Research

VIEWS, AUTHORIZATION, AND LOCK-
ING IN A RELATIONAL DATA BASE
SYSTEM

D. D. Chamberlin / J. N. Gray
I. L. Traiger

December 19, 1974

RJ 1486

Yorktown Heights, New York

San Jose, California

Zurich, Switzerland

Limited Distribution Notice

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:

IBM Thomas J. Watson Research Center
Post Office Box 218

Yorktown Heights, New York 10598

RJ 1486 (#22785)
December 19,1974
Computer Science

VIEWS, AUTHORIZATION, AND LOCKING IN A RELATIONAL
DATA BASE SYSTEM

D.D. Chamberlin
J.N. Gray
I.L. Traiger

IBM Research Laboratory
San Jose, California 95193

ABSTRACT: It is the contention of this paper that a
uniform mechanism can support the notions of view,
authorization and locking. A particular mechanism is
described where rectangular views are built through the
data definition and manipulation facility of the high-
level relational language SEQUEL. Both authorization
and lock description are then handled by attaching access
qualifiers to the columns of the views.

INTRODUCTION

In the interest of brevity we assume that the reader 1is
familiar with the notion of a relational data base. 1In
particular, we assume a familiarity with the work of codd
/1,2,3,4,5/ and Boyce and Chamberlin /6,7,8/. The examples
in this paper will be drawn from a data base which describes
a department store and consists of three relations:

EMP (NAME , SAL,MGR, DEPT)

SALES(DEPT,ITEM, VOL)

10C (DEPT , FLOOR)
The EMP relation has a row for each employee, giving his
name, salary, manager's name, and department. The SALES
relation gives the dollor volume of each item so0ld by each
department. The LOC relation gives the floor on which each
department is located.
In /6/ and /7/, Boyce and Chamberlin introduced SEQUEL, a
data sublanquage based on English keywords and intended for
interactive problem-solving by users who are not computer
specialists. SEQUEL is a unified data definition and data
manipulation language, based on the concept of a mapping,
which allows users to select certain attributes from those
rows of a table which satisfy some criterion. For example,
the user may request the names and salaries of all employees
in the shoe department:

SELECT NAME , SAL

FROM EMP

WHERE DEPT = 'shoe';

SEQUEL also allows attibutes to be selected from two oOr more

tables which have been joined together according to some

stated criterion. For example:

SELECT NAME , FLOOR

FROM EMP , LoC

WHERE EMP.DEPT = LOC.DEPT;
produces a table of the names and floors of each employee by
joining EMP and LOC on the DEPT column. (For a more complete
treatment of joins, see /U4/ and /6/.)
This paper may be viewed as an extension of the ideas in
/17, which developed the concept of view and showed its
applicability to extensible data structures, authorization,
and integrity constraints, and /14/, which discussed the

problems of locking relations and concluded that one must

lock logical subsets of relations.

RELATIONS AND VIEWS Defining relationgs

The SEQUEL system postulates a finite collection of base
relations. The description of a relation includes a list of
named columns. Each columm (e.g. SAL) has the attributes

sCO (e.qg. positive_integer), comparability {e.q.

money/time) , units (e.g. dollars/year), representation (e.g.

DECIMAL({6)) and role description (e.g. "yearly compensation

for services renderedh).
The formal definition of EMP might be:

DEFINE EMP TABLE AS:
NAME (SCOPE=ALPHA (*) ,DOMAIN=NAME ,REPR=CHAR (*)) ,
SAL (SCOPE=POS_INT, DOMAI N=MONEY, UNITS=DOLLARS, REPR=DEC (6)) ,
MGR LIKE NAME,
DEPT LIKE NAME EXCEPT (DOMAIN=DEPARTMENT),
KEY = NAME,
ORDER = ASCENDING NAME,
INDEX NAME;

where the exrressions to handle NAME, MONEY, POS_INT and

DOLLARS have been previously defined.

