
The Revolution in Database Architecture

Jim Gray

Microsoft Research

 March 2004

Technical Report

MSR-TR-2004-31

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

The Revolution in Database Architecture
Jim Gray
Microsoft

455 Market St. #1650
San Francisco, CA, 94105 USA

http://research.microsoft.com/~Gray
Gray@Microsoft.com

ABSTRACT
Database system architectures are undergoing revolutionary
changes. Most importantly, algorithms and data are being unified
by integrating programming languages with the database system.
This gives an extensible object-relational system where non-
procedural relational operators manipulate object sets. Coupled
with this, each DBMS is now a web service. This has huge impli-
cations for how we structure applications. DBMSs are now object
containers. Queues are the first objects to be added. These queues
are the basis for transaction processing and workflow applica-
tions. Future workflow systems are likely to be built on this core.
Data cubes and online analytic processing are now baked into
most DBMSs. Beyond that, DBMSs have a framework for data
mining and machine learning algorithms. Decision trees, Bayes
nets, clustering, and time series analysis are built in; new algo-
rithms can be added. There is a rebirth of column stores for sparse
tables and to optimize bandwidth. Text, temporal, and spatial
data access methods, along with their probabilistic reasoning have
been added to database systems. Allowing approximate and prob-
abilistic answers is essential for many applications. Many believe
that XML and xQuery will be the main data structure and access
pattern. Database systems must accommodate that perspective.
External data increasingly arrives as streams to be compared to
historical data; so stream-processing operators are being added to
the DBMS. Publish-subscribe systems invert the data-query ra-
tios; incoming data is compared against millions of queries rather
than queries searching millions of records. Meanwhile, disk and
memory capacities are growing much faster than their bandwidth
and latency, so the database systems increasingly use huge main
memories and sequential disk access. These changes mandate a
much more dynamic query optimization strategy – one that adapts
to current conditions and selectivities rather than having a static
plan. Intelligence is moving to the periphery of the network.
Each disk and each sensor will be a competent database machine.
Relational algebra is a convenient way to program these systems.
Database systems are now expected to be self-managing, self-
healing, and always-up. We researchers and developers have our
work cut out for us in delivering all these features.

1. INTRODUCTION
This is an extended abstract for a SIGMOD 2004 keynote address.
It argues that databases are emerging from a period of relative
stasis where the agenda was “implement SQL better.” Now data-
base architectures are in the punctuated stage of punctuated-
equilibrium. They have become the vehicles to deliver an inte-
grated application development environment, to be data-rich
nodes of the Internet, to do data discovery, and to be self-
managing. They are also our main hope to deal with the informa-
tion avalanche hitting individuals, organizations, and all aspects
of human organization. It is an exciting time! There are many
exciting new research problems and many challenging implemen-
tation problems. This talk highlights some of them.

2. THE REVOLUTIONS
2.1 Object Relational Arrives
We be data. But, you cannot separate data and algorithms. Un-
fortunately, Cobol has a data division and a procedure division
and so it had separate committees to define each one. The data-
base community inherited that artificial division from the Cobol
Data Base Task Group (DBTG). We were separated from our
procedural twin at birth. We have been trying to reunite with it
for 40 years now. In the mid-eighties stored procedures were
added to SQL (thank you Sybase), and there was a proliferation of
object-relational database systems. In the mid-nineties many SQL
vendors added objects to their own systems. Although these were
each good efforts, they were fundamentally flawed because de
novo language designs are very high risk.

The object-oriented language community has been refining its
ideas since Simula67. There are now several good OO languages
with excellent implementations and development environments
(Java and C# for example.) There is a common language runtime
that supports nearly all languages with good performance.

The big news now is the marriage of databases and these lan-
guages. The runtimes are being added to the database engine so
that now one can write database stored-procedures (modules) in
these languages and can define database objects as classes in these
languages. Database data can be encapsulated in classes and the
language development environment allows you to program and
debug SQL seamlessly mixing Java or C# with SQL, doing ver-
sion control on the programs, and generally providing a very pro-
ductive programming environment. SQLJ is a very nice integra-
tion of SQL and Java, but there are even better ideas in the pipe-
line.

