution SDN is used here forlb estimation. We call this
approach as the Enhanced Approximation Surface Distance
Algorithm (EA). We allow 3% error in shortest surface cal-
culation (i.e., shortest surface distance range computation
terminates once it reaches97% accuracy). Fig. 7 shows
the performance of EA and CH. Clearly, CH is not scalable
with the number of surface points. When a surface con-
tains 10,000 vertices (that covers about onekm2 in a 10m
DEM file), this approach is practically not useable. Thus,
EA is used as the benchmark algorithm forub estimation in
our experiments. For fair comparison, the methods used for
finding the first global optimal shortest path and selective
search region refinement in the benchmark algorithm are
the same as those used by MR3. Moreover, to highlight the
effect of multiresolution onsk-NN query processing, the
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benchmark algorithm also apply the same filter techniques
as MR3.

5.3 Distance Range Accuracy
A good indication of whether MDTM and MSDN are

effective forsk-NN query processing is how fast the esti-
matedlb andub converges with the increase of LOD. Define
accuracyε = lb

ub , 0 ≤ ε ≤ 1. A largerε indicates a higher
level of accuracy oflb and ub estimation. Fig. 8 reports
accuracy ratios with a range of MSDN and DMTM reso-
lutions, where MSDN is represented as the percentage of
the highest SDN resolution while the DMTM resolution is
represented as the percentage of points comparing to that in
the original resolution. Note that DMTM resolution200%
implies that apathnetwith one Steiner point per edge is
used. At this level,dN = dS by definition. The Euclidian
distance is included as a way of estimatinglb to show the
effectiveness ofub estimation (i.e., with staticlb). One can
observe that the best accuracy can be achieved is about78%
if the Euclidean distance is used aslb estimation. This is
insufficient in most cases to differentiate the ranges of can-
didate points. On the other side, estimation accuracy can be
improved rapidly and steadily when a higher LOD DMTM
is used, for all SDNs; and in the case of SDN resolution
is 100%, MR3 can eventually achieve97% accuracy. With
only 50% of DMTM used, the estimation accuracy can al-
ready reach 87%. Using the MR3 approach, a query like
“what is the surface distance betweena andb within accu-
racy95%” can be directly processed. This level of accuracy
is sufficient for most applications we consider. It is possi-
ble to achieve an even higher level of accuracy (by simply
inserting more Steiner points into the highest LOD surface
model to generate DMTM at higher resolution). The cost of
doing so is, however, too high.

In our experiments, we start from very low resolution
(DMTM from 0.5%, MSDN from 25%) and use three sets
of step length increment, as given below:

1. s = 1: DMTM: 0.5%, 25%, 50%, 75%, 100%, 200%;
MSDN: 25%, 37.5%, 50%, 75%, 100%;

2. s = 2: DMTM: 0.5%, 50%, 100%, 200%; MSDN:
25%, 50%, 100%; and

3. s = 3: DMTM: 0.5%, 100%, 200%; MSDN: 25%,
100%.

5.4 Effect ofk
In general, a rapid jump to higher resolution implies less

iteration needed forsk-NN query processing. However, this
also means less opportunity to use tighter distance bound
estimation (to reduce the size of search region and to termi-
nate the search earlier). This set of experiment is to test the
performance of MR3 with varyingk value (from 3 to 30).
The impact of object density will be examined later (o = 4
in this test). The three sets of step increments defined before
are used. For example,s = 3 means the experiment for the
upper bound computation begins from0.5% of the original
resolution and next higher resolution is100% of that. After
that, thepathnetis used. At the same time, the resolution of
MSDN starts from 25%, then jumps to100%.

