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A B S T R A C T  

Time-parameterized queries (TP queries for short) retrieve (i) the 
actual result at the time that the query is issued, (ii) the validity 
period of the result given the current motion of the query and the 
database objects, and (iii) the change that causes the expiration of 
the result. Due to the highly dynamic nature of several spatio- 
temporal applications, TP queries are important both as 
standalone methods, as well as building blocks of more complex 
operations. However, little work has been done towards their 
efficient processing. In this paper, we propose a general 
framework that covers time-parameterized variations of the most 
common spatial queries, namely window queries, k-nearest 
neighbors and spatial joins. In particular, each of these TP queries 
is reduced to nearest neighbor search where the distance functions 
are defined according to the query type. This reduction allows the 
application and extension of well-known branch and bound 
techniques to the current problem. The proposed methods can be 
applied with mobile queries, mobile objects or both, given a 
suitable indexing method. Our experimental evaluation is based 
on R-trees and their extensions for dynamic objects. 

Keywords 
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1. INTRODUCTION 

As opposed to traditional, "instantaneous", queries that are 
evaluated only once to return a single result, continuous queries 
may require constant evaluation and update of the results as the 
query conditions or database contents change [TGNO92, 
CDTW00]. Such queries are especially relevant to spatio-temporal 
databases, which are inherently dynamic and the result of any 
query is strongly related to the temporal context. An example of a 
continuous spatio-temporal query is: "based on my current 
direction and speed of travel, which will be my nearest two gas 
stations for the next 5 minutes?". A result of the form 
<{A,B},[0,1)>, <{B,C},[1,5)> would imply that A,B will be the 
two nearest neighbors during interval [0,1), and B, C afterwards. 
Notice that the corresponding instantaneous query ("which are my 
nearest gas stations now?") is usually meaningless in highly 
dynamic environments; if the query point or the database objects 
move, the result may be invalidated immediately. 
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Any spatial query has a continuous counterpart whose termination 
clause depends on the user or application needs. Consider, for 
instance, a window query, where the window (and possibly the 
database objects) moves/changes with time. The termination 
clause may be temporal (for the next 5 minutes), a condition on 
the result (e.g., until exactly one object appears in the query 
window, or until the result changes three times), a condition on 
the query window (until the window reaches a certain point in 
space) etc. A major difference from continuous queries in the 
context of traditional databases, is that in case of spatio-temporal 
databases, the object's dynamic behavior does not necessarily 
require updates, but can be stored as a fimction of time using 
appropriate indexes [BJSS98, TUW98, KGT99, AAE00, 
SJLL00]. Furthermore, even if the objects are static, the results 
may change due to the dynamic nature of the query itself (i.e., 
moving query window), which can be also represented as a 
function of time. Thus, a spatio-temporal continuous query can be 
evaluated instantly (i.e., at the current time) using time- 
parameterized information about the dynamic behavior of the 
query and the database objects, in order to produce several results, 
each covering a validity period in the future. 

The building block of most continuous spatio-temporal queries is 
what we call the time-parameterized (TP) query. A TP query 
returns: (i) the objects that satisfy the corresponding spatial query, 
(ii) the expiry time of the result, and (iii) the change that causes 
the expiration of the result. As an example, consider that a moving 
user wants to find all hotels within a 5kin range from his/her 
current position. In addition to a set of hotels (lets say A,B,C) 
currently within the 5kin range, the result contains the time (e.g., 
1 minute) that this answer set is valid (given the direction and the 
speed of the user's movement), as well as the new answer set after 
the change (e.g., at 1 minute hotel D will start to be within 5krn). 
In the previous example we assume that the query window is 
dynamic and the database objects are static. In other cases the 
opposite may be true, e.g., find all cars that are within a 5kin 
range from hotel A. It is also possible that both the query and the 
objects are dynamic, if for instance, the query and the database 
objects are points denoting moving airplanes. The same concept 
can be applied to other common query types, e.g., nearest 
neighbors and spatial joins (find all major residential areas 
currently covered by typhoons, together with the earliest time that 
the situation is expected to change). 