Defining views

Simple variations of base relations may be obtained by:
(a) Renaming or permuting columns;
(b) Converting units or representation of a columng;
(c) Selecting that subset of the rows of a relation which
satisfy some predicate;
(d) Projecting out some columns of a relation
(e) Linking existing relations together into Jjoinms,
hierarchies or networks which can then be viewed as a
single larger table,
Such variations can be obtained using the data definition
facility. For example,

DEFINE ITALIAN_EMP TABLE AS:
LIKE EMP EXCEPT (SAL.UNITS=LIRA,SAL.REP=DEC(9));

defines a view of Italian employees paid in lira and expands
the representation field arpropriately. Thereafter,
ITALIAN_EMP may be used as a relation. It may be placed
anywhere in a SEQUEL statement that one could place the base
relation EMP. All fetches from ITALIAN_EMP will have the
salary field converted from dcllars to lira. All stores into
ITALIAN_EMP will store tuples into EMP with the salary field
converted from lira to dollars.

To give a more sophisticated example, the table of employees

and their locations is defined by:

DEFINE EMP_IOC TABLE AS:

SELECT EMP , 10OC

WHERE EMP.DEPT = LOC.DEPT;
This statement defines the view:

EMP_LOC (NAME, SAL,MGR,DEPT,FLOOR).

Any SEQUEL guery evaluates to a virtual relation which may
be displayed on the user's screen, fed to a further query,
deleted from an existing relation, inserted into an existing
relation, oxr <copied to form a new base relation. More
importantly for this discussion, the query definition may be
stored as a named view. The principal difference between a
copy and a view is that updates to the original relations
which produced the virtual relation will be reflected in the
view but will not affect the copy. The view is a dynamic
picture of a query, whereas a copy is a static picture.
There is a need for both views and c¢opies. Someone wanting
to record the monthly sales volume might run the following
transaction at the end of each month:

MONTHLY_ VOLUME (DEPT,VOL) = SELECT DEPT , SUM(VOL)
FROM SALES GROUPED BY DEPT;

which computes the dollar volume of each department. The new
base relation MONTHLY_ VOLUME is defined +o hold the answer,
and its columns 1inherit the attributes of <the SALES
relation. On the other hand, the current volume can be
gotten by the view:
DEFINE CURRENT_VOLUME (DEPT,VOl) TABLE AS:

SELECT DEPT , SUM(VOL)

FRCOM SALES GROUPED BY DEPT;
Thereafter, any updates to SALES will be reflected in the

CURRENT _VOLUME view. Again, CURRENT_VOLUME may be wused in

the same ways base relations can be used. For example one
can compute the difference between the current and monthly
volume.

The semantics of views are quite simple. Views in SEQUEL can
be supported by a process of substitution in the abstract
syntax (parse tree) of the statement. Each time a view is
mentioned, it is replaced by its definition. This fits well
with the notion of nested mappings. Thereafter, the SEQUEL
compiler and interpreter can treat views and nested mappings
in a uniform way.

To summarize then, any query evaluates to virtual relation.
Naming this wvirtual relation makes it a view. Thereafter,
this view can be used as a relation. This allows views to be
defined as row and column subsets of relations, statistical
summaries of relations, named joins, hierarchies and
networks of relations. This mechanism contributes to:

(a) Data independence: giving programs a logical view of

data, thereby isolating them from data reorganization.

{(b) Data isolation: giving the program exactly that subset

of the data it needs, thereby minimizing error
propagation.

Views and update

Since only base relations arxe actually stored, only base
relations can be physically updated. To make an update via a
view, it must be possible to propagate the updates down to
the the underlying base relations. Any view can support read

operations.

If the view is very simple (e.g. ITALIAN_EMP above) then
this is straightforward. If the view is a one-to-one mapping
of tuples in some base relaticn but some columns of the base
are missing from the view, then update and delete present no
problem but insert requires that the unspecified
("invisible") fields of the new +tuples in the base relation
be filled in with the "undefined" value. This may or may not
be allowed by the integrity constraints on the base
 relation.