This integration of languages with databases eliminates the inside-
the-database outside-the-database dichotomy that we have lived
with for the last 40 years. Now fields are objects (values or refer-
ences); records are vectors of objects (fields); and tables are se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

quences of record objects. Databases are collections of tables.
This objectified view of database systems has huge leverage – it
enables most of the other revolutions. It is a way for us to struc-
ture and modularize our systems.

A clean object-oriented programming model also makes database
triggers much more powerful and much easier to construct and
debug. Triggers are the database equivalent of rule-based pro-
gramming. As such, they have proponents and opponents. Hav-
ing a good language foundation will probably not sway the active
database opponents, but it will certainly make it easier to build
systems.

The database integration with language runtimes is only possible
because database system architecture has been modularized and
rationalized. This modularity enables the other architectural revo-
lutions which are done as extensions to the core data manger.

2.2 Databases are Web Services --TPlite
Databases are encapsulated by business logic. Before the advent
of stored-procedures, all the business logic ran in the transaction
processing monitor which was the middle tier of the classic three-
tier presentation-application-data architecture. With stored pro-
cedures, the TP-monitors were disintermediated by two-tiered
client/server architectures. The emergence of web-servers and
HTTP brought three-tier architectures back to center stage – in
part as protocol converters between HTTP and the database cli-
ent/server protocol, and in part by moving the presentation ser-
vices (HTML) back to the web server.

As eCommerce evolves, most web clients are application pro-
grams rather than browsers blindly displaying whatever the server
delivers. Today, most eCommerce clients screen-scrape to get
data from the web pages, but there is increasing use of XML web
services as a way of delivering data to fat-client applications.
Most web services are being delivered by classic web servers
today (Apache, Microsoft IIS); but, database systems are starting
to listen to port 80 and to publish web services. In this new
world, one can take a class or a stored procedure implemented
inside the database system, and publish it on the internet as a web
service (WSDL interface definition, DISCO discovery, UDDI
registration, and SOAP call stubs are all generated automatically).
So, the TPlite client-server model is back, if you want it.

Designers still have the option of three-tier or n-tier application
designs; but, they now have the two-tier option again. The sim-
plicity of two-tier client/server is attractive, but security issues
(databases have huge attack surfaces) may cause many designers
to want three-tier server architectures with the web server in the
demilitarized zone (DMZ).

It is likely that web services will be the way we federate heteroge-
neous database systems. This is an active research area. What is
the right object model for a database? What is the right way to
represent information on the wire? How do schemas work in the
Internet? How does schema evolution work? How do you find
data and databases? We do not have good answers to any of
these questions. Much of my time is devoted to trying to answer
these questions for the federation of astronomy databases we call
the World-Wide Telescope.

2.3 Queues, Transactions, Workflows
The Internet is a loosely coupled federation of computer servers
and clients. Clients are sometime disconnected, and yet they need
to be able continue functioning. Rather than building tightly-
coupled RPC-based applications, Internet-scale applications must
be constructed as asynchronous tasks structured as workflows
involving multiple autonomous agents. eMail gives an intuitive
understanding of these design issues. You want to be able to read
and send mail even though you are not connected to the network.

All the major database systems now include a queuing system that
makes it easy to define queues, queue and dequeue messages,
attach triggers to queues, and dispatch tasks driven by the queues.
A good programming environment within the database system and
the simplicity of the transaction model makes it easy and natural
to use queues. Being able to publish queues as web services is
also a big advantage. But, queues are almost immediately used to
go beyond simple ACID transactions and implement publish-
subscribe and workflow systems. These are built as applications
atop the basic queuing system. There is a lot of innovation and
controversy over exactly how workflows and notifications should
work – it is an area of ferment and fruitful experimentation.