TP queries, as standalone methods, are crucial in applications 
involving dynamic environments (e.g., location-based commerce 
for mobile communications, air-traffic control systems), where 
any result should be accompanied by an expiry period in order to 
be effective in practice. In addition, they constitute the primitive 
components based on which complex continuous queries can be 
constructed. In this paper we propose a general framework for TP 
queries in spatio-temporal databases, which can be applied for any 
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query type, and any query/object mobility combination (i.e., 
dynamic queries, dynamic objects, or both). In particular, we 
show that all time-parameterized queries can be reduced to some 
form of nearest neighbor search and processed accordingly. The 
various query types are differentiated by the definitions of 
distance functions used in each case. As a second step we extend 
our techniques to solve general continuous and other queries. 

The rest of the paper is organized as follows: section 2 surveys 
related work, while section 3 discusses TP variations of spatial 
queries and their transformations to nearest neighbor search. 
Section 4 extends our approach to continuous and "earliest event" 
queries. Section 5 presents an extensive experimental evaluation, 
while section 6 concludes with directions for future work. 

2.  R E L A T E D  W O R K  

Despite the importance of continuous queries in spatio-temporal 
databases, and the bulk of research that has been carried out on 
traditional queries (e.g., nearest neighbors, spatial joins), there is 
limited work on the efficient processing of spatio-temporal 
continuous queries. In [SWCD97], the authors focus on modeling 
and query languages but do not propose access or processing 
methods. Song and Roussopoulos [SR01] process moving nearest 
neighbor queries in R-trees by employing sampling. That is, they 
incrementally compute the results at pre-determined positions, 
using previous results to avoid total re-computation. This 
approach is limited in scope (only applicable to nearest neighbors, 
and static objects). Furthermore, it suffers from the usual 
drawbacks of sampling, i.e., if the sampling rate is low the results 
will be incorrect, otherwise there is a significant computational 
overhead; in any case there is no accuracy guarantee since even a 
high sampling rate may miss some results. Zheng and Lee [ZL01] 
discuss an even more restricted version of the problem (moving 
query, static objects indexed by R-trees) for a single nearest 
neighbor, using Voronoi diagrams. In addition to the NN of the 
query point, they return the valid period of the result, which is a 
conservative approximation obtained by assuming that the query 
can have a maximum speed. Neither approach can deal with 
dynamic objects or other types of queries. 

The proposed techniques significantly extend previous work, both 
in terms of effectiveness and applicability to far more general 
problems. Although our methods can be employed with any data- 
partition structure, we consider that the underlying indexes are 
based on R-tree variants, due to their popularity. In particular 
static objects are indexed by R*-trees [BKSS90], and dynamic 
objects by TPR-trees [SJLL00]. Assuming that the reader is 
familiar with R*-trees, in section 2.1 we describe the TPR-tree. 
Section 2.2 outlines branch and bound algorithms, which 
constitute the core of our query processing techniques. 

2.1 The Time Parameterized R-tree (TPR-tree) 
The TPR-tree [SJLL00] is an extension of the R-tree that can 
answer prediction queries on dynamic objects. A dynamic object 
is represented with (i) a minimum bounding rectangle (MBR) that 
bounds its extents at the current time, and (ii) a velocity vector. 
Figure 2.1a shows the representation of two objects u and v, and 
that of the node that contains them. The arrows indicate the 
velocity directions for each edge, while the numbers correspond 
to their values. Velocities towards the negative direction of a 
coordinate axis are negative. Notice that different edge velocities 

will cause an object to grow or shrink with time (object v). 
Similarly, an intermediate entry also stores an MBR and its 
velocity vector. As in traditional R-trees, the extents are such that 
the MBR tightly encloses all entries in the node at the current time 
(see entry E in Figure 2.1 a). 
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(a) Boundaries at current time 0 (b) Boundaries at future time 1 
Figure 2.1: Representation of entries in the TPR-tree 