Beyond these very simple rules, propagation of updates from
views to base relations becomes complicated, dangerous, and
sometimes is impossible /5/. Views derived from joins are
not third normal form relations, /3/ and hence necessarily
have unpleasant update properties. The types of updates
which can be supported for various types of view will be
discussed in a forthcoming paper. The following basic
principles underlie our approach to the problem:

uniqueness rule: An insertion, deletion, or update to a view

is permitted only if there is a unique operation which
can be applied to the underlying base relations and
which will result in exactly the specified changes to
the user's view.

rectangle rule: An insertion, deletion, or update via a view

mast affect only information visible within the
rectangle of the view.
These rules are illustrated by the following examples:

DEFINE MY DEPT TABLE AS:
SELECT EMP , LOC

WHERE EMP.DEPT
AND EMP.MGR

LOC.DEPT
USER;

where USER 1is a variable selected from the profile of the
user of this program. This view is built from the join of
the two base relations EMP and 1LOC. It allows one to see the
name, salary, manager, department, and floor of each
employee who reports directly to the named wuser. If the
manager‘'s name is sSmith, it defines the rectangle:
NAMExPOS_INTx (*Smith')xDEPARTMENTXFLOCR which is a subset of
the cartesian product which underlies the EMP_LOC relation
defined previously. No actions using the MY_DEPT view can
affect a tuple outside this rectangle. The SEQUEL
statement:

DELETE MY_DEPT
WHERE SAL > 15000;

would not delete all over-paid employees; it would only
delete those overpaid employees who work for Smith. It
really translates into the statement:

DELETE EMP
WHERE SAL > 15000

AND MGR = 'Smith?';

Since NAME is a key for EMP and DEPT is a key for LOC,
MY DEPT is a simple view which supports wupdate, delete and
insert. Of course, any tuple Smith updates must have manager
Smith before and after the update. Similarly, any tuple he
inserts must have manager Smith, and he can only delete
tuples with manager Smith. Each of these restrictions derive
from the rectangle rule,

To give an example of the uniqueness rule, imagine that

there is an employee who works in a department not listed in
the LOC relation. For example, suppose the tuple
(SCOTT,14000,SMITH,BOOK) appears in the EMP relation but
~1
that there is no book depatrment in the ILOC relation.
Because of this, SCOTT will not appear in the djoin (in the
virtual EMP_LOC 7relation defined previously) and so SCOTT
will not appear in Smith's view MY_DEPT (which is a row
subset of the EMP_LOC relationj. Now if Smith inserts the
tuple (FITZGERALD,1300,SMITH,BOOK,S) into his MY_DEPT view,
this might be implemented by inserting
(FITZGERALD, 13000,SMITH,BOOK) into EMP and (BOOK,5) into
17

LOC. These inserts would add bpoth Fitzgerald and Scott to
Smith's view since they would add both to the join. This
13193\’355353" is in violation of the wuniqueness rule.
Because of the possibility of such side effects, the MY_DEPT
view cannot support insertions.

Another application of the uniqueness rule disallows support
of insert or wupdate +to the CURRFNT _VOLUME view defined
previously, because there is not a unique way of propagating
an updated SUM({VOL) to updates on the individual VOL entries

in the base SALES relation.

AUTHORIZATION

If only one user has access to a data base, there seems
little point in having any authorization mechanism beyond

authentication on entry, although one still wants views for

the reasons c¢f conversion, isolation, etc., listed above.

However, if several people expect to selectively share data

then there must be some mechanism to protect and authorize
access. Since one of the merits of a relational data base
system 1is simplicity, we want a simple mechanism to
dynamically create and share relations. This simplicity is
important for a community of individuals who control their
own data, as well as for a more centrally controlled system
where authorization 1is handled by a (human) data base
administrator. Following standard practice /7,9,10,11/ we
use the view mechanism as the basis of the authorization
mechanism. The wuser has a catalog of named (base and
virtual) relations, These give his only access to the data
base. Each time a user defines a new base relation, a fully
authorized view of it is placed in his catalog. The kinds of
authorization we recognize are:

GRANT: the ability to grant this view to someone else or

define a view on top of this view.
REVOKE: the ability to selectively reduce or revoke
authorizations to this view.

DESTROY: the ability to destroy this view.,

INSEPT: the ability to insert into this view.