The research question here is how to structure workflows.
Frankly, solutions to this problem have eluded us for several dec-
ades. But the immediacy of the problem is likely to create
enough systems that some design patterns will emerge. The re-
search challenge is to characterize these design patterns.

2.4 Cubes and Online Analytic Processing
Early relational systems used indices as table replicas that allowed
vertical partitioning, allowed associative search, and allowed con-
venient data ordering. Database optimizers and executors use
semi-join on these structures to run common queries on covering
indices. These query strategies give huge speedups.

These early ideas evolved to materialized views (often maintained
by triggers) that went far beyond simple covering indices and
provided fast access to star and snowflake schema. In the 1990s
we discovered the fairly common OLAP pattern of data cubes that
aggregate data along many dimensions. The research community
extended the cube-dimension concepts and developed algorithms
to automate cube design and implementation. There are very ele-
gant and efficient ways to maintain cubes. Useable cubes that
aggregate multi-terabyte fact tables can be represented in a few
gigabytes. These algorithms are now key parts of the major data-
base engines. This is an area intense research and rapid innova-
tion – much of the work now focuses on better ways to query and
visualize cubes.

2.5 Data Mining
We are slowly climbing the value chain from data to information
to knowledge to wisdom. Data mining is our first step into the
knowledge domain. The database community has found a very
elegant way to embrace and extend machine learning technology
like clustering, decision trees, Bayes nets, neural nets, time series
analysis, etc... The key idea is to create a learning table T; telling
the system to learn columns x, y, z, from attributes a, b, c (or to
cluster attributes a, b, c, or to treat a as the time stamp for b.)
Then one inserts training data into the table T, and the data min-
ing algorithm builds a decision tree or Bayes net or time series
model for the data. The training phase uses SQL’s well under-

stood Create/Insert metaphor. At any point, one can ask the sys-
tem to display the model as an XML document that, in turn, can
be rendered in intuitive graphical formats.

After the training phase, the table T can be used to generate syn-
thetic data; given a key a,b,c it can return the likely x,y,z values of
that key along with the probabilities. Equivalently, T can evaluate
the probability that some value is correct. The neat thing about
this is that the framework allows you to add your own machine-
learning algorithms to this framework. This gives the machine-
learning community a vehicle to make their technology accessible
to a broad user base.

Given this framework, the research challenges are now to develop
better mining algorithms. There is also the related problem of
probabilistic and approximate answers that is elaborated later.

2.6 Column Stores
It is increasingly common to find tables with thousands of col-
umns – they arise when a particular object has thousands of meas-
ured attributes. Not infrequently, many of the values are null. For
example, an LDAP object has 7 required and a thousand optional
attributes. It is convenient to think of each object as a row of a
table, but representing it that way is very inefficient – both in
space and bandwidth. Classical relational systems represent each
row as a vector of values and often materialize rows even if they
are null (not all systems do that, but most do.) This row-store
representation makes for very large tables and very sparse infor-
mation.

Storing sparse data column-wise as ternary relations (key, attrib-
ute, value) allows extraordinary compression—often as a bitmap.
Querying such bitmaps can reduce query times by orders of mag-
nitude – and enable whole new optimization strategies. Adabase
and Model204 pioneered these ideas, but they are now having a
rebirth. The research challenge is to develop automatic algorithms
that do column store physical design and to develop efficient al-
gorithms for updating and searching column stores.

2.7 Text, Temporal, and Spatial Data Access
The database community has insulated itself from the information
retrieval community, and has largely eschewed dealing with
messy data types like time and space (not everyone has, just most
of us.) We had our hands full dealing with the “simple stuff” of
numbers, strings, and relational operators on them. But, real ap-
plications have massive amounts of text data, have temporal prop-
erties, and have spatial properties.

The DBMS extensibility offered by integrating languages with the
DBMS makes it relatively easy to add data types and libraries for
text, spatial, and temporal indexing and access. Indeed the SQL
standard has been extended in all these areas. But, all three of
these data types, and especially text retrieval, require that the da-
tabase deal with approximate answers and with probabilistic rea-
soning. This has been a stretch for traditional database systems.
It is fair to say that much more research is needed to seamlessly
integrate these important data types with our current frameworks.
Both data mining and these complex datatypes depend on ap-
proximate reasoning – but we do not have a clear algebra for it.

2.8 Semi-Structured Data
Not all data fits into the relational model. Jennifer Widom ob-
serves that we all start with the schema <stuff/> and then add

structure and constraints. Even the best designed database leaves
out some constraints and leaves some relationships unspecified.

A huge battle is raging in the database community. The radicals
believe cyberspace is just one big XML document that should be
manipulated with xQuery++. The reactionaries believe that struc-
ture is your friend and that semi-structured data is a mess to be
avoided. Both camps are well represented within the database
community – often stratified by age. It is easy to say that the truth
lies somewhere in between, but it is hard at this point to say how
this movie will end.

One especially interesting development is the integration of data-
base systems with file systems. Individuals have hundreds of
thousands of files (mails, documents, photos, ...). Corporations
have billions of files. Folder hierarchies and traditional filing
systems are inadequate – you just can’t find things by location
(folder) or grep (string search). A fully indexed semi-structured
database of the objects is needed to for decent precision and recall
on search. It is paradoxical, but file systems are evolving into
database systems. These modern file systems are a good example
of the semi-structured data challenge, and indeed are challenging
some of the best data management architects.

2.9 Stream Processing
Data is increasingly generated by instruments that monitor the
environment – telescopes looking at the heavens, DNA sequenc-
ers decoding molecules, bar-code readers watching passing
freight-cars, patient monitors watching the life-signs of a person
in the emergency room, cell-phone and credit-card systems look-
ing for fraud, RFID scanners watching products flow through the
supply chain, and smart-dust sensing its environment.

In each of these cases, one wants to compare the incoming data
with the history of an object. The data structures, query operators,
and execution environments for such stream processing systems
are qualitatively different from classic DBMS architectures. In
essence, the arriving data items each represent a fairly complex
query against the existing database. Researchers have been build-
ing stream processing systems, and their stream-processing ideas
have started appearing in mainstream products.

2.10 Publish-Subscribe and Replication
Enterprise database architects have adopted a wholesale-retail
data model where data-warehouses collect vast data archives and
publish subsets to many data-marts each of which serves some
special interest group. This bulk publish-distribute-subscribe
model is widely used and employs just about every replication
scheme you can imagine. There is a trend to install custom sub-
scriptions at the warehouse – application designers are adding
thousands, sometimes millions of subscriptions. In addition, they
are asking that the subscriptions have real-time notification. That
is, when new data arrives, if it affects the subscription, then the
change is immediately propagated to the subscriber. For example,
finance applications want to be notified of price fluctuations, in-
ventory applications want to be notified of stock level changes,
and information retrieval applications want to be notified when
new content is posted.

Pub-sub and stream processing systems have similar structure.
The millions of standing queries are compiled into a dataflow
graph. As new data arrives, the data flow graph is incrementally
evaluated to see which subscriptions are affected. The new data

triggers updates to those subscriptions. This technology relies
heavily on the active-database work of the 1990s and is still
evolving. The research challenge is to support more sophisticated
standing queries and to provide better optimization techniques
that handle the vast number of queries and vast data volumes.

2.11 Late Binding in Query Plans
All these changes have a huge impact on the way the database
query optimizer works. Having user-defined functions deep in-
side the query plans makes cost estimation problematic. Having
real data with high skew has always been problematic, but in this
new world the relational operators are just the outer loop of a non-
procedural program that should be executed with the least cost
and in parallel.

Cost-based static-plan optimizers continue to be the mainstay for
simple queries that run in seconds. But, for complex queries, the
query optimizer must adapt to current workloads, must adapt to
data skew and statistics, and must plan in a much more dynamic
way – changing plans as the system load and data statistics
change. For petabyte-scale databases it seems the only solution is
to run continuous data scans and let queries piggyback on the
scans. Teradata pioneered that mechanism, and it is likely to be-
come more common in the future.

2.12 Massive Memory, Massive Latency
To make life even more interesting, disk and memory capacities
continue to grow faster than latency and bandwidth improve. It
used to take less than a second to read all of ram and less than 20
minutes to read everything on a disk. Now, a multi-terabyte ram
memory scans take minutes and terabyte-disk scans take hours.
Random access is a hundred times slower than sequential. These
changing ratios require new algorithms that intelligently use
multi-processors sharing a massive main memory, and intelli-
gently use precious disk bandwidth. The database engines need to
overhaul their algorithms to deal with the fact that main memories
are huge (billions of pages trillions of bytes). The era of main-
memory databases has finally arrived.

2.13 Smart Objects: Databases Everywhere
At the other extreme, each disk controller now has tens of mega-
bytes of storage and a very capable processor. It is quite feasible
to have intelligent disks that offer either database access (SQL or
some other non-procedural language) and even web service ac-
cess. Moving from a block-oriented disk interface to a file inter-
face, and then to a set or service interface has been the goal of
database machine advocates for three decades. In the past they
needed special purpose hardware. But, now disks have fast gen-
eral purpose processors as a consequence of Moore’s law. So, it
seems likely that database machines will have a rebirth.

In a related development, people building sensor networks have
discovered that if you view each sensor as a row of a table, where
the sensor values are fields of the row, then it is very easy to write
programs to query the sensors. What’s more, distributed query
technology, augmented with some new algorithms gives very
efficient programs for these sensor networks, minimizing band-
width and making them easy to program and debug. So tiny-
database systems are appearing in smart dust – a surprising and
exciting development.

2.14 Self Managing and Always Up
If every file system, every disk and every piece of smart dust has a
database inside, database systems will have to be self-managing,
self-organizing, and self healing. The database community is
rightly proud of the advances they have made in automating de-
sign and operation – most people are unaware that their eMail
system is a simple database and that their file system is a simple
database and that many other applications they use and manage
are in fact simple database systems. But, as you can see from the
feature list enumerated here, database systems are becoming much
more sophisticated. Much work remains to make the distributed
data stores so robust that they never lose data and they always
answer questions efficiently.

3. CONCLUDING REMARKS
The theme of this talk is that we live in a time of extreme change.
It is an exciting time; essentially everything all design assump-
tions are being re-evaluated. There are research challenges eve-
rywhere. There are no small challenges in this list of revolutions.
Yet, I think our biggest challenge is a unification of approximate
and exact reasoning. Most of us come from the exact-reasoning
world—but most of our clients are asking questions with ap-
proximate or probabilistic answers.

The restructuring of database systems to be web services and to
integrate with language runtimes has created a modularity that
enables these revolutions. The reunification of code and data is
pivotal. Almost all the other changes depend on that. The exten-
sion framework allows researchers and entrepreneurs to add new
algorithms and whole new subsystems to the DBMS. Databases
are evolving from SQL-engines to data integrators and mediators
that provide a transactional and non-procedural access to data in
many forms. Database systems are becoming database operating
systems, into which one can plug subsystems and applications.

The database community has a healthy interplay between research
and development. Virtually all the people and most innovations
in database systems can be traced to the research prototypes first
describe in research papers. Product groups watch research proto-
types with great interest, academics frequently take sabbaticals in
industry, and there are many startups. These collaborations are
world-wide, largely fostered by SIGMOD and the VLDB-
Foundation’s international focus. The ecosystem compensates for
the haphazard government funding of database research. Data and
databases are central to all aspects of science and industry – and
researchers and industry recognizes that, even if funding agencies
do not.

Going forward, the information avalanche shows no sign of slow-
ing. This guarantees a full menu of challenges for the database
research community -- challenges far beyond the ones mentioned
here. But, I believe the low-hanging fruit is clustered around the
topics outlined here.

4. ACKNOWLEDGMENTS
Talks by David DeWitt, Mike Stonebraker, and Jennifer Widom at
CIDR inspired much of this presentation.