The velocity vector of the (intermediate) MBR is determined as 
follows: (i) the velocity of the upper (right) edge is the maximum 
of all velocities on this dimension in the sub-tree; (ii) the velocity 
of the lower (left) edge is the minimum of all velocities on this 
dimension. This ensures that the MBR always encloses the 
underlying objects, but it is not necessarily tight. Figure 2.1b 
shows u, v and enclosing node E at time 1 (observe how the 
extents and positions of u, v, E change). Since the upper edge of E 
moves with speed 2 (the speed of the upper edge of v) the MBR of 
E is not tight. Future MBRs (e.g., in Figure 2. lb) are not stored 
explicitly, but are computed based on the current extents and 
velocity vectors. 

The TPR-tree answers instantaneous queries at some future time, 
e.g., retrieve the objects that will intersect the query window at 
time 1. Such queries are processed in exactly the same way as in 
the R-tree, except that the extents of the MBRs at the query time 
are first calculated dynamically and then compared with the query 
window. Node E must be visited because its computed MBR (and 
entry u) intersects the query, although its MBR at the current time 
does not. 

2.2 Branch-and-bound (BaB) Algorithms 
The first R-tree BaB algorithm was proposed in [RKV95] for 
nearest neighbor (NN) queries. The algorithm introduces two 
distance metrics (both defined on intermediate entries) for pruning 
the search space. The first metric, mindist, is the minimum 
distance between the query object q and any object that can be in 
the subtree of entry E. The second metric, minmaxdist, refers to 
the minimum distance from q within which an object in the 
subtree of E is guaranteed to be found. Figure 2.2a illustrates 
these two metrics on the MBRs of E1 and E2 with respect to a 
point query q. 

, y axis 
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(a) mindist & minmaxdist 

y ax/s 

2 4 6 8 IO 
(b) mindist of two rectangles 

Figure 2.2: Pruning metrics 
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The algorithm of [RKV95] answers a NN query by traversing the 
R-tree in a depth-first (DF) manner. Specifically, starting from the 
root, all entries are sorted according to their mindist from the 
query point, and the entry with the lowest value is visited first. 
The process is repeated recursively until the leaf level where the 
first potential nearest neighbor is found. During backtracking to 
the upper levels, the algorithm only visits entries whose mindist is 
smaller than the distance of the nearest neighbor already found. 
As an example consider the R-tree of Figure 2.3, where the 
number in each entry refers to the mindist (for intermediate 
entries) or the actual distance (for point objects) from the query 
point (these numbers are not stored but computed dynamically 
during query processing). DF would first visit the node of root 
entry E~ (since it has the minimum mindist), and then the node of 
E4, where the first candidate object (a) is retrieved. When 
backtracking to the previous level, entry E6 is excluded since its 
mindist is greater than the distance of a, but E~ has to be visited 
before backtracking again at the root level. Minmaxdist (and other 
similar bounds) can be applied to further prune search. 

The performance of DF was shown to be suboptimal in [PM97], 
which reveals that an optimal NN search algorithm only needs to 
visit those nodes whose MBRs intersect the so-called "search 
region", i.e., a circle centered at the query point with radius equal 
to the distance between the query and its nearest neighbor (shaded 
circle in Figure 2.3). Based on this, [CPZ98, WSB98, BBK+01] 
investigate cost models for performing NN queries in high- 
dimensional space. 

A best-first (BF) algorithm for KNN query processing using R- 
trees is proposed in [HS99]. BF keeps a heap with the entries of 
the nodes visited so far. Initially the heap contains the entries of 
the root sorted according to their mindist. In Figure 2.3 when Et is 
visited, it is removed from the heap and the entries of its node (E4, 
E~, Er) are added together with their mindist. The next entry 
visited is E2 (it has the minimum mindist in the heap), followed by 
E8, where the actual result (h) is found and the algorithm 
terminates. BF is optimal in the sense that it only visits the nodes 
necessary for obtaining the nearest neighbor. Its performance in 
practice, however, may suffer from buffer thrashing if the 
available memory is not enough for the required heap. In this case 
part of  the heap must be migrated to the disk, which may incur 
frequent disk accesses. 
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II II l,  