DELETE: the ability to delete tuples in the view,
And for each column of the view:

UPDATE: the ability to update values in this column.
We do not distinguish read access because read restriction

can be gotten by eliminating columns from a view. All

-10--

columns in a view are readable. RAlso, we do not distinguish
"statistical® access or "manipulative®" access. All known
proposals for such access control are complicated to
understand and easy to subvert. Owens /12/ and Stonebraker
/137 both present a convincing case against distinguishing
statistical access. Our approach to statistical access is to
use the view mechanism. For example, the CURRENT_VOLUME view
described above gives only statistical access to the SALES
relation in a very simple and understandable way,

Update authorization is attached +to the columm of a view
rather than to +the entire view, Since relational operators
distribute over a view, touching each tuple, it makes sense
to authorize each visible tupie uniformly. However, some
fields (columns) within a tuple are more sensitive than
others. For example, a manager may be authorized only to
read the name and salary of an emgloyee but to wupdate the
floor of an employee in the MY _DEPT view.

So each column of a relation has the attributes: scope,
comparability, units, representation, role description,

and update authorization. The view itself carries the

additional attributes: grant, revoke, destroy, insert, and
delete.

Base relations when created have all fields updatable and
are fully authorized for all operations. The creator may
immediately define a view with non-updatable keys by (for
example) :

DEFINE EMPLOYEE TABLE AS:
LIKE EMP EXCEPT (NAME.UPDATE = 'NO');

-11-

A derived view never has greater authorization than its
parent view. If the view is not simple, then it
automatically loses insert, delete, and update
authorization. This is a good example of the interplay

between authorization and views.

Granting and revoking authorization

Granting the EMPLOYEE view to Jones conceptually places a
copy of the EMPLOYEE definition into Jones' catalog of
relations.

Any user having grant authority to EMPIOYEE can grant it to
another user with the same or reduced authority. For
example:

/BASE GRANT EMPILOYEE TO JONES:
(GRANT = 'NO' , REVOKE = 'NO' , DESTROY = 'NO');

This allows Jones to use EMPLOYEE, inserting in it, deleting
from it, updating it, but prevents him from destroying the
view or revoking it from someone else. Also it prevents him
from granting the view to another or defining a view on top
of EMPLOYEE. (Otherwise Jones could define an identical view
and grant that view.) If Jones already has a relation named
EMPLOYEE, the grant will fail.

Since Jones probably does not have the relation EMP in his
catalog and since EMPLOYEE is defined in terms of EMP, the
view must be interpreted in the context of +the definer. On
the other hand, the variable USER in +the definition of

MY DEPT is 1local to the user of the view. Standard

-312~

mechanisms are used +to distinguish the definer's context
from the user's context.

A second issue is revocation. When the definer destroys a
view, it is deleted from the catalog of all users to whom it
was granted. This also invalidates all views which derive
from that view. When anyone with revoke authority modifies
the authorization of a view, that modification is again
propagated to all views derived from that view. Further,
anyone with revoke authority for the view may selectively
revoke access to the view. For example:

REVOKE EMPLOYEE FROM JONES;:

revokes Jones! access to EMPLOYEE. One may imagine base
relations and views organized into a hierarchy. If one view
entry is granted from another or 1is defined in terms of
another, then changes in the parent will affect the child

and all its descendants.

Checking authorization

When a transaction is "compiled" one may tell by the syntax
of the statement which views are used by the transaction and
for each view one can establish whether it is being granted,
revoked, read, inserted into, deleted from or updated. We

believe that much authorization will be value dependent and

therefore must be checked at the time the transaction is
run. For example, if a view is qualified by a selection
criterion +then each +tuple which 1is inserted, deleted or

updated must satisfy this criterion. For example all tuples

-13-

entering and leaving MY_DEPT must be checked to see that the
value of the MGR field is the name of the person running the
transaction,

The entire SEQUEL system is carefully constructed so that
mappings can be easily and uniformly composed. Once the
update, insert, or delete is resolved to the underlying
views, the translated tuples are tested against the
selection criteria for the rectangles of those views. This
process continues recursively until only base relations
remain. If authorization, the uniqueness rule or the
rectangle rule is compromised at any step, the operation
faults. If a transaction tries to store outside its view, it
is given a protection exception. If it tries to read outside

its view, it is given the empty set as a response.

