169

Locking

Jim Cray
University of California, Berkeley, California

This paper considers some pragmatic issues involved in providing locks for a com- .

puter operating system.1 Particular problems touched are:

-

(a) locking primitives,

{b) enforcing lockout,

(¢) scheduling conflicting requests for a lock,

(d) error handling for a process controlling a lock,
(e) a discipline for preventing deadly embraces,

(£) mninimizing the time key system tables are locked

(this interacts with page faults and interrupts).

To set the stage we propose that the universe of the operating system consists of
objecss of various types (e.g. processes, files, celetypes).2 Oh jects are accessed via
capabilities. A capability for an object is an access path which selectively allows
certain operations to be performed on the object. For example, a capability for a file
may or may not allow a process to read, write, execute, lengthen, or destroy the flle.
The actions allowed by a capability are called the options provided by the capability.3

A process is an object. 1t consists of a virtual-processor sc;ce, a list of cap-
abi{lities (C-li{st), and some historical information. The domain of a process Ls the set
of all objects accessible either directly or indirectly through its C-list.

If processes intend to share objects and no sharing process intends to medify the
object in such a way that the object is momencarily in a bad state, theﬁ;pépabilicies
provide an excellent mechanism for sharing the object. One simply placed the appropriate
capability for the object in the C-list of each sharing process. Examples of such ob-
jects are read/execuc?-only files, clocks, and mail boxes. If, on the other hand, two

4 P
processes may overlap one anocher in modifying an object, then it is necessary to

1
This paper benefitted frow discussions with BSutler Lampson.
pap p
The papers by Dennis and Van Horn [l] arc prerequisite to much of what follows.

3 - .)
This externsion of capahilities to carry options i{s not mentioned by Lampson [4] but is
implemented in the system described in [5].

- .
Two processes are said to overlan if their concurrent executisn results in a change in
~an object different from the change caused by either process A preceding process B or
process A exacutlng after process B.

© Ac 1970, Confercace Record CONCURRENT SYSTEMS AND PARALLEL COMPUTATION

170

J. GRAY

provide some mechanism which allcws ezch orocess to know when an object is stable and
when {t is unstable due to modification by some other prccess.

Dijkstra and Habermana (2, 3] present semaphores as a solution to this problem. A
semaphore {s a flag. An attemot to set an already set semaphore causes the setting process
to block until the flag clears. It is sufficient that operations on semaphores cannot
overlap.

Semaphores are used roughly as follows. Each process is given a capability for the
object to be shared, for a semaphore associated with the object, and for operations which

set and clear the semaphore. The processes agree to the following rules:

(rule 1) Each process will set the semaphore before touching the object. 1If the

- gemaphore is already set this will cause the process to block until the
gemaphore s clear.

(rule 2) Each process agrees not. to leave the semaphore set indefinitely. The
process will clear the semaphore as soon as the process finishes touching

the object.

‘It apoears that semaohores allow a community of processes to communicate in arbi-
trarily complex ways. (Can this be formalized and proved?)s The remainder of this sec~
tion argues that a more eiaborate locking facility is needed. It proposes that a lock
scheduler be associated with each iockable object. 1Its task is to lock the object, re-
solving conflicting requests and handling error conditions. Locking an object yields a
capability (with the desired options) and clearing the lock returns the capability to

the scheduler. Benefits of this scheme are:

(1) the ability to handle elaborate forms of concurrent access to objects,

(2) "more reliable lockout,

. A;

(3) error handling, and Lt

14
#

(4) prevention of deadly embraces.

Observe that setting a lock is a request for a resource. Looked at in this light

one expects to sece some form of scheduler in the locking mechanism. Often the schedullng

S

Both Dijkstra and Habermann are quite concerned with proving that their algorithms work.
They indicate that this is a firsc step towards proving that operating systems work.
However, except for the resource allocation problem (proving optimality), the defi-
nition of working is extremcly complicated. No formal proof seems feagsible in this

context. The best one can hope for is that the style and architecture presented by these
authors, and incarnate {n the T.H.E. operating system, are amenable to convincing argu-
ments that certaln facilitlies are well behaved. ' ' :

ACM CCUFERENCE RFECORD, 1970 PROJECT MAC CONFERENCE

LOCKING

task Is non-trivial. For example, one may be willing to allow other processes certain
types of concurrent access to the object while the lock is set.