E~ e~ ~8 
Figure 2.3: Example of BaB algorithms 

The BaB framework also applies to closest pair queries that find 
the pair of objects from two datasets, such that their distance is the 
minimum among all pairs. Corral et al, [CMTV00] propose 
various algorithms based on the concepts of DF and BF traversal. 
The difference from NN is that the algorithms access two index 
structures (one for each data set) simultaneously. Mindist is now 
defined as the minimum distance between two objects that can lie 
in the subtrees of two intermediate entries (see Figure 2.2b). If  the 
mindist of two intermediate entries El and E2 (one from each R- 
tree) is already greater than the distance of the closest pair of 
objects found so far, the sub-trees of El and E2 cannot contain a 
closest pair. Other non-BaB based methods for nearest neighbor 
search can be found in [KSF+96, SK98, CG99, BEK÷98, 
YOTJ01]. 

3 .  T I M E - P A R A M E T E R I Z E D  (TP) Q U E R I E S  

The output of a spatio-temporal TP query has the general form 
<R,T,C>, where R is the set of objects satisfying the 
corresponding instantaneous query (i.e., current result), T is the 
expiry time of  R, and C the set of objects that will affect R at T. 
From the set of  objects in the current result R, and the set of  
objects C that will cause changes, we can incrementally compute 
the next result. We refer to R as the conventional, and (T,C) as 
the time-parameterized component of  the query. Consider, for 
instance, the TP window query (shaded window) of  Figure 3.1 a, 
where objects (rectangle a to e) are static ] and query q is moving 
east with speed 1. The output should be <{b},l,{b}> meaning that 
object b currently intersects the query window, but after 1 time 
unit it will stop doing so (therefore, b should be removed from the 
result, which will become empty). 

A naive way to process the query is to expand its window so that 
it includes all the area that the query will cover up to a time t in 
the future, and then process this extended window (using a regular 
R-tree window query) to find all candidate objects that may 
change the result up to time t. In the example of  Figure 3. I a, the 
extended window (bold rectangle) corresponds to the area that the 
query will cover in the next t--4 time units. For all candidate 
objects (b,d,e), the interval dunng which they belong to the result 
is computed: for b this interval is [0,1), for d it is [2,4), and for e 
it is [3,4). Given this information we can determine the 
conventional and the TP components of  the query. This method, 
however, has some serious shortcomings: (i) The estimation t of  
how long in the future to extend the query window is ad-hoe. An 
under-estimation means that we will not be able to compute the 
time-parameterized component, while an over-estimation will 
incur significant computational overhead. (ii) The method is not 
applicable to other types of queries such as NN. 

Observe that the result of a spatial query changes in the future 
because some objects "influence" its correctness. For instance, if  
an object (e.g., b) satisfies the query at the current time, it may 
influence the result when it no longer satisfies it in the future (at 
time 1). On the other hand, an object not currently in the result 
(e.g., d) may influence the query when it becomes a part of the 
result (at time 2). Figure 3.1a shows the influence time of  all 

For simplicity of illustration, we often use static 2D objects. The 
extension to mobile objects and higher dimensions, unless 
explicitly stated, is straightforward. 
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objects. Some objects, such as a and c, may never change the 
result, in which case the influence time is set to oo. 

d 

I0  

8 

axis 

a a ~  influences at o o  

influences at 2 

i n f l u e n ~  : ~ _ ~  
at 1 ~-1-'~1"~?: " 6 i a [~( , | , ]movmgeas t  I 

[ ]  \ t 1 ' 4  
influences the query q influences 

a t 3  
at oo at current t ime 

I I I i I I t I I x l a x i $ ,  

2 4 6 8 10 "t 

(a) TP window query 
Figure 3.1: The 
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The concept of "influence time" also applies to other types of 
queries. Figure 3. lb shows a TP NN, where objects (points a to g) 
are static and query point q is moving east with speed 1. Point d is 
the current nearest neighbor of q. In this case, the influence time 
of an object should be interpreted as the time that it starts to get 
closer to the query than the current nearest neighbor. For example, 
the influence time of point g is 3, because at this time g will come 
closer to q than d. Notice that a non-infinite (i.e., different from 
oo) influence time does not necessarily mean that the object will 
change the result; g will influence the query at time 3, only if the 
result does not change before due to another object (actually at 
time 3 the nearest neighbor is object ft. The influence time of 
points a, b, c is oo because they can never be closer to q than its 
current nearest neighbor d (observe that the influence time o f d  is 
also set to oo ). 