LOCKING
If several concurrent transactions access common data then
there must be some protocol to synchronize their accesses.

This protocol should be invisible to the user. The system is

responsible for deciding what locks are required and whether
they should be shared or exclusive locks (read or write
access). Usually, a SEQUEL statement is the wunit of
consistency and locks are released at the end of a
statement. To get consistency that spans multiple SEQUEL
statements, the user may bracket <the sequence of statements
by the verbs: BEGIN_TRANSACTION and END_TRANSACTION. If two

users each want to change the same data, one must wait for

14~

the other to finish. Under certain circumstances, one user
may be forced to backup to the beginning of his transaction.
If the +transaction has not done any terminal input-output
this is invisible to the user (except that the transaction
takes a long éime). If the transaction has done some 1/0
then backup will be automatic but visible. The issues of
deadlock detection, preemption, and backup are resolved by
the SEQUEL system using a priority-seniority scheme.

In /14/ it is shown that if each transaction wants to see a
consistent view of the data base, then locks must be held to
the end of the transaction. It is further shown that the use
of indices requires that transactions lock entire relations

or that they lock logical subsets of relations.

To see that transactions must lock logical rather than
physical subsets of a relation, imagine that Smith wanted to
lock for read access all members of his MY _DEPT view.
Scanning the EMP relation and 1locking all tuples with
manager Smith would not prevent a new tuple with manager
Smith from entering the EMP relation. For example, if Smith
made a 1list of all his employees who make less +than 15000
dollars and then made a list of all his
employees who make less than 10000 dollars, the second set
might not be a subset of the first! This problem of phantom
tuples requires that Smith lock the logical set of tuples
such that MGR=*'Smitht'. This suggests the concept of
predicate locks described as:

(RELATION, PREDICATE, ((F1,A1) ,... (Fn,An)))

-15~

where PREDICATE is a selection criterion giving a row subset
of the RELATION and the lock requests access of type Ai to
field Fi. The kinds of access are read (shared) and write
(exclusive). So for example,

(MY_DEPT, (MGR=*'SMITH' §SAL<10000),
((NAME, read) , (MGR, read), (SAL,write))),

is a lock appropriate to the transaction:

UPDATE MY_DEPT SET SAL = 1.10 * SAL
WHERE SAL < 10000;

which gives a 10% raise to each underpaid employee in
Smith's view. The reason for specifying the kind of access
to each column is to allow greater concurrency. Reference
/147 contains a deeper discussion of the resolution of such
locks. However their similarity to views should be obvious.
Each view describes a rectangle of a (virtual or base)
relation. Similarly, a predicate 1lock describes a rectangle
of a relation and the access attributes of that rectangle.
The view, authorization and 1lock mechanisms must each
translate operations on a view to operations on base
relations. Also, the view, authorization and +the 1lock
mechnisms each need to check that each tuple falls within
the rectangles prescribed by the views and locks.

In most cases, locks will be finer than views (will be
subrectangles of views) but in some complex cases the locks
may extend to the entire base relation because the software
is not smart enough to find the minimal lock predicate.
Figure 1 illustrates the relationship between predicate

locks, authorized views, and the base relation.

BASE RELATION:

MY_DEPT

(MGR='SMITH')

i (SAL> 150008

-16-

MGR=*SMITH')

Figure 1.

EMP
NAME SAL MGR DEPT
SAM 13000 JOE PURCH
~_-—"_.—.—‘ i :—‘::—..—- -*—.—.—..—-—-I o ® ® @
CARMEN 9000 SMITH |, GUN
TED 12000 SMITH |, CAR
SUE 10000 SMITH || GLASS
MERT 11000 SMITH |iI TOY
L - - - - _ |
MAX 17000 surta ||l FURN
JENNY | 16000 smrtd || sporTs
GUS | 45000 smitd ||l DrUG
GUIDO ! 15500 SMITH || TOY
— - g—-— -—yg— - +—- —R— -}i
___U.___.{l,_.__ ,_U____._ __.R_.._-.J
ALLAN | 25000 MARY HAT
U | U u U

Base relation EMP, viewed from authorized view

MY DEPT and locked with respect to *'SAL>15000' in that view.
The capital letters
authorization of that rectangle for that column.