The comparison of performance between MR3 and EA
is depicted in Fig. 9. Despite the impact of the varying
step lengths, the overall test results of MR3 outperform the
benchmark remarkably in total time cost and CPU time.
It is interesting that the case ofs = 1 demonstrates the
best time performance in general, although it takes most
database page accesses. This is due to several reasons. First,
since the search regions of upper and lower bounds are se-
lectively refined, in the same search region, if the step length
is too long (jump to a much high resolution as in the other
two cases) more surface data will be processed in the next
higher resolution iteration. In this situation, owning to the
O(n2) time complexity of Dijkstra’s algorithm, the case of
s = 1 shows a significantly better CPU performance than
the other two cases (whens = 2 and 3). Another impor-
tant reason is that the case ofs = 1 also benefits more from
early termination when an object’s rank can be identified at
lower resolution level. On the other hand, more iterations
of the case ofs = 1 incur more surface data access, but
the total I/O cost is optimized by accessing integrated I/O
region once for several objects. This is an important reason
that the CPU cost overwhelms the I/O cost and dominates
in total time cost, shown in Fig. 9. This result exhibits the
importance of using multiresolution forsk-NN query pro-
cessing (based on MR3). The total cost is optimized by
trading off the less-cost I/O to reduce more dominant CPU
cost with better search region refinement. Note that the case
of s = 1 is not as good as the case ofs = 2 whenk is less
than 12. This is because the search region is so small that
the CPU cost is dominated by the I/O cost.

As depicted in Fig. 9(a), the total time cost of EA in-
creases very rapidly so that it is practically not useable when
k ≥ 9. On the other side, MR3 shows a much slow increase
rate whenk increases from 1 to 30. Whens = 1 that outper-
forms almost one order of magnitude than EA. Whens = 3
MR3 has a performance increase pattern more similar to EA
comparing to the others. This is because the case ofs = 3
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Figure 9. Effect of k(o=4), using dataset BH (a-c) and EP (d-f)

is less multiresolution (this simulate traditional filter-and-
refine approach that jumps to the full resolution data after
one filtering step).

Fig. 9(a)-(c) illustrate the experiment results for dataset
Bearhead which has more rugged terrain than that of dataset
Eagle Park whose experiment results are presented in (d)-
(f). Generally, a rough surface often leads to a longer sur-
face distance than the less rough surface does. As a result,
the candidate set processed in step 4 of MR3 in Bearhead
dataset (rougher) is larger than that of Eagle Peak dataset.

5.5 Effect ofo
Now we examine the effect of object density, by fixing

k=10. In general, the cost reduces as the object density
increases (for a fixedk where object points are randomly
distributed on the surface). Given a surface model and the
query point, high object density is more likely to lead to a
small candidate region so that less surface data will be re-
trieved and processed.

The experiment results are highly consistent with the last
experiment because of the same reason. In Fig. 10, EA il-
lustrates a quick increase when the object density decreases.
This is because EA startssk-NN processing from the orig-
inal surface model, by which the search and I/O region are
not fully optimized by any multiresolution technique. In the
contrary, benefited from using multiresolution data struc-
tures and the integrated I/O region technique, the overall
performance of MR3 for all step lengths is significantly
better than EA; and the best case is whens = 1. Due to
the same reason as last experiment, when object density is

larger than 5, the search region is so small that the I/O cost
takes a large share of the total cost. so the case ofs = 2
shows a slightly better performance than the case ofs = 1.

6 Conclusions

This paper is the first in-depth study of efficientsk-NN
query processing in spatial databases. The proposed algo-
rithm MR3 focuses on the underlying terrain data manage-
ment and can avoid extremely expensive surface distance
computation by ranking objects based on estimated surface
distance ranges. Two novel multiresolution data structures,
DMTM and MSDN, have been used to remodel the terrain
data to significantly reduce the CPU and I/O costs by ac-
cessing and processing surface data in a just-enough man-
ner. Our experiments using large scale, real terrain data
have shown that MR3 outperforms the benchmark algo-
rithm in all cases by nearly one order of magnitude.

Our previous work on developing MTMs for efficient
visualization [22] has been extended to support surfacek-
NN query processing in this paper. The new multiresolu-
tion data structures provide a framework capable of sup-
porting other distance comparison based queries, such as
range queries and closest pair queries. The idea of progres-
sive increase of surface distance accuracy is also applicable
to other types of surface-based queries with a specified tar-
get ROI and LOD. Next on our research agenda, we will
investigate the modelling and query processing techniques
towards an efficientsk-NN query with obstacle constraints,
which can be found in many real-lifesk-NN applications,
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Figure 10. Effect of object density ( k=10), using dataset BH (a-c) and EP (d-f)

such as energy consumption and vehicle stability consider-
ations for rovers, and general traversability constraints.
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