The classic example {s an accounting file. Processes reading the file may share {t
concurrently. Hewever, a process requesting write access to the file blocks until all
processes currently reading have released the file. No new access requests to the file
may be honored until the writing process has completed.

This simple (cormon) scheduling task is implemented by placing a program (schedulet)
between the process and the file. Each process is given the capability to.call the sched-
uler, Setting the lock amounts to calling the scheduler with a parameter specifying the
desired class of access. The scheduler returns a capability for the object (with the
appropriate options) when the lock is set. Clearing the lock returns the capability to
the scheduler.

The need for a scheduler is even more apparent when one allows for priorities among
processes or requests (the above simply allowS'éoncurrency). In this case a request for
locking the printer might be '"I would like to priat 10000 lines. in the next hour."

The scheduler may return control to the process if -the iock is busy thus allowing
it to compute on some other problem. It can notify the process by sending it an event
or {nterrupt when the object becomes available.

There is one detail here: one cannot allow the capability returned to the process by
.the séz operation to be copied from.one C-list to.another. Otherwise there will be little
hope of the clear operation scavenging all reincarnationg of the capability. This prob-
lem {3 settled by turning off the optfon which allows the capability to be moved. The

process may still pass the éapabiliCy to other processes by passing the entire C-lisc.6

Advantages Qver Semaphores: Paranoia

Semaphores are for cooperating, completely debugged processes. All processes con-
tinually have the capability for the shared object in the discussion above.' They vol-
"untarily test and set the lock. Since possession of the capability is ppima facie proof
(to the system) that the process may access the object in the specified w;ys, the system
cannot enforce rules 1 and 2 above. Nor can it be expected to detect violations of these
rules. If something else is intended, the concept of capabilities must be extended.

Lock schedulers are such an extension.

6In discussion it was suggested by scveral people (Denning, Miller) that one must be able
to withdraw capabilities from a process. The similarity to Wilke's schewe aof tickets
was mentioned. This is easily implemented if the capability cannot reproduce itself.
If, however, the capability can be copied from one C-list to another it is difficule
(expensive) to track down all its reincarnations. The idea of ripping up the ticket
brcaks down here because one can't rip up all xeroxes of it. If one is willing to rip
up all tickets for the cbject, onc need only destroy the object {tself. This is equiva-
lent to cancelling the show. However, this may adversely affect other (non-offending)
processes.

CONCURRENT SYSTEMS AND PARALLEL COMPUTATION

171

172

J. GRAY

The lock scheduler enforces rule 1 above since the shared object enters the domain
of the sharing process on1§ after a specific request to the scheduler. Further the
scheduler re-possesses the object when the process unlocks {t. A bonus in this arrange-
ment {s that {t minimizes the time that the shared object {s in the domain of a poten-
tially undebugged process. (We assume the scheduler is reliable.)

There seems to be little hope of enforcing rule 2 above unless the processes can
agree on a time lock. If this be the case, the scheduler can initiate error processing

if some process holds the lock beyond some real-time interval.

Error Handling

If a process which controls a lock attempts to deétroy itself (log-out) or if the
system is about to abort the process because of some error copdition, some aid must be
given to other processes waiting for that lock. Toward that end the names of all locks
controlled by a process are saved in its state. This information is updated by the
schedulers and i{s accessible to the system. In case of emergency the appropriate lock
schedulers are notiffed that a process controlling that lock has been aborted. They can
take diagnostic action as required (for example retura to locking processes with the er-
ror message ''JOHN DOE ABORTED LEAVING LOCK SET"). This contributes to the complexity of
schedulers and argues further for their incorporation in the system.

The scheduler also ma’ntains a list of processes controliing the lock on an object

~

80 {t can answer the question 'The lock has been set for 10 minutes, who forgat to clear

T ie?”

Interlocks

Suppose there are two locks, Ll and L2, If process Pl hag Ll and P2 has L2
and each wants the lock the other has as well, then we have a deadly embrace. These
daisy chains of locks can get arbitrarily complex and there seems to be no economical
way of detecting them. ' . '

Throughout this paper we have spoken of lacking abjects as though}this were the
degignated goal of locking. We have adopted this vocabulary because LE was convenient.
It is generally the case, however, that one locks structures rather than objects. These
structures are not necessarily made up of objects. They might be list structures within
a file or the set of all teletypes. It may happen. that a structure is an object but if
this does happen‘t: should be viewed as an accident. Further, locks are typically hier-
archical. One may want to lock a teletype, all teletypes, all slow peripherals,

In order to solve the daisy chain problem we impose the following restrictioas bn

structures which are to be locked:

(1) Any pair of lockable structures must be disjoint or else one must contalin

, the other properly.

AQM CONFERENCE RECORD, 1970 PROJEGT MAC CONFERENCE

LOCKING 173

(2) whenever a process has shared objects there must be a lock for the entire

structure.

Restrictions (1) and (2) impose a partial order on the locks and they require that
there be a master lock. That is, they induce an upper rooted tree. This tree {s defined
by the programmer. If the programmer {s writing a high level language, he needs only speci
specify which structures and substructures he wants locked and the translator can enfogce
the hierarchy.

The scheduler functions as follows:

(1) 'Process Pl calls lock scheduler § for lock L1 .

(2) S checks Pl's priority and places it in the queue for L1 1f Pl wasa't

successful {n serting L1 .

(3) In any case {f L1 has subordinate locks, S returns to Pl with the re-

mark that Pl {s in the queue.
W e Pi’; v n € vnie 3
(4) Before~gotwring.to Sl——imsuauar, S requests all subordinate locks.

(It need only request direct gubordinates.)

(5) When all subordinate locks alert S that they are set for it, S alerts Pl .

v In particular if Ll has no subordinates, S alerts Pl immediately.

Unlocking {s done similarly. In this scheme, the scheduler does all locking and

unlocking for the process.

Summary

So far we have been considering a general facility for locking. We have argued that
® scheduler which maintains certain diagnostic information (and is either a separate pro-
cess or an execute-only file shared by processes) i{s needed to relieve thefsubsystems
writer from.the complex and error prone task of setting, clearing, and‘séheduling locks.
This also allows for a certain amount of paranoia among the subsystems w;iters. Sub-
systems simply call the scheduler (passiﬁg it some parameters) and the scheduler does the
rest.

One might argue that one should write separate schedulers for each new application.
However, the similaritics between such schedulers aré greater than their differcnces.

In particular the error handling mechanisms will be similar and be quite complex. The
main variacion will be in the scheduler proper. It appears that this can be made a ’
“oluggable" module in a general lock scheduler matrix provided by the system. The sys-
tem will provide garden variety schedulers and users may write more elaborate schedulers

at their lefsure.

CONCURRENT SYSTEMS AND PARALLEL COMPUTATION

176 - J. GRAY

Havdware Locks

The discussion above has centcred on locks {n a rather abstract setting. The over-
head of setting or clearing such a lock might be a few hundred fnstructions, Clearly a
more efficient and limited locking facility {s needed to do simple things. Ian particular
note that there must be locks on the queues and flags used by the locking mechanism and
schedulers.

The hardware ls presumed to have two instructions:
LOCK i
CLEAR i

which set and clear the i-th lock respeczively. Locks may be implemented as pseudo-
memory banks and the hardware that resolves bank conflicts allocates these pseudo-banks
to processors. A processor executing LOCK 100 pauses until bank 100 {s free and
then it concinués. It monopolizes this pseudo-bank until it executes a CLEAR 100 .

Now consider the i{nteraction between these locks, interrupts, and page faulcts.
Suppose the system is getting a lock for a low priority process and an interrupt comes
{external, or quantum runout). Then the lock will stay set until the process is swapped
I~ again. 1If this is a critical léck, the interrupting process may not be able to func-
tion because it needs this lock to run. This will seriously degrade system response to
interrupts.)