We denote the influence time of an object o with respect to a 
query q as TINF(O,q). The expiry time of the current result is the 
minimum influence time of all objects. Therefore, the time- 
parameterized component of a TP query can be reduced to a 
nearest neighbor problem by treating TrNF(O,q) as the distance 
metric: the goal is to find the objects (C) with the minimum TiN F 
(T). These are the candidates that may generate the change of the 
result at the expiry time (by adding to or deleting from the 
previous answer set). TiN F for intermediate entries E is defined in 
a way similar to mindist in NN search: TiNF(E,q) is the minimum 
influence time TiNF(O,q ) of any object o that may lie in the subtree 
of E. The above discussion serves as a high-level abstraction that 
establishes the close connection between the TP retrieval and NN 
search. In the sequel we derive suitable T1NF(O,q ) and TtNF(E,q) 
metrics for various query types. 

3 .1  T h e  T P  W i n d o w  Q u e r y  

In order to find the influence time TiNF(O,q ) of an object o with 
respect to a query window q, we need the intersection period 
[Ts,Te) during which o will intersect q. Figure 3.2a illustrates an 
example with a dynamic query q, and three dynamic objects u, v, 
w (without loss of generality, assume the current time is 0). 
Figures 3.2b and c show the situations at time 1 and 3 
respectively. The intersection period of object u is [0,1), of v is 
[1,3), while the intersection period of w is [~,oo). Notice that 
depending on the values of the two different velocities on a 
dimension, it is possible that some objects (e.g., w) may disappear 
(i.e., two opposite sides of the rectangle will meet) in the future 

(time 1). Such objects should be taken into account during query 
processing, since they may not affect the result after their 
disappearance. 
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Figure 3.2: Deriving TINF(O,q) 

We denote the MBR and velocity vector of an object o as 
{[OiL,Ore] ..... [OnL,O~R] } and { [o.ViE,O.ViR] ..... [o.V~L,O.VnR] } 
respectively, where [OuL,O~] ([o.VuL,o.V~]) corresponds to the 
extents (velocities) along the ith dimension (i=1 ..... n). The i-th 
projection of an object o, will disappear at time o.T~sp computed 
as: (i) o.TiDsP = ~,  if o.ViR -> o.ViL (ii) o.TiDsP = 
(OiR--OIL)/(o.VIL--o.ViR), otherwise. The disappearance time O.TDsP, 
is the minimum o.TiDsP of all dimensions. The influence time 
T~Nv(o,q) of every object o should be no later than 
min(o.Tosp,q.TDsP), after which time either o or q will have 
disappeared, thus automatically terminating the intersection 
period. 

Object o and query q intersect if and only if they intersect along 
all dimensions. Next we present a method 2 for computing the 
intersection period [Tis,Tie) along the ith dimension, starting with 
the case where [oiL,otR] does not intersect [qiL,q~R] at the current 
time (i.e., o is either totally to the right, or totally to the left of  q). 
If o is to the right of q (Figure 3.3a), then o and q will start 
intersecting at the time TiE R (=1) when the leftmost point OiL of o, 
meets the rightmost point q~R ofq. TiE R is computed as follows: (i) 
TiER=e% if o.ViL->q.ViR, (i.e., they never meet), and (ii) TiE R = 
(oiL--qiR)/(q.ViR--o.ViL), otherwise. Now consider that o is to the 
left of  q as in Figure 3.3b. In this case, o and q, will start 
intersecting at the time TiRE (=2), when the rightmost point OiR of 
o, meets the leftