

Using Table Valued Functions in SQL Server 2005 To

Implement a Spatial Data Library

Jim Gray

Microsoft Research

Alex Szalay, Gyorgy Fekete,

The Johns Hopkins University

 August 2005

Technical Report

MSR-TR-2005-122

Microsoft Research

Advanced Technology Division

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Using Table Valued Functions in SQL Server 2005

To Implement a Spatial Data Library

Jim Gray, Microsoft (contact author)

Alex Szalay, Johns Hopkins University

Gyorgy Fekete, Johns Hopkins University

August 2005

Abstract
This article explains how to add spatial search functions (point-near-point and point in

polygon) to Microsoft SQL Server™ 2005 using C# and table-valued functions. It is

possible to use this library to add spatial search to your application without writing any

special code. The library implements the public-domain C# Hierarchical Triangular Mesh

(HTM) algorithms from Johns Hopkins University. That C# library is connected to SQL

Server 2005 via a set of scalar-valued and table-valued functions. These functions act as a

spatial index.

Resources
The article is illustrated by examples that can be downloaded from

http://msdn.microsoft.com/sql/2005/. The sample package includes:

• An 11 MB sample spatial database of United States cities and river-flow gauges.

• The sample queries from the sql\testScript.sql article.

• A Visual Studio 2005 project, \htm.sln, with all the SQL and C# code.

• A paper, doc\Table_Valued_Functions.doc.

• An article, doc\HtmCsharp.doc, that provides a manual page for each routine.

• An article, doc\HTM.doc, that explains the Hierarchical Triangular Mesh

algorithms in detail.

• An article, doc\There_Goes_the_Neighborhood.doc, which explains how

the HTM algorithms are used in Astronomy. This article also explains two other

approaches: zones for batch-oriented point-to-point and point-area comparisons, and

regions for doing Boolean algebra on areas. Public domain implementations of those

approaches implemented for SQL Server are used in the SkyServer, a popular

Astronomy website for the Sloan Digital Sky Survey (http://SkyServer.SDSS.org/ and

by several other astronomy data servers.

Table of Contents

Abstract .. 1

Introduction .. 3

Table Valued Functions: The Key Idea ... 3

Using Table-Valued Functions to Add a Spatial Index .. 4

The Datasets ... 6

USGS Populated Places (23,000 cities) ... 7

USGS Stream Gauges (17,000 instruments).. 7

The Spatial Index Table... 9

A Digression: Cartesian Coordinates.. 10

Typical Queries .. 12

1. Find Points near point: find towns near a place. .. 12

2. Find places inside a box. ... 13

3. Find places inside a polygon. .. 14

4. Advanced topics – complex regions. .. 15

References .. 18

Appendix: The Basic HTM Routines ... 19

HTM library version: fHtmVersion() returns versionString ... 19

Generating HTM keys: fHtmLatLon (lat, lon) returns HtmID.. 19

LatLon to XYZ: fHtmLatLonToXyz (lat,lon) returns Point (x, y, z).. 19

XYZ to LatLon: fHtmXyzToLatLon (x,y,z) returns Point (lat, lon)... 19

Viewing HTM keys: fHtmToString (HtmID) returns HtmString ... 19

HTM trixel Centerpoint: fHtmToCenterpoint(HtmId) returns Point (x, y, z) 20

HTM trixel corner points: fHtmToCornerpoints(HtmId) returns Point (x, y, z) 20

Computing distances: fDistanceLatLon(lat1, lon1, lat2, lon2) returns distance 20

Finding nearby objects: fHtmNearbyLatLon(type, lat, lon, radius) returns SpatialIndexTable......... 20

Finding the nearest object: fHtmNearestLatLon(type, lat, lon) returns SpatialIndexTable 21

Circular region HTM cover: fHtmCoverCircleLatLon(lat, lon, radius) returns trixelTable 21

General region specification to HTM cover: fHtmCoverRegion(region) returns trixelTable............. 21

General region simplification: fHtmRegionToNormalFormString(region) returns regionString 22

Cast RegionString as Table: fHtmRegionToTable(region) returns RegionTable 22

Find Points Inside a Region: fHtmRegionObjects(region, type) returns ObjectTable....................... 22

General region diagnostic: fHtmRegionError(region) returns message... 22

Introduction
Spatial data searches are common in both commercial and scientific applications. We

developed a spatial search system in conjunction with our effort to build the SkyServer

(http://skyserver.sdss.org/) for the astronomy community. The SkyServer is a multi-

terabyte database that catalogs about 300 million celestial objects. Many of the questions

astronomers want to ask of it involve spatial searches. Typical queries include, “What is

near this point?” “What objects are inside this area?” and “What areas overlap this area?”

For this article, we have added the latitude/longitude (lat/lon) terrestrial sphere (the earth)

grid to the astronomer’s right ascension/declination (ra/dec) celestial sphere (the sky)

grid. The two grids have a lot in common, but the correspondence is not exact; the

traditional order lat-lon corresponds to dec-ra. This order reversal forces us to be explicit

about the coordinate system. We call the Greenwich-Meridian-Equatorial terrestrial

coordinate system the LatLon coordinate system. The library supports three coordinate

systems:

• Greenwich Latitude-Longitude, called LatLon

• Astronomical right-ascension–declination called J2000

• Cartesian (x, y, z) called Cartesian.

Astronomers use arc minutes as their standard distance metric. A nautical mile is an arc

minute, so the distance translation is very natural. Many other concepts are quite similar.

To demonstrate these, this article will show you how to use the spatial library to build a

spatial index on two USGS datasets: US cities, and US stream-flow gauges. Using these

indexes and some spatial functions, the article provides examples of how to search for

cities near a point, how to find stream gauges near a city, and how to find stream gauges

or cities within a state (polygonal area).

We believe this approach is generic. The spatial data spine schema and spatial data

functions can be added to almost any application to allow spatial queries. The ideas also

apply to other multi-dimensional indexing schemes. For example, the techniques would

work for searching color space or any other low-dimension metric space.

Table Valued Functions: The Key Idea
The key concept of relational algebra is that every relational operator consumes one or

more relations and produces an output relation. SQL is syntactic sugar for this idea,

allowing you to define relations (data definition language) and to manipulate relations

with a select-insert-update-delete syntax.

Defining your own scalar functions lets you make some extensions to the relational

database – you can send mail messages, you can execute command scripts, and you can

compute non-standard scalars and aggregate values such as tax() or median().

However, if you can create tables, then you can become part of the relational engine –

both a producer and consumer of relational tables. This was the idea of OLEDB, which

allows any data source to produce a data stream. It is also the idea behind the SQL Server

2000 Table Valued Functions.

Implementing table valued functions in Transact-SQL is really easy:
create function t_sql_tvfPoints()

 returns @points table (x float, y float)

 as begin

 insert @points values(1,2);

 insert @points values(3,4);

 return;

 end

This is fine if your function can be done entirely in Transact-SQL. But implementing

OLEDB data sources or Table Valued Functions outside of Transact-SQL is a real

challenge in SQL Server 2000.

The common language runtime (CLR) integration of SQL Server 2005 makes it easy to

create a table-valued function. You create a list, an array, or any IEnumerable object

(anything you can do foreach on), and then you cast it as a table. That’s all there is to it.

[SqlFunction(TableDefinition = "x float, y float" ,

 FillRowMethodName = "FillPair")]

 public static IEnumerable csPoints()

 {

 int[,] points = { { 1, 2 }, { 3, 4 } };

 return (IEnumerable) points;

 }

You compile this in Visual Studio and click Deploy. The table-valued function is

installed in the database.

Using Table-Valued Functions to Add a Spatial Index
There is a lot of confusion about indexes. Indexes are really simple – they are tables with

a few special properties:

• SQL Server has only one kind of associative (by value) index – a B-tree. The B-

tree can have multi-field keys, but the first field carries most of the selectivity.

• Conceptually, the B-Tree index is a table consisting of the B-Tree key fields, the

base table key fields, and any included fields that you want to add to the index.

• B-tree indexes are sorted according to the index key, such as.ZIP code or

customer ID, so that lookup or sequential scan by that key is fast.

• Indexes are often smaller than the base table, carrying only the most important

attributes, so that looking in the index involves many fewer bytes than examining

the whole table. Often, the index is so much smaller that it can fit in main

memory, thereby saving even more disk accesses.

• When you think you are doing an index lookup, you are either searching the index

alone (a vertical partition of the base table), or you are searching the index, and

then joining the qualifying index rows to rows in the base table via the base-table

primary key (a bookmark lookup).

The central idea is that the spatial index gives you a small subset of the data. The index

tells you where to look and often carries some helpful search information with it (called

nwnw

nwsw nwse

nwne nenw

nesw nese

nenenwnw

nwsw nwse

nwne nenw

nesw nese

nenenwnw

nwsw nwse

nwne nenw

nesw nese

nene

Figure 2: The start of a space

filling Peano or Hilbert curve

(one recursively divides each

cell in a systematic way.) The

cells are labeled. All points in

cell ‘nwse’ have a key with that

prefix so you can find them all

in the ‘nwse’ section of the B-

tree, right before ‘nwne’ and

right after ‘nwsw’. The circle is

an area of interest that overlaps

two such cells.

included columns or covering columns by the

experts.) The selectivity of an index tells how

big this initial reduction is (the coarse subset

of Figure 1). When the subset is located, a

careful test examines each member of the

subset and discards false positives. That

process is indicated by the diamond in Figure

1. A good index has few false positives. We

use the Figure 1 metaphor (the coarse subset

and the careful test) throughout this article.

B-trees and table-valued functions can be

combined as follows to let you build your own

spatial index that produces coarse subsets:

1. Create a function that generates keys

that cluster related data together. For

example, if items A and B are related, then the keys for A and B should be nearby

in the B-tree key space.

2. Create a table-valued function that, given a description of the subset of interest,

returns a list of key ranges (a “cover”) containing all the pertinent values.

You cannot always get every key to be near all its relatives because keys are sorted in one

dimension and relatives are near in two-dimensional space or higher. However, you can

come close. The ratio of false-positives to correct

answers is a measure of how well you are doing.

The standard approach is to find some space filling curve

and thread the key space along that curve. Using the

standard Mercator map, for example, you can assign

everyone in the Northwest to the Northwest key range,

and assign everyone in the Southeast to the Southeast key

range. Figure 2 shows the 2
nd

 order space-filling curve

that traverses all these quadrants, assigning keys in

sequence. Everyone in the Northwest-Southwest quadrant

has the key prefix nwsw. If you have an area like the

circle shown in Figure 2, you can look in the key range
key between ‘nwsw’ and ‘nwse’

This search space is eight times smaller than the whole

table and has about 75 percent false positives (indicated

by the area outside the circle but inside the two boxes).

This is not a great improvement, but it conveys the idea.

A better index would use a finer cell division. With fine

enough cells, the converging area could have very few

false positives. A detailed review of space-filling curves

and space-partitioning trees can be found in the books of

Hanan Samet [Samet].

All

Objects

Caref ul

Test

F
a

ls
e

GoodCoarse

Subset
All

Objects

Caref ul

Test

F
a

ls
e

GoodAll

Objects

Caref ul

Test

F
a

ls
e

GoodAll

Objects

Caref ul

Test

F
a

ls
e

GoodCoarse

Subset

Figure 1: The key idea: the spatial index gives

you a small subset of the data (at least 100x

smaller) and then a careful test discards all

false positives. An index is good if there are

relatively few false positives. We use this idea

(the coarse subset and the careful test)

throughout this article.

Now we are going to define a space-filling curve – the Hierarchical Triangular Mesh

(HTM) that works particularly well on the sphere. The earth is round and the celestial

sphere is round, so this spherical system is very convenient for geographers and

astronomers. We could do similar things for any metric space. The space-filling curve

gives keys that are the basis of the spatial index. Then, when someone has a region of

interest, our table valued function will give them a good set of key-ranges to look at (the

coarse filter of Figure 1). These key ranges will cover the region with spherical triangles,

called trixels, much as the two boxes in Figure 2 cover the circle. The search function

need only look at all the objects in the key ranges of these trixels to see if they qualify

(the careful test in Figure 1).

To make this concrete, assume we have a table of Objects
 create table Object (objID bigint primary key,

 lat float, -- latitude

 lon float, -– longitude

 HtmID bigint)-– the HTM key

and a distance function dbo.fDistanceLatLon(lat1, lon1, lat2, lon2) that gives

the distance in nautical miles (arcminutes) between two points. Further assume that the

following table-valued function gives us the list of key ranges for HtmID points that are

within a certain radius of a lat-lon point.
define function

 fHtmCoverCircleLatLon(@lat float, @lon float, @radius float)

 returns @TrixelTable table(HtmIdStart bigint, HtmIdEnd bigint)

Then the following query finds points within 40 nautical miles of San Francisco (lat,lon)

= (37.8,-122.4):
select O.ObjID, dbo.fDistanceLatLon(O.lat,O.lon, 37.8, -122.4)

from fHtmCoverCircleLatLon(37.8, -122.4, 40) as TrixelTable

 join Object O

 on O.HtmID between TrixelTable.HtmIdStart -- coarse test

 and TrixelTable.HtmIdEnd

where dbo.fDistanceLatLon(lat,lon,37.8, -122.4) < 40 -- careful test

We now must define the HTM key generation function, the distance function, and the

HTM cover function. That’s what we do next using two United States Geological spatial

datasets as an example. If you are skeptical that this scales to billions of objects, go to

http://skyserver.sdss.org/ and look around the site. That Web site uses this same code to

do its spatial lookup on a multi-terabyte astronomy database.

This article is about how you use SQL Table Valued Functions and a space-filling curve

like the HTM to build a spatial index. As such, we treat the HTM code itself as a black

box documented elsewhere [Szalay], and we focus on how to adapt it to our needs within

an SQL application.

The Datasets
The US Geological Survey gathers and publishes data about the United States. Figure 3

shows the locations of 18,000 USGS-maintained stream gauges that measure river water

Figure 3: Graphical display of the latitude and longitude (lat/lon) of USGS stream gauges and of

USGS places. These two datasets are about 20,000 items each and are about 4 MB in all. We use

them to motivate the spatial search examples.

flows and levels. The USGS also publishes a list of 23,000 place names and their

populations.

USGS Populated Places (23,000 cities)

The USGS published a list of place names and some of their attributes in 1993. There are

newer lists at the USGS website but they are fragmented by state, so it is difficult to get a

nationwide list. The old list will suffice to demonstrate spatial indicies. The data has the

following format:
create table Place(

 PlaceName varchar(100) not null, -- City name

 State char(2) not null, -- 2 char state code

 Population int not null, -- Number of residents (1990)

 Households int not null, -- Number of homes (1990)

 LandArea int not null, -- Area in sqare KM

 WaterArea int not null, -- water area within land area

 Lat float not null, -- latitude in decimal degrees

 Lon float not null, -- longitude decimal degrees

 HtmID bigint not null primary key --spatial index key

)

To speed name lookups, we add a name index, but the data is clustered by the spatial key.

Nearby objects are co-located in the clustering B-tree and thus on the same or nearby disk

pages.
create index Place_Name on Place(PlaceName)

All except the HtmID data can be downloaded from the USGS Web site. The SQL Server

2005 data import wizard can be used to import the data (we have already done that in the

sample database.) The HtmID field is computed from the Lat Lon by:
update Place set HtmID = dbo.fHtmLatLon(lat, lon)

USGS Stream Gauges (17,000 instruments)

The USGS has been maintaining records of river flows since 1854. As of 1 Jan 2000,

they had accumulated over 430 thousand years of measurement data. About six thousand

active stations were active, and about four thousand were online. The gauges are

described in detail at http://waterdata.usgs.gov/nwis/rt. A NOAA site shows the data

from a few hundred of the most popular stations in a very convenient way:

http://weather.gov/rivers_tab.php.

Our database has just the stations in the continental United States (see Figure 3). There

are also stations in Guam, Alaska, Hawaii, Puerto Rico, and the Virgin Islands that are

not included in this database. The stream gauge station table is:
create table Station (

 StationName varchar(100) not null, -- USGS Station Name

 State char(2) not null, -- State location

 Lat float not null, -- Latitude in Decimal

Lon float not null, -- Longitude in Decimal

 DrainageArea float not null, -- Drainage Area (km2)

 FirstYear int not null, -- First Year operation

 YearsRecorded int not null, -- Record years (at Y2k)

 IsActive bit not null, -- Was it active at Y2k?

 IsRealTime bit not null, -- On Internet at Y2K?

 StationNumber int not null, -- USGS Station Number

 HtmID bigint not null, -- HTM spatial key

 -- (based on lat/lon)

 primary key(htmID, StationNumber))

As before, the HtmID field is computed from the Lat Lon fields by:
update Station set HtmID = dbo.fHtmLatLon(lat, lon)

There are up to 18 stations at one location, so the primary key must include the station

number to make it unique. However, the HTM key clusters all the nearby stations

together in the B-tree. To speed lookups, we add a station number and a name index:
create index Station_Name on Station(StationName)

create index Station_Number on Station(StationNumber)

The Spatial Index Table

Now we are ready to create our spatial index. We could have added the fields to the base

tables, but to make the stored procedures work for many different tables, we found it

convenient to just mix all the objects together in one spatial index. You could choose

(type,HtmID) as the key to segregate the different types of objects; but, we chose

(HtmID, key) as the key so that nearby objects of all types (cities and steam gagues) are

clustered together. The spatial index is:

create table SpatialIndex (

 HtmID bigint not null , -- HTM spatial key (based on lat/lon)

 Lat float not null , -- Latitude in Decimal

Lon float not null , -- Longitude in Decimal

 x float not null , -- Cartesian coordinates,

 y float not null , -- derived from lat-lon

 z float not null , --,

 Type char(1) not null , -- place (P) or gauge (G)

 ObjID bigint not null , -- object ID in table

 primary key (HtmID, ObjID))

The Cartesian coordinates will be explained later in this topic. For now, it is enough to

say that the function fHtmCenterPoint(HtmID) returns the Cartesian (x,y,z) unit vector

for the centerpoint of that HTM triangle. This is the limit point of the HTM, as the center

is subdivided to infinitely small trixels.

The SpatialIndex table is populated from the Place and Station tables as follows:
insert SpatialIndex

select P.HtmID, Lat, Lon, XYZ.x, XYZ.y, XYZ.z,

 'P' as type, P. HtmID as ObjID

 from Place P cross apply fHtmLatLonToXyz(P.lat, P.lon)XYZ

insert SpatialIndex

 select S.HtmID, Lat, Lon, XYZ.x, XYZ.y, XYZ.z,

 'S' as type, S.StationNumber as ObjID

 from Station S cross apply fHtmLatLonToXyz(S.lat, S.lon) XYZ

To clean up the database, we execute:
DBCC INDEXDEFRAG (spatial , Station, 1)

DBCC INDEXDEFRAG (spatial , Station, Station_Name)

DBCC INDEXDEFRAG (spatial , Station, Station_Number)

DBCC INDEXDEFRAG (spatial , Place, 1)

DBCC INDEXDEFRAG (spatial , Place, Place_Name)

DBCC INDEXDEFRAG (spatial , SpatialIndex, 1)

DBCC SHRINKDATABASE (spatial , 1) -- 1% spare space

Lat = -90 = x y z = 0,0,-1

Lat = 90

x y z = 0,0,1

Lat= 0

Lon = 0

x y z = 1,0,0

Lon = 90

Lat = 0
x y z = 0,1,0

y

x

z

Lat = -90 = x y z = 0,0,-1

Lat = 90

x y z = 0,0,1

Lat= 0

Lon = 0

x y z = 1,0,0

Lon = 90

Lat = 0
x y z = 0,1,0

y

x

z

Figure 4: Cartesian coordinates allow

quick tests for point-in-polygon and

point-near-point. Each lat/lon point has a

corresponding (x,y,z) unit vector.

A Digression: Cartesian Coordinates

You can skip this if you like. It is not needed to use the library. The HTM code heavily

uses a trick to avoid spherical geometry: it moves from the 2D surface of the sphere to

3D. This allows very quick tests for “inside a polygon” and for “nearby a point” queries.

Every lat/lon point on the sphere can be

represented by a unit vector in three-

dimensional space v = (x,y,z). The north and

south poles (90° and -90°) are v = (0,0,1), and

v = (0,0,-1) respectively. Z represents the axis

of rotation, and the XZ plane represenst the

Prime (Greenwich) Meridian ,having

longitude 0° or longitude 180°. The formal

definitions are:

 x = cos(lat)cos(lon)

 y =cos(lat)sin(lon)

 z = sin(lat)

These Cartesian coordiates are used as follows.

Given two points on the unit sphere, p1=(x1,y1,z1)

and p2 = (x2,y2,z2), then their dot product, p1•p2 = x1*x2+y1*y2+z1*z2, is the cosine of the

angle between these two points. It is a distance metric.

If we are looking for points within 45 nautical miles (arc minutes) of point p1, that is at

most 45/60 degrees away from p1. The dot product of such points with p1 will be less

than d=cos(radians(45/60). The “is nearby” test becomes { p2 | p2•p1 < d}, which is a

very quick test.

Cartesian coordinates also allow a

quick test for point-inside-polygon.

All our polygons have great-circle or

small-circle edges. Such edges lie

along a plane intersecting the sphere.

So the edges can be defined by the

unit vector, v, normal to the plane

and by a shift along that vector. For

example, the equator is the vector v

= (0,0,1) and shift zero. Latitude 60°

is defined by vector v = (0,0,1) with

a shift of 0.5, and a 60° circle around Baltimore is defined by vector v = (0.179195, -

0.752798, 0.633392) with a shift of 0.5. A place, p2, is within 60° of Baltimore if p2•v

< 0.5. The same idea lets us decide if a point is inside or outside a HTM triangle by

evaluating three such dot products. That is one of the main reasons the HTM code is so

efficient and fast.

cos θ

θ

cos θ

θ

cos θ

θ

Figure 5: Each great or small circle is the intersection

of a plane with the circle. A point is inside the circle if

its dot product with the plane’s normal vector is less

than cos(θ) where 2θ is the circle’s arc-angle diameter.

We have implemented several helper procedures to convert from LatLon to Cartesian

coordiantes:

fHtmXyz(HtmID) returns the xyz vector of the centerpoint of an HtmID

fHtmLatLonToXyz(lat,lon) returns an xyz vector

fHtmXyzToLatLon(x,y,z) returns a lat,lon vector.

They are used below and documented in the the API spec and Intellisense [Fekete].

The library here defaults to 21-deep HTM keys (the first level divides the sphere into 8

faces and each subsequent level divides the speherical triangle into 4-sub-triangles.) The

table below indicates that a 21-deep trixel is fairly small. The code can be modified to go

31-deep deep before the 64-bit representation runs out of bits.

Table 1: Each HTM level subdivdes the sphere. For each level, this table shows the area in

square degrees, arc minutes, arc seconds, and meters. The Trixel colum shows some charactic

sizes: the default 21-deep trixels is about .3 arc second
2
. The USGS data has about ½ object per

12-deep trixel.

Area objects / trixel HTM

depth deg
2
 arc min

2
 arc sec

2
 earth m

2
 trixel SDSS USGS

sphere 41253 148,510,800 534,638,880,000 5.E+14

0 5157 18,563,850 66,829,860,000 6E+13 3E+8

1 1289 4,640,963 16,707,465,000 2E+13 8E+7

2 322 1,160,241 4,176,866,250 4E+12 2E+7

3 81 290,060 1,044,216,563 1E+12 5E+6

4 20 72,515 261,054,141 2E+11 1E+6 30,000

5 5 18,129 65,263,535 6E+10 3E+5 7,500

6 1 4,532 16,315,884 2E+10 1 deg
2
 73242 1,875

7 3E-1 1,133 4,078,971 4E+9 18311 468

8 8E-2 283 1,019,743 1E+9 4578 117

9 2E-2 71 254,936 2E+8 1144 29

10 5E-3 18 63,734 6E+7 286 7

11 1E-3 4 15,933 2E+7 72 2

12 3E-4 1 3,983 4E+6 1 amin
2
 18 0.5

13 8E-5 3E-1 996 943816 4 0.1

14 2E-5 7E-2 249 235954 1

15 5E-6 2E-2 62 58989 0.3

16 1E-6 4E-3 16 14747 .

17 3E-7 1E-3 4 3687

18 8E-8 3E-4 1 922

19 2E-8 7E-5 2E-1 230 1 asec
2

20 5E-9 2E-5 6E-2 58 1 km
2

21 1E-9 4E-6 2E-2 14

22 3E-10 1E-6 4E-3 4

23 7E-11 3E-7 9E-4 1 1 m
2

24 2E-11 7E-8 2E-4 2E-1

25 5E-12 2E-8 6E-5 6E-2

26 1E-12 4E-9 1E-5 1E-2

Typical Queries
Assuming we can get the functions defined, we are ready to do a few queries.

1. Find Points near point: find towns near a place.

The most common query is to find all places nearby a certain place or point. Consider

the query, “Find all towns within 100 nautical miles of Baltimore Maryland.” The HTM

triangles covering a 100 nautical mile circle (100 arc minutes from) Baltimore are

obtained by
select * -- find a HTM cover 100 NM around Baltimore

from fHtmCoverCircleLatLon(39.3, -76.6, 100)

This returns the Trixel Table at right. That is, the

fHtmCoverCircleLatLon() function returns a set of

HTM triangles that “cover” the circle (in this case, a

single trixel). The HTM keys of all objects inside the

circle are also inside one of these triangles. Now we need to look in all those triangles

and discard the false positives (the careful test of Figure 1). We will order the answer set

by the distance from Baltimore, so that if we want the closest place, we can just select the

TOP 1 WHERE distance > 0 (we want to exclude Baltimore itself from being closest).

declare @lat float, @lon float

select @lat = lat, @lon = lon

from Place

where Place.PlaceName = 'Baltimore'

 and State = 'MD'

select ObjID, dbo.fDistanceLatLon(@lat,@lon, lat, lon) as distance

from SpatialIndex join fHtmCoverCircleLatLon(@lat, @lon, 100)

 On HtmID between HtmIdStart and HtmIdEnd -- coarse test

 and type = 'P'

 and dbo.fDistanceLatLon(@lat,@lon, lat, lon) < 100 -- careful test

 order by distance asc

The cover join returns 2,928 rows (the coarse test); 1,122 of them are within 100 air miles

(the careful test). This gives us 61% false positives – all within 9 milliseconds.

These are such common tasks that there are standard functions for them:
 fHtmNearbyLatLon(type, lat, lon, radius)

 fHtmNearestLatLon(type, lat, lon)

so the query above becomes:
select ObjID, distance

from fHtmNearestLatLon('P', 39.3, -76.61)

The Baltimore circle HTM cover

HtmIdStart HtmIdEnd

14023068221440 14027363188735

2. Find places inside a box.

Applications often want to find all the objects inside a square view-port when displaying

a square map or window. Colorado is almost exactly square with corner points (41N, -

109°3’W) in the NW corner and (37°N-102° 3’E) in the SW corner. The state’s center

point is (39°N, -105°33’E) so one can cover that square with a circle centered at that

point.
declare @radius float

set @radius = dbo.fDistanceLatLon(41,-109.55,37,-102.05)/2

select *

from Station

where StationNumber in (

 select ObjID

 from fHtmCoverCircleLatLon(39, -105.55, @radius) join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 and lat between 37 and 41

 and lon between -109.05 and -102.048

 and type = 'S')

OPTION(FORCE ORDER)

This example returns 1,030 stream gauges in about 46 milliseconds. Five other Colorado

gauges are right on the border that wanders south of 37° by up to 1 nautical mile. These

extra 5 stations appear when the southern latitude is adjusted from 37° to 36.98°
1
. The

cover circle returns 36 triangles. The join with the SpatialIndex table returns 1,975

gauges. That’s 47 percent false positives. The next section shows how to improve on

this by using the HTM regions to specify a polygon cover rather than a cover for a circle.

The FORCE ORDER clause is an embarrassment – if missing, the query runs ten times

longer because the optimizer does a nested-loops join with the spatial index as the outer

table. Perhaps if the tables were larger (millions of rows), the optimizer would pick a

different plan, but we cannot count on that. Paradoxically, the optimizer chose the

correct plan without any hints for all the queries in the previous section.

1
 GIS systems and astronomical applications often want a buffer zone around a region. The HTM code

includes support for buffer zones, and they are much used in real applications, Look at reference [Szalay] to

see how this is done.

3. Find places inside a polygon.

The HTM code lets us specify the area as a circle, a rectangle, a convex hull, or a union

of these regions. In particular, the HTM library allows you to specify a region using the

following linear syntax:

circleSpec := ‘CIRCLE LATLON ’ lat lon radius

 | ‘CIRCLE J2000 ’ ra dec radius

 | ‘CIRCLE [CARTESIAN]’ x y z radius

rectSpec := ‘RECT LATLON ’ { lat lon }2

 | ‘RECT J2000 ’ { ra dec }2

 | ‘RECT [CARTESIAN]’ { x y z }2

hullSpec := ‘CHULL LATLON ’ { lon lat }3+

 | ‘CHULL J2000 ’ { ra dec }3+

 | ‘CHULL [CARTESIAN]’ { x y z }3+

convexSpec := ‘CONVEX ’ [‘CARTESIAN ’] { x y z D }*

areaSpec := rectSpec | circleSpec | hullSpec | convexSpec

regionSpec := ‘REGION ’ {areaSpec}* | areaSpec

To give examples of region specifications:

CIRCLE A point specification and a 1.75 nautical mile (arc minute) radius.
'CIRCLE LATLON 39.3 -76.61 100'

 'CIRCLE CARTESIAN 0.1792 -0.7528 0.6334 100'

RECT Two corner points defining the minimum and maximum of the lat, lon. The

longitude coordinates are interpreted in the wrap-around sense, i.e.,

lonmin=358.0 and lonmax=2.0, is a 4 degree wide range. The latitudes must be

between the North and South Pole. The rectangle edges are constant latitude

and longitude lines, rather than the great-circle edges of CHULL and CONVEX.
 'RECT LATLON 37 -109.55 41 -102.05'

CHULL Three or more point specifications define a spherical convex hull with edges

of the convex hull connecting adjacent points by great circles. The points

must be in a single hemisphere, otherwise an error is returned. The order of

the points is irrelevant.
 'CHULL LATLON 37 -109.55 41 -109.55 41 -102.051 37 -102.05'

CONVEX Any number (including zero) of constraints in the form of a Cartesian vector

(x,y,z) and a fraction of the unit length of the vector.
 'CONVEX -0.17886 -0.63204 -0.75401 0.00000

 -0.97797 0.20865 -0.00015 0.00000

 0.16409 0.57987 0.79801 0.00000

 0.94235 -0.33463 0.00000 0.00000'

REGION A region is the union of zero or more circle, rect, chull, and convex areas.
 ‘REGION CONVEX 0.7 0.7 0.0 –0.5 CIRCLE LATLON 18.2 –22.4 1.75’

Any of these region descriptions can be fed to the fHtmCoverRegion() routine that

returns a trixel table describing a set of trixels (triangular areas) covering that region. The

simpler code for the Colorado query is:
select S.*

from (select ObjID

 from fHtmCoverRegion('RECT LATLON 37 -109.55 41 -102.05')

 loop join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 and lat between 37 and 41

 and lon between -109.05 and -102.048

 and type = 'S') as G

 join Station S on G.objID = S.StationNumber

OPTION(FORCE ORDER)

This unusual query format is required to tell the optimizer exactly the order in which to

perform the join (to make the “force order” option work correctly). It is difficult to

modify the optimizer in this way, but until table-valued functions have statistics, they are

estimated to be very expensive. You have to force them into the inner loop join.

The query returns 1030 stream gauges and has 1,365 candidates from the cover, so there

are 25 percent false positives. Note that the rectangle cover is better than the circular

cover, which had 61% false positives. There is polygon syntax for non-rectangular states,

but this article is about table valued functions, not about the HTM algorithms. You can

see the HTM code in the project, and also in the documentation for the project.

A similar query can be cast as a convex hull as:
select S.*

from (select ObjID

 from fHtmCoverRegion(

 'CHULL LATLON 37 -109.55 41 -109.55 41 -102.05 37 -102.05')

 loop join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 and lat between 37 and 41

 and lon between -109.05 and -102.048

 and type = 'S') as G

 join Station S on G.objID = S.StationNumber

OPTION(FORCE ORDER)

The query returns 1030 stream gauges and has 1,193 candidates from the cover, so there

are 14 percent false positives. The convex hull cover is even better than the equivalent

rectangular cover in this case.

4. Advanced topics – complex regions.

The previous examples gave the syntax for regions and a discussion of point-near-point

and point-in-rectangle searches. Regions can get quite complex. They are Boolean

combinations of convex areas. We do not have the space here to explain regions in

detail, but the HTM library in the accompanying project has the logic to do Boolean

combinations of regions, simplify regions, compute region corner points, compute region

areas, and has many other features. Those ideas are described in [Fekete], [Gray], and

[Szalay].

To give a hint of these ideas, consider the state of Utah. Its boundaries are approximately

defined by the union of two rectangles:
declare @utahRegion varchar(max)

set @utahRegion = 'region '

 + 'rect latlon 37 -114.0475 41 -109.0475 ' -- main part

 + 'rect latlon 41 -114.0475 42 -111.01 ' -- Ogden & Salt Lake.

Now we can find all stream gauges in Utah with the query:
select S.*

from (

 select ObjID

 from fHtmCoverRegion(@utahRegion)

 loop join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 and (((lat between 37 and 41) -- careful test

 and (lon between -114.0475 and -109.04)) -- are we inside

 or ((lat between 41 and 42) -- one of the two

 and (lon between -114.0475 and -111.01)) -- boxes?

)

 and type = 'S') as G

 join Station S on G.objID = S.StationNumber

OPTION(FORCE ORDER)

The cover returns 38 trixels. The join returns 775 stations. The careful test finds 670

stations in Utah, and two Wyoming stations that are right on the border (14 percent false

positives).

Most states require much more complex regions. For example, a region string to

approximate California is:
declare @californiaRegion varchar(max)

set @californiaRegion = 'region '

 + 'rect latlon 39 -125 ' -- nortwest corner

 + '42 -120 ' -- center of Lake Tahoe

 + 'chull latlon 39 -124 ' -- Pt. Arena

 + '39 -120 ' -- Lake tahoe.

 + '35 -114.6 ' -- start Colorado River

 + '34.3 -114.1 ' -- Lake Havasu

 + '32.74 -114.5 ' -- Yuma

 + '32.53 -117.1 ' -- San Diego

 + '33.2 -119.5 ' -- San Nicholas Is

 + '34 -120.5 ' -- San Miguel Is.

 + '34.57 -120.65 ' -- Pt. Arguelo

 + '36.3 -121.9 ' -- Pt. Sur

 + '36.6 -122.0 ' -- Monterey

 + '38 -123.03 ' -- Pt. Rayes

select stationNumber

from fHtmCoverRegion(@californiaRegion)

 loop join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 /* and <careful test> */

 and type = 'S'

 join Station S on objID = S.StationNumber

OPTION(FORCE ORDER)

The cover returns 108 trixels, which cover 2,132 stations. Of these, 1,928 are inside

California, so the false positives are about 5 percent -- but the careful test is nontrivial.

That same query, done for places rather than stations, with the careful test included, looks

like this:
select *

from Place

where HtmID in

 (select distinct SI.objID

 from fHtmCoverRegion(@californiaRegion)

 loop join SpatialIndex SI

 on SI.HtmID between HtmIdStart and HtmIdEnd

 and SI.type = 'P'

 join place P on SI.objID = P.HtmID

 cross join fHtmRegionToTable(@californiaRegion) Poly

 group by SI.objID, Poly.convexID

 having min(SI.x*Poly.x + SI.y*Poly.y + SI.z*Poly.z - Poly.d) >= 0

)

OPTION(FORCE ORDER)

This uses the convex-halfspace representation of California and the techniques described

in [Gray] to quickly test if a point is inside the California convex hull. It returns 885

places, seven of which are on the Arizona border with California (the polygon

approximates California). It runs in 0.249 seconds on a 1GHz processor. If you leave off

the “OPTION(FORCE ORDER)” clause it runs slower, taking 247 seconds.

Because this is such a common requirement, and because the code is so tricky, we added

a procedure fHtmRegionObjects(Region,Type) that returns object IDs from

SpatialIndex. This procedure encapsulates the tricky code above, so the two California

queries become:

select * -- Get all the California River Stations

from Station

where stationNumber in -- that are inside the region

 (select ObjID

 from fHtmRegionObjects(@californiaRegion,'S'))

select * -- Get all the California Cities

from Place

where HtmID in -- that are inside the region

 (select ObjID

 from fHtmRegionObjects(@californiaRegion,'P'))

The Colorado and Utah queries are also simplified by using this routine.

4. Summary

The HTM spatial indexing library presented here is interesting and useful in its own right.

It is a convenient way to index data for point-in-polygon queries on the sphere. But, the

library is also a good example of how SQL Server and other database systems can be

extended by adding a class library that does substantial computation in a language like

C#, C++, Visual Basic, or Java. The ability to implement powerful table-valued

functions and scalar functions and integrate these queries and their persistent data into the

database is a very powerful extension mechanism that starts to deliver on the promise of

Object-Relational databases. This is just a first step. In the next decade, programming

languages and database query languages are likely to get even better data integration.

This will be a boon to application developers.

References
[Gray] “There Goes the Neighborhood: Relational Algebra for Spatial Data Search”, Jim

Gray, Alexander S. Szalay, Gyorgy Fekete, Wil O’Mullane, Maria A. Nieto-

Santisteban, Aniruddha R. Thakar, Gerd Heber, Arnold H. Rots, MSR-TR-2004-

32, April 2004

[Szalay] “Indexing the Sphere with the Hierarchical Triangular Mesh”, Alexander S.

Szalay, Jim Gray, George Fekete, Peter Z. Kunszt, Peter Kukol, Aniruddha R.

Thakar, To appear, included in this project.

[Fekete] “SQL SERVER 2005 HTM Interface Release 4” George Fekete, Jim Gray,

Alexander S. Szalay, May 15, 2005, included in this project.

[Samet1] Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS, Hanan Samet, Addison-Wesley, Reading, MA, 1990.

ISBN0-201-50300-0.

[Samet2] The Design and Analysis of Spatial Data Structures, Hanan Samet, Addison-

Wesley, Reading, MA, 1990. ISBN 0-201-50255-0.

Appendix: The Basic HTM Routines
This section describes the HTM routines. The companion document [Szalay] has a

manual page for each routine, and the routines themselves are annotated to support

Intellisense.

In what follows, lat and lon are in decimal degrees (southern and western latitudes are

negative), and distances are in nautical miles (arc minutes.)

HTM library version: fHtmVersion() returns versionString

The routine returns an nvarchar(max) string giving the HTM library version.

Example use:
 print dbo.fHtmVersion()

Returns something like:
 ‘C# HTM.DLL V.1.0.0 1 August 2005 ’

Generating HTM keys: fHtmLatLon (lat, lon) returns HtmID

The routine returns the 21-deep HTM ID of that LatLon point.

Example use:
 update Place set HtmID = dbo.fHtmLatLon(Lat,Lon)

There are also fHtmXyz() and fHtmEq() functions for astronomers.

LatLon to XYZ: fHtmLatLonToXyz (lat,lon) returns Point (x, y, z)

The routine returns the Cartesian coordinates of that Lat Lon point.

Example use (this is the identity function):
Select LatLon.lat, LatLon.lon-360

from fHtmLatLonToXyz(37.4,-122.4) as XYZ cross apply

 fHtmXyzToLatLon(XYZ.x, XYZ.y, XYZ.z) as LatLon

There is also an fHtmEqToXyz() functions for astronomers.

XYZ to LatLon: fHtmXyzToLatLon (x,y,z) returns Point (lat, lon)

The routine returns the Cartesian coordinates of that Lat Lon point.

Example use (this is the identity function):
Select LatLon.lat, LatLon.lon-360

from fHtmLatLonToXyz(37.4,-122.4) as XYZ cross apply

 fHtmXyzToLatLon(XYZ.x, XYZ.y, XYZ.z) as LatLon

There is also an fHtmXyzToEq() functions for astronomers.

Viewing HTM keys: fHtmToString (HtmID) returns HtmString

Given an HtmID, the routine returns a nvarchar(32) in the form [N|S]t1t2t3…tn where each

triangle number ti is in {0,1,2,3} describing the HTM trixel at that depth of the triangular

mesh. .

Example use:
print 'SQL Server development is at: ' +

 dbo.fHtmToString(dbo.fHtmLatLon(47.646,-122.123))

which returns: ‘N132130231002222332302’.

There are also fHtmXyz() and fHtmEq() functions for astronomers.

HTM trixel Centerpoint: fHtmToCenterpoint(HtmId) returns Point (x, y, z)

Returns the Cartesian center point of the HTM trixel specified by the HtmID.

Example use:
select * from fHtmToCenterPoint(dbo.fHtmLatLon(47.646,-122.123))

HTM trixel corner points: fHtmToCornerpoints(HtmId) returns Point (x, y, z)

Returns the three Cartesian corner points of the HTM trixel specified by the HtmID.

Example use:
select * from fHtmToCornerPoints(dbo.fHtmLatLon(47.646,-122.123))

Computing distances: fDistanceLatLon(lat1, lon1, lat2, lon2) returns distance

Computes the distance, in nautical miles (arc minutes) between two points.

Example use:
declare @lat float, @lon float

select @lat = lat, @lon = lon

from Place

where PlaceName = 'Baltimore' and State = 'MD'

select PlaceName,

 dbo.fDistanceLatLon(@lat,@lon, lat, lon) as distance

from Place

There are also fDistanceXyz() and fDistanceEq() functions for astronomers.

The following routines return a table which serves as a spatial index. The returned spatial

index table has the data definition:
SpatialIndexTable table (

 HtmID bigint not null , -- HTM spatial key (based on lat/lon)

 Lat float not null , -- Latitude in Decimal

Lon float not null , -- Longitude in Decimal

 x float not null , -- Cartesian coordinates,

 y float not null , -- derived from lat-lon

 z float not null , --,

 Type char(1) not null , -- place (P) or gauge (G)

 ObjID bigint not null , -- object ID in table

 distance float not null , -- distance in arc minutes to object

 primary key (HtmID, ObjID))

Finding nearby objects: fHtmNearbyLatLon(type, lat, lon, radius) returns
SpatialIndexTable

Returns a list of objects within the radius distance of the given type and their distance

from the given point. The list is sorted by nearest object.

Example use:
 select distance, Place.*

 from fHtmNearbyLatLon('P', 39.3, -76.6, 10) I join Place

 on I.objID = Place.HtmID

 order by distance

There are also fHtmGetNearbyEq () and fHtmGetNearbyXYZ() functions for

astronomers.

Finding the nearest object: fHtmNearestLatLon(type, lat, lon) returns SpatialIndexTable

Returns a list containing the nearest object of the given type to that point.

Example use:
 select distance, Place.*

 from fHtmNearestLatLon('P', 39.3, -76.6) I join Place

 on I.objID = Place.HtmID

There are also fHtmGetNearestEq () and fHtmGetNearestXYZ() functions for

astronomers.

The following routines return a table describing the HtmIdStart and HtmIdEnd of a set of

trixels (HTM triangles) covering the area of interest. The table definition is:
TrixelTable table (

 HtmIdStart bigint not null , -- min HtmID in trixel

 HtmIdEnd bigint not null -- max HtmID in trixel

)

Circular region HTM cover: fHtmCoverCircleLatLon(lat, lon, radius) returns trixelTable

Returns a trixel table covering the designated circle.

Example use:
declare @answer nvarchar(max)

declare @lat float, @lon float

select @lat = lat, @lon = lon

from Place

where Place.PlaceName = 'Baltimore'

 and State = 'MD'

set @answer = ' using fHtmCoverCircleLatLon() it finds: '

select @answer = @answer

 + cast(P.placeName as varchar(max)) + ', '

 + str(dbo.fDistanceLatLon(@lat,@lon, I.lat, I.lon) ,4,2)

 + ' arcmintes distant.'

from SpatialIndex I join fHtmCoverCircleLatLon(@lat, @lon, 5)

 On HtmID between HtmIdStart and HtmIdEnd -- coarse test

 and type = 'P' -- it is a place

 and dbo.fDistanceLatLon(@lat,@lon, lat, lon)

 between 0.1 and 5 -- careful test

 join Place P on I.objID = P.HtmID

 order by dbo.fDistanceLatLon(@lat,@lon, I.lat, I.lon) asc

print 'The city within 5 arcminutes of Baltimore is: '

 + 'Lansdowne-Baltimore Highlands, 4.37 arcminutes away'

There are also fHtmCoverCircleEq() for astronomers.