SUMMARY

Views prescribe what can be seen.

at the base of each rectangle give the

Buthorization prescribes what can be done to what is seen.

Locks are a

dynamic kind of authorization which prescribe

what can be done to what is seen at this instant.

Each of these concepts is

and all

relation with

of them can be based on

a qualifying predicate

an extension of

the concept of

a

its predecessor

defined

(a subrectangle of a

virtual relation), where each column is tagged with read or

write access

such as insert and delete.

and the whole view has authority qualifiers

-17-

STATUS OF IMPLEMENTATION

A single wuser SEQUEL system with SELECT, INSERT, DELETE,
DEFINE, integrity constraints, and very sophisticated index
selection was implemented by Morton Astrahan, Don Chamberlin
and Paul Fehder and has been operational since June 1974. It
is being experimented with at various locations within IBM.
Current work is focused on a concurrent user system called
MUSE (Multiple User SEQUEL Environment) which will
incorporate support for multiple views, and an advanced

operating system interface.

ACKNOWLEDGMENTS

We have benefitted from stimulating discussions with Ted
Codd and Frank King on update propagation and with Kapali

Eswaran and Raymond Lorie on the locking problem.

REFFERENCES

(1) E. F. Ccdd, "A relational model for large shared data
banks," CACM, Vol. 13, No. 6 (June 1970) pp. 377-387.
(2) E. F. Codd, "A data base sublanguage founded on the

relational calculus," Proceedings of 1571 ACM SIGFIDET

Workshop on data description,_acc¢ess,_and control, San

Diego, California, November 1971.
{(3) E. F. Codd, "Further normalization of the data base

relational model," Courant Computer Science Symposia,

(4)

(5)

(6)

)

(8)

(9)

(10)

-18-

Vol. 6, Data Base Systems, Prentice Hall, New York,

May 1971.
E. F. Codd, "Relational comrpleteness of data base

sublangquages," Courant Computer Science Symposia, Vol.

6, Data Base Systems, Prentice Hall, New York, May

1971.
E.F. Codd, "Recent investigations 1in relational data

base systems," Proceedings of IFIP Congress 74,

Stokholm, Sweden, August 1974.
R. F. Boyce, D.D. Chamberlin, "A structured English

query language," Proceedings of ACM SIGFIDET Workshop,

Ann Arbor, Michigan, May 1974.
R. F. Boyce, D. D. Chamberlin, "Using a structured
English guery language as a data definition facility,"
IBM Research report: RJ 1318, San Jose, California,
Dec. 1973. To appear in CACM.

R. F. Boyce, D. D. Chamberlin, W. F. King III, M. M.
Hammer, "Specifying queries as relational expression;,“

Proceedings of ACM SIGPIAN/SIGFIDET Interface Meeting

on Programming Lanquages and Information Retrieval,

Gatisburg, Md., November 1973.

Anononomous, "Information Management System Virtual
Storage System (IMS/VS) - System/Application Design
Guide," IBM form No: SH20-9025, pp. 3.72-3.73, 1IBM
Corporation, Palo Alto California. 1974..

CODASYL, "Data Base task group report," ACM, New York,

1971.

amn

(12)

(13)

(14)

-19-

R.C. summers, C.D. Coleman, E.B. Fernandez, %A
programming language approach to secure data bases,"
IBM Los Angeles Scientific Center Technical Report:
G320-2662, Los Angeles, California, May 1974.

R. Owens, "Primary access control in 1large scale
time-shared decision systems," Project MAC report

TR-89, MIT, Cambridge , Mass., July 1971.

M. Stonebraker, E. Wong, "Access control in a
relational data base management system by query
modification," Electronics Research Laboratory

memorandum: ERIL-MU38, UC Berkeley, California, May
1974,

K.E. Eswaran, J. N. Gray, R. A. Lorie, 1I. L. Traiger,
“The notions of consistency and predicate 1locks," IBM
Reserarch report: (in preparation) , San Jose,

california, Dec 1974.