So when a processor executes a LOCK , interrupts must be locked out. To put a
ceiling on the LnCerruﬁt response time the interrupt lock must have a time limit. If the
processor does not CLEAR the lock before N (N~ 25) microseconds, the locking process
i{s trapped, the lock cleared, and interrupts re-armed.

This guarantees that 1f a process wants to manipulate a table, it is given N micro-
seconds to do it.7 During that time no other processof (process) will touch that table
since :he processor will first try to get the lock and thus will paqge:

Interrupts are locked out, but suppose the process has a virtu;I memory {not physical).
In particular suppose that the tables and system code are not locked {nto fast memory.
(If they are this is not a problem but lota of other problems suddenly appear.) Then the
process can still be incerrupted by instruction or data fetches which touch segments
{pages) not in fast memory. In general it takes$ more than N microseconds to bring these
pages in, so the timer may run out,

One approach might be: *

7
Note: a orocessor can only set one lock since setting the second lock mizht take more
than N microseconds. -

AQM CONFERENCE RECORD, 1970 PROJEQT MAC CONFERENCE

.

14

LOCKING 175

(1) to go off to the working set computer ard tell {t to keep all pages touched

until further notice
(2) then to touch all necessary pages (including {nstruction pages)
(3) then to set the lock on the data
(4) change Lt
(5) release the lock

(6) and set the working set computer loose.

The overhead i{n doing this (informing the working set compucer) i{s congiderable.
Also the data may change while pages are being touched but before the lock is set. So
the computation of which pages are needed may be out of date. (Suppose one is locking
the master object table. While touching needed objects a garbage collection strikes and
moves some objects. Then the touched objects will not necessarily be on the touched pages.)
Sim{lar problems lie in locking single pages of the table. Also this leads to an ex-
pensive proliferatfon of such locks.
A simpler and more workable scheme is to have the systems programmer worry about

page Faults due to instrucrion fetches. Data fetch page fault3 are handled as follows:

- "¥ (a) The SET 1instructlion saves the {nstruction counter of the processor in a
wvord in the processor state, It inhibits interrupts and sets a 25 micro-

gecond timer.

(b) 1If a page fault occurs, the processor clears the lock, and the imstruction

counter of the process {3 reset to the SET {instruction,
In programming one uses this {nstruction as follcws:

(1) set the lock : : f

'Pi

(2) touch all needed cells if

(3) make all changes

(4) clear the lock.

It {3 clear (one can prove) that since interrupts are inhibited and since a page
fault in step (2) causes the process to vestart at step (1), then whea one rcaches step
(3) all touched pages are in core. Further, the lock was set before the pages were

touched so they are the pages needed for step (3).8

8

It i3 possible to have the compiler (systems programming languapge) generate these extra
fetches and-insure that the code lles withlan a single page, and that it executes within
N microseconds.) ' :

CONCURRENT SYSTIMS AND PARALLEL COMPUTATION

176 _ - | J. GRAY

Tais scheme {3 inelegant but workable. It has been adopted for the BCC Model-1
computer. It does not appear that changes {n technology will make these problems go
away. As memory becomes cheaper, system tables become larger. 1In fact the tables grow
faster than the memories. It {s doubtful that the practice of locking large segments

into the top level of a memory hierarchy will be able to keep pace with this growth,

References

1. J, B. Dennis and E. C. Van Horn, Prograrming semantics for multiprograrmed

computations. Comm. of the ACM, Vol. 9, No. 3 (March 1968), pp 143-155.

2. E. W. Dijkstra, Cooperating sequential processes., In Prograrming Languages,
F. Genuys, Ed., Academic Press, New York 1963.

3. A. N. Habermann, On the Harmonious Co-Ooeration of Abstract Machines.

Ph.D. Dissertation, Technical UnLvérsit& of Eindoven, the Netherlands, 1967.

4. B. W. Lampson, Dynamic protection structures. AFIPS Conference Proceedings, Vol. 35,
Fall 1969, pp 27-38.

5. B. W. Lampson, An Overview of CAL-TSS. Computer Center, University of Calffornia,
Berkeley, '

-

AQM CONFERENCE RECORD, 1970 . PROJECT MAC CONFERENCE