General region specification to HTM cover: fHtmCoverRegion(region) returns trixelTable

Returns a trixel table covering the designated region (regions are described earlier in this

topic).
select S.*

from (select ObjID

 from fHtmCoverRegion('RECT LATLON 37 -109.55 41 -102.05')

 loop join SpatialIndex

 on HtmID between HtmIdStart and HtmIdEnd

 and lat between 37 and 41

 and lon between -109.05 and -102.048

 and type = 'S') as G

 join Station S on G.objID = S.StationNumber

OPTION(FORCE ORDER)

General region simplification: fHtmRegionToNormalFormString(region) returns
regionString

Returns a string of the form REGION {CONVEX {x y z d}* }* where redundant

halfspaces have been removed from each convex; the convex has been simplified as

described in [Fekete]
print dbo.fHtmToNormalForm('RECT LATLON 37 -109.55 41 -102.05')

The following routine returns a table describing the HtmIdStart and HtmIdEnd of a set of

trixels (HTM triangles) covering the area of interest. The table definition is:
RegionTable (convexID bigint not null , -- ID of the convex, 0,1,…

 halfSpaceID bigint not null -- ID of the halfspace

 -- within convex, 0,1,2,

 x float not null -- Cartesian coordinates of

 y float not null -- unit-normal-vector of

 z float not null -- halfspace plane

 d float not null -- displacement of halfspace

) -- along unit vector [-1..1]

Cast RegionString as Table: fHtmRegionToTable(region) returns RegionTable

Returns a table describing the region as a union of convexes, where each convex is the

intersection of the x,y,z,d halfspaces. The convexes have been simplified as described in

[Fekete]. Section 4 of this article describes the use of this function.
select *

from dbo.fHtmToNormalForm('RECT LATLON 37 -109.55 41 -102.05')

Find Points Inside a Region: fHtmRegionObjects(region, type) returns ObjectTable

Returns a table containing the objectIDs of objects in SpatialIndex that have the

designated type and are inside the region.
select * -- find Colorado places.

from Places join

where HtmID in

 select objID

 from dbo. fHtmRegionObjects('RECT LATLON 37 -109.55 41 -102.05',‘P’)

General region diagnostic: fHtmRegionError(region) returns message

Returns “OK” if region definition is valid; otherwise, returns a diagnostic saying what is

wrong with the region definition followed by a syntax definition of regions.
print dbo.fHtmRegionError ('RECT LATLON 37 -109.55 41 -102.05')

SQL SERVER 2005
HTM Interface Release 4

Alex Szalay, Gyorgy Fekete, Jim Gray, August 2005

This document describes the SQL Server 2005 interfaces to the C# HTM functions. It also explains how to

install and modify those procedures. A tutorial on the Hierarchical Triangular Mesh (HTM) is at

http://www.sdss.jhu.edu/htm/.

Table of Contents
HTM Concepts Reviewed .. 2
Find Version of Installed HTM Code... 3

fHtmVersion()... 3

Geometric Conversion Functions ... 3

fHtmXyzToLatLon(x, y, z) ... 3

fHtmXyzToEq(x, y, z) .. 3

fHtmLatLonToXyz(lat, lon).. 3

fHtmEqToXyz(ra, dec) ... 4

Compute HtmID for a point.. 4

fHtmLatLon (lat, lon).. 4

fHtmEq(ra, dec) .. 4

fHtmXyz(x,y,z) ... 5

HTM Triangle Functions .. 6

fHtmToCenterPoint (HtmID).. 6

fHtmToCornerPoints (HtmID).. 6

Distances Between Points... 6

fDistanceLatLon(lat1, lon1, lat2, lon2).. 6

fDistanceEq(ra1, dec1, ra2, dec2) .. 6

fDistanceXyz(x1,y1,z1, x2,y2,z2).. 7

REGIONS... 8

Region Specifications ... 8

Examples of Region Specifications .. 8

fHtmRegionToNormalFormString (regionSpec) .. 10

fHtmRegionToTable (regionSpec).. 10

fHtmRegionObjects (regionSpec, type) .. 10

fHtmRegionError(regionSpec).. 11

HTM Covers: Compute HtmID Ranges For a Region.. 12

fHtmCoverRegion (regionSpec) ... 12

fHtmCoverCircleLatLon(lat, lon, radiusArcMin) ... 13

fHtmCoverCircleEq(ra, dec, radiusArcMin)... 13

fHtmCoverCircleXyz(x, y, z, radiusArcMin) ... 13

Installing the HTM Code.. 14

Compiling, Modifying, and Debugging the HTM Code .. 14

Table of HTM Depths And Approximate Areas .. 15

HTM Concepts Reviewed

The Hierarchical Triangular Mesh is a multilevel, recursive decomposition of the sphere. At the top, depth

1, there are eight spherical triangles, four each for the Northern and Southern hemispheres. Four of these

triangles share a vertex at the pole. The sides opposite the pole form the equator. You can imagine these by

orienting a regular octahedron so that two of its vertices are at the poles, and the other four are equally

spaced on the equator. The spherical polygons are the projection of the edges of the octahedron onto the

circumscribing sphere. There are eight unique integers that represent these triangles.

Triangles in the mesh scheme are called trixels. Each trixel can be split into four smaller trixels by

introducing new vertices at the midpoints of each side, and adding a great circle arc segment to connect the

new vertices with the existing one. Trixel division repeats recursively and indefinitely to produce smaller

and smaller trixels. Each trixel has a level number that corresponds to the number of times an original

(octant) triangle had to be split. Points in this decomposition are represented by a leading 1 bit and then the

level 0 trixel number [0..7] and then the successive sub-trixel numbers [0..3]. This gives each trixel and its

center-point a unique 64 bit identifier, called an HTM ID (HtmID) that represents a particular trixel in the

HTM hierarchy. The smallest valid HtmID is 8 – being the level 0 HtmID of the triangle 0. HtmIDs are

numbered from level 0. The term depth tells how many levels are involved: depth = level+1.

Though the division process can continue indefinitely, the 64-bit representation runs out of bits at depth 31.

Depth 25 is good enough for most applications—about 0.6 meter on the surface of the Earth or 0.02 arc

seconds. The code here defaults to depth 21 (0.3 arc seconds). Note that this numbering scheme is not a

complete cover on the positive integers, and not all bit patterns form valid HtmID numbers.

Some of the functions described here return a region, or area, on the sphere. The return value of these

functions are referred to as trixel tables, which are tables of HtmID ranges for trixels that overlap or cover

the region. The structure of these tables is quite simple: they are rows of two 64-bit numbers (BIGINTs)

[Htm_start, Htm_stop] that are the starting and ending values of HtmIDs of trixels in the range. The

HtmIDs in this context are always for trixels at depth 21.

The library supports three coordinate systems:

1. LatLon is the Greenwich Meridian spherical coordinate system of latitude and longitude (lat,

lon) used by geographers.

2. J2000 or Equatorial is the celestial right ascension and declination (ra, dec) spherical

coordinate system used by astronomers (the vector pointing at the center of the Milky Way

defines the intersection of the J2000 prime meridian with the J2000 equator).

3. Cartesian is a the unit vector representation of a sphere; a point on the sphere (either LatLon

or J2000) has a corresponding unit vector. The North Pole is (0,0,1) and the prime meridian

intersection with the equator is (1,0,0).

This library is installed in the sample Spatial database, which uses the LatLon coordinates. Many of the

examples are geared to that. The astronomy examples are drawn from tables at http://skyserver.sdss.org/.

Find Version of Installed HTM Code

fHtmVersion()
Returns a string describing version of HTM code. A typical description has a version and timestamp:

“C# HTM.DLL V.1.0.0; 2005 July 30”.

Returns:

version varchar(max) version string of installed code

Example use:
 declare @version varchar(max)

 select @version = dbo.fHtmVersion()

 print 'Installed version is: ' + @version

Produces:
Installed version is: C# HTM.DLL V.1.0.0; 2005 July 30

Geometric Conversion Functions

fHtmXyzToLatLon(x, y, z)
Given the Cartesian coordinates (x, y, z), returns a table containing the corresponding LatLon coordinates.

Parameters:

x: float not null x

y: float not null y

z: float not null z

Returns:

VertexTable(lat float, lon float) The lat/lon equivalent of the given point.

Example use:
 Select * from dbo.fHtmXyzToLatLon(1.0, 0.0, 0.0)

Errors: Empty table is returned if (x, y, z) is too close to (0, 0, 0) (within 1e9 of zero).

fHtmXyzToEq(x, y, z)
Given the Cartesian coordinates (x, y, z), returns a table containing the corresponding J2000 (ra, dec)

coordinates.

Parameters:

x: float not null x

y: float not null y

z: float not null z

Returns:

VertexTable(ra float, dec float) The RA/DEC equivalent of the given point.

Example use:
 Select * from dbo.fHtmXyzToEq(1.0, 0.0, 0.0)

Errors: Empty table is returned, if (x, y, z) is too close to (0, 0, 0) (within 1e9 of zero).

fHtmLatLonToXyz(lat, lon)
Given a LatLon point, returns a table containing the corresponding Cartesian coordinates (x, y, z).

Parameters:

lat: float not null latitude

lon: float not null longitude

Returns:
VertexTable(x float, y float, z float)

Example use:
 Select * from dbo.fHtmLatLonToXyz(0.0, 0.0)

Errors: None. Extreme latitude values are truncated to [-90 … 90]

fHtmEqToXyz(ra, dec)
Given a J2000 (equatorial) point returns a table containing the corresponding Cartesian coordinate (x, y, z).

Parameters:

ra: float not null right ascension

dec: float not null declination

Returns:
VertexTable(x float, y float, z float)

Example use:
 Select * from dbo.fHtmEqToXyz(0.0, 0.0)

Errors: None. Extreme declination values are truncated to [-90 … 90]

Compute HtmID for a point

fHtmLatLon (lat, lon)
Given a LatLon point, returns the 21-deep HtmID of that point on the earth.

Parameters:

lat: float not null latitude

 It is converted to the range [-90 ... 90]

lon: float not null longitude

Returns:

htmID bigint not null the 21-deep HtmID of that (ra,dec) point.

Example use:
 Declare @htmID bigint

 Select @htmID =dbo.fHtmLatLon(lat,lon)

 From Place

 where placeName = ‘Baltimore’ and state = ‘MD’

Errors: None.

fHtmEq(ra, dec)
Given a J2000 (equatorial) point, returns the 21-deep HtmID of that point on the celestial sphere.

Parameters:

Ra: float not null right ascension in degrees.

It is converted to a [0 … 360) range

Dec: float not null declination in degrees.

It is converted to the range [-90 ... 90]

Returns:

htmID bigint not null the 21-deep HtmID of that (ra,dec) point.

Example use:
 Declare @htmID bigint

 Select @htmID =dbo.fHtmEq(ra,dec)

 From Stars

 Where id = 42

Errors: None.

fHtmXyz(x,y,z)
Given a Cartesian point, returns the 21-deep HtmID of that point on the sphere.

Parameters:

x: float not null vector to galaxy center or prime meridian intersection with

equator

y: float not null vector normal to x in galactic plane or normal to prime

meridian

z: float not null vector normal to galactic plane or equator

xyz will be normalized to 1. ((0, 0, 0) is converted to RA = 0, DEC = 0, i.e. (1, 0, 0)).

Returns:

htmID bigint not null the 21-deep HtmID of that (x,y,z) point.

Example use:
 Declare @htmID bigint

 Select @htmID = dbo.fHtmXyz(1,0,0)

Errors: None.

HTM Triangle Functions

fHtmToCenterPoint (HtmID)
Given an HtmID, return its Cartesian x,y,z centerpoint as a vertex table.

Parameters:

HtmID: bigint not null HtmID of a triangle.

Returns:

VertexTable(x float, y float, z float).

Example use:
 Select x,y,z from fHtmToCenterPoint(dbo.fHtmLatLon(38,115))

Errors: None.

fHtmToCornerPoints (HtmID)
Given an HtmID, returns the three Cartesian x,y,z corner points of the triangle as a vertex table. If the

HtmID has less shallow depth, this will be a large triangle. For example, HtmID = 8 returns the corner

points of the entire octant.

Parameters:

HtmID: bigint not null HtmID of a triangle.

Returns:

VertexTable(x float, y float, z float).

Example use:
 Select x,y,z from fHtmToCornerPoints(dbo.fHtmLatLon(38,115))

Errors: None.

Distances Between Points

fDistanceLatLon(lat1, lon1, lat2, lon2)
Given two LatLon points, fDistanceLatLon() returns distance between them in arc minutes (nautical miles).

Parameters:

lat1: float not null latitude in degrees truncated to [-90, 90].

lon1: float not null longitude in degrees truncated to [0,360).

lat2: float not null latitude in degrees truncated to [-90, 90].

lon2: float not null longitude in degrees truncated to [0,360).

Returns:

Float not null distance in arc minutes

Example use:
 If (60 != dbo.fDistanceLatLon(0, 0, 1, 0)) print 'error'

Errors: None.

fDistanceEq(ra1, dec1, ra2, dec2)
Given two J2000 (equatorial) points, fDistanceEq() returns distance between them in arc minutes.

Parameters:

Ra1: float not null right ascension in degrees truncated to [0,360].

Dec1: float not null declination in degrees truncated to [-90, 90].

Ra2: float not null right ascension in degrees truncated to [0,360].

Dec2: float not null declination in degrees truncated to [-90, 90]. .

Returns:

Float not null distance in arc minutes

Example use:
 If (60 != dbo.fDistanceEq(0, 0, 1, 0)) print 'error'

Errors: None.

fDistanceXyz(x1,y1,z1, x2,y2,z2)
Given two Cartesian points, fHtmXyz returns distance between them in arc minutes.

Parameters:

x1, x2: float not null vector to galaxy center or prime meridian intersection with

equator.

y1, y2: float not null vector normal to x in galactic plane or prime meridian

z1, z2: float not null vector normal to galactic plane or to north pole.

(x, y, z) will be normalized. (0,0,0) will be converted to (0, 0, 1)

Returns:

Float not null distance in arc minutes

Example use:
 If (5400 != dbo.fDistanceXyz(0, 1, 0, 0, 0, 1)) print 'error'

Errors: None.

REGIONS
A region is an area of interest on the celestial sphere. You can specify a region as a polygon, a convex hull

of a polygon, a rectangle, or a circle. Inside the kernel of the HTM engine, all regions are represented as a

union of convexes, which are, in turn, intersections of halfspaces. For more information, see the article

(Htm.doc) in the Geospatial project.

Syntactically, a region is a list of convexes. Furthermore, a convex is a list of halfspaces, and a halfspace is

a 4-tuple {x, y, z, D}.

Region Specifications

This is the syntax for region (cover) specifications:

circleSpec := 'CIRCLE J2000' ra dec rad

 | 'CIRCLE LATLON' lat lon rad

 | 'CIRCLE [CARTESIAN]' x y z rad

rectSpec := 'RECT J2000' {ra dec}2

 | 'RECT LATLON' {lat lon}2

 | 'RECT [CARTESIAN]' {x y z }2

polySpec := 'POLY J2000' {ra dec}3+

 | 'POLY LATLON' {lat lon}3+

 | 'POLY [CARTESIAN]' {x y z }3+

hullSpec := 'CHULL J2000' {ra dec}3+

 | 'CHULL LATLON' {lat lon}3+

 | 'CHULL [CARTESIAN]' {x y z }3+

convexSpec := 'CONVEX J2000' {ra dec D}*

 | 'CONVEX LATLON' {lat lon D}*

 | 'CONVEX [CARTESIAN]’ {x y z D}*

areaSpec := circleSpec

 | rectSpec

 | polySpec

 | hullSpec

 | convexSpec

regionSpec := 'REGION' {areaSpec}*

 | areaSpec

Examples of Region Specifications

REGION A number of convexes (including zero)
 REGION CONVEX 1 0 0 0.7 0 1 0 0.7

REGION CONVEX J2000 0 0 0.99 5 3 0.99

REGION CONVEX J2000 0 0 0.99 CONVEX J2000 5 3 0.99

 REGION CONVEX LATLON 90 0 0

 REGION

CONVEX Any number of (including zero) constraints

 CONVEX CARTESIAN 0.7 0.7 0.0 -0.5 0.7 –0.7 0.0 –0.5

CONVEX

CIRCLE A Point specification, like J2000 ra,dec, and an arc minutes radius. Angles are in

degrees. Represented as a CONVEX consisting of a single constraint.

 CIRCLE J2000 182.25 –22.432 1.75

 CIRCLE CARTESIAN 0.7 0.0 0.7 1.75

RECT Followed by two angular point specs, defining the minimum and maximum of the ra,dec. The

latmin must be smaller than latmax. In a similar case for the longitudes, they are interpreted in

the wrap-around sense, i.e., ramin=358.0 and ramax=2.0, means a four-degree wide range.
 RECT J2000 182.25 –1.432 184.75 1.44

POLY Followed by an optional single coordinate specification and a number of corresponding point

specifications (two or three numbers each). The spherical polygon will be created by

connecting the points by great circle segments. Because it is restricted to a convex polygon,

the order does not matter, but must be consistent. If there is a bowtie pattern in the points, or

if the polygon is not convex, an error will result.
 POLY J2000 -109.55 41 -102.05 41 -102.05 37 -109.55 37

CHULL Followed by an optional single coordinate specification, and a number of corresponding point

specifications (two or three numbers each). The spherical convex hull will be created by

connecting the adjacent points by great circles. At least three points are needed. The points

should all be within a single hemisphere, otherwise an error is returned. The order of the

points is irrelevant.
 CHULL J2000 180. -1. 190. -2. 185. 3. 182. 4. 185. 5.

fHtmRegionToNormalFormString (regionSpec)
Given a string describing a region, fHtmRegionToNormalFormString () returns the normalized

representation of that region as a union of non-empty convex hulls, with redundant constraints (halfspaces)

discarded from each convex.

Parameters:

regionSpec: nvarchar(max) not null see syntax for region specifications above.

Returns:

nvarchar(max) not null returns the normalized region spec of the form

REGION {CONVEX {x y z d}* }*

(or null if error).

Example use:
 Declare @regionSpec nvarchar(max)

 Select @regionSpec = dbo.fHtmToNormalForm('CIRCLE J2000 195 0 1')

Errors:

 regionSpec syntax error, returns empty string, see fHtmRegionError()

fHtmRegionToTable (regionSpec)
Given a string describing a region, fHtmRegionToTable() returns the tabular representation of the region as

a union of non-empty convex hulls, with redundant constraints (halfspaces) discarded from each convex.

The tabular representation has the schema described below:

Parameters:

regionSpec: nvarchar(max) not null see syntax for region specifications above.

Returns:
RegionTable (

 convexID bigint not null , -- ID of the convex, 0,1,…

 halfSpaceID bigint not null -- ID of the halfspace

 -- within convex, 0,1,2,

 x float not null -- Cartesian coordinates of

 y float not null -- unit-normal-vector of

 z float not null -- halfspace plane

 d float not null -- displacement of halfspace

 -- along unit vector [-1..1]

)

 Or empty table if error.

Example use:

 select *

from fHtmToNormalForm('CIRCLE J2000 195 0 1')

Errors:

 regionSpec syntax error, returns empty table., see fHtmRegionError()

fHtmRegionObjects (regionSpec, type)
This routine is particular to the SQL Server 2005 sample spatial database and library which has Place,

Station, and SpatialIndex tables, and has these functions installed. Given a string describing a region and a

type “P” for place or “S” for station, fHtmRegionObjects() returns the tabular list of all the SpatialIndex

objects of that type that are inside that region:

Parameters:

regionSpec: nvarchar(max) not null see syntax for region specifications above.

Type: char(1): “P” for Places in the Place table, “S” for Stations in the Station table

Returns:
ObjectTable (

 objID bigint not null primary key , -- ID of the object,…

 -- if type is “S”, it is the Station.stationNumber

-- if type is “T”, it is the Place.HtmID

 Or empty table if error.

Example use:
select * -- find Colorado places.

from Place

where HtmID in

 (select objID

 from fHtmRegionObjects('RECT LATLON 37 -109.55 41 -102.05','P'))

Errors:

 regionSpec syntax error, returns empty table., see fHtmRegionError()

fHtmRegionError(regionSpec)
Returns “OK” if a valid regionSpec, else returns syntax error message.

Parameters:

regionSpec: nvarchar(max) not null see syntax for region specifications above.

Returns:

nvarchar(max) not null diagnostic message

Example use:
 Declare @diagnostic nvarchar(max)

 Select @ diagnostic =

dbo.fHtmRegionError('CIRCLE J2000 195 0')

Errors: None.

HTM Covers: Compute HtmID Ranges for a Region
This suite of routines, given a region specification, returns a table of trixels. The trixels cover the specified

region. The trixels are described by a start-stop HTM pair. All points within the trixel are between the start-

stop of the 21-deep HTM pair; in fact, they are in the closed interval [Htm_Start, Htm_Stop].

The resulting table has the definition:

 TrixelTable(Htm_Start bigint, Htm_Stop bigint)

Simple regions can be described as standard geometric shapes (circle, rectangle) giving the parameters. But

typically, regions are described by using the linear syntax described above. Because the enumeration of

HtmIDs tends to form locally connected intervals, the interface unifies these contiguous triangles as one

large trixel.

fHtmCoverRegion (regionSpec)
Given a string describing a region, fHtmRegionCover () returns the trixel table covering that region.

Parameters:

regionSpec: nvarchar(max) not null see syntax for region specifications above.

Returns:
TrixelTable(Htm_Start bigint, Htm_Stop bigint)

Example use:

 Select * from fHtmCoverRegion('CIRCLE J2000 195 0 1')

Errors:

 In case of error, returns the empty table. Use fHtmRegionError(RegionString) to get diagnostic.

fHtmCoverCircleLatLon(lat, lon, radiusArcMin)
Given a (latitude, longitude) point and a radius in arc minutes, fHtmCoverCircleLatLon () returns the trixel

table covering that circle.

Parameters:

Lat: float not null latitude in degrees.

It is converted to the range [-90 ... 90]

Lon: float not null longitude in degrees.

radiusArcMin: float not null circle’s radius in

arc minutes.

Radius should be positive and less than 180 degrees, i.e., 10800 minutes of arc.

Returns:
TrixelTable(Htm_Start bigint, Htm_Stop bigint)

Example use:
 Select * from fHtmCoverCircleLatLon(195,0,1)

Errors: None:

fHtmCoverCircleEq(ra, dec, radiusArcMin)
Given a J2000 ra, dec point and a radius in arc minutes, fHtmCoverCircleEq () returns the trixel table

covering that circle.

Parameters:

Ra: float not null right ascension in degrees.

It is converted to a [0 … 360)

Dec: float not null declination in degrees.

It is converted to the range [-90 ... 90]

radiusArcMin: float not null circle’s radius in arcminutes.

Radius should be positive and less than 180 degrees, i.e., 10800 minutes of arc.

Returns:
TrixelTable(Htm_Start bigint, Htm_Stop bigint)

Example use:
 Select * from fHtmCoverCircleEq(195,0,1)

Errors: None:

fHtmCoverCircleXyz(x, y, z, radiusArcMin)
Given a string describing a region, fHtmCoverCircleXyz() returns the trixel table covering that circle.

Parameters:

x: float not null vector to galaxy center

y: float not null vector normal to x in galactic plane

z: float not null vector normal to galactic plane

radiusArcMin: float not null circle’s radius in arc minutes.

xyz will be normalized to 1. (0,0,0) is converted to the North Pole: (0,0,1).

Radius is range limited to [0…10800]

Returns:
TrixelTable(Htm_Start bigint, Htm_Stop bigint)

Example use:
 Select * from fHtmCoverCircleXyz(1,0,0,1)

Errors: None:

Installing the HTM Code

1. Install the SQL Server 2005 samples by following the instructions in the Installing Samples topic

in SQL Server Books Online. By default the sample will be installed in drive:\Program

Files\Microsoft SQL Server\90\Samples\Engine\Programmability\CLR\Spatial\, where drive is the

system drive.

2. Compile the provided solution by using Visual Studio 2005 or the Microsoft .NET Framwork

SDK 2.0 using a command similar to the following in a .NET Framework SDK command prompt:

msbuild /property:configuration=debug CS\Spatial.sln

3. Attach the Spatial database in the data directory by using SQL Server Management Studio or by

executing the Scripts\AttachSpatialDatabase.bat command file in a command

prompt window if you have not done so already.

4. Execute the spHtmCsharp.sql script in SQL Server Management Studio, or by executing a

command similar to the following in a command prompt window:

sqlcmd -S "(local)" -d Spatial -E -i "C:\Program Files\Microsoft

SQL

Server\90\Samples\Engine\Programmability\CLR\Spatial\Scripts\spHt

mCsharp.sql"

This script requires SQL Server 2005 be the default database server on the local system. This command is

part of the contents of Scripts\BuildSpatialDatabase.bat. It does not work with SQL Server 2000

or earlier versions. The spHtmCsharp.sql script enables the common language runtime (CLR), drops

any existing HTM assembly and replaces it with the current assembly

(CS\Spatial\bin\debug\Spatial.dll), and then defines all the HTM functions in that assembly.

Compiling, Modifying, and Debugging the HTM Code
The C:\HtmCsharp\htm.sln is a C# database project. You should be able to use the “deploy” and the

“debug” features and breakpoints will just work.

Table of HTM Depths And Approximate Areas

The library here defaults to 21-deep HTM keys (the first level divides the sphere into

eight faces, and each subsequent level divides the speherical triangle into four sub-

triangles.) The table below indicates that a 21-deep trixel is fairly small. The code can be

modified to go 31-deep deep before the 64-bit representation runs out of bits, but the

floating point representation and transcendental functions lose precision near level 25 .

Table 1: Each HTM level subdivdies the sphere. For each level, this table shows the area

in square degrees, arc minutes, arc seconds, and meters. The Trixel colum shows some

characteristic sizes: the default 21-deep trixels is about .3 arc second
2
. The USGS data has

about ½ object per 12-deep trixel.

Area Objects/Trixel HTM

depth degees
2
 minute

2
 area sec

2
 earth meters

2
 trixel SDSS USGS

sphere 41253 148,510,800 534,638,880,000 5.E+14

0 5157 18,563,850 66,829,860,000 6E+13 3E+8

1 1289 4,640,963 16,707,465,000 2E+13 8E+7

2 322 1,160,241 4,176,866,250 4E+12 2E+7

3 81 290,060 1,044,216,563 1E+12 5E+6

4 20 72,515 261,054,141 2E+11 1E+6 30,000

5 5 18,129 65,263,535 6E+10 3E+5 7,500

6 1 4,532 16,315,884 2E+10 1 deg
2
 73242 1,875

7 3E-1 1,133 4,078,971 4E+9 18311 468

8 8E-2 283 1,019,743 1E+9 4578 117

9 2E-2 71 254,936 2E+8 1144 29

10 5E-3 18 63,734 6E+7 286 7

11 1E-3 4 15,933 2E+7 72 2

12 3E-4 1 3,983 4E+6 1 amin
2
 18 0.5

13 8E-5 3E-1 996 943816 4 0.1

14 2E-5 7E-2 249 235954 1

15 5E-6 2E-2 62 58989 0.3

16 1E-6 4E-3 16 14747 .

17 3E-7 1E-3 4 3687

18 8E-8 3E-4 1 922

19 2E-8 7E-5 2E-1 230 1 asec
2

20 5E-9 2E-5 6E-2 58 1 km
2

21 1E-9 4E-6 2E-2 14

22 3E-10 1E-6 4E-3 4

23 7E-11 3E-7 9E-4 1 1 m
2

24 2E-11 7E-8 2E-4 2E-1

25 5E-12 2E-8 6E-5 6E-2

26 1E-12 4E-9 1E-5 1E-2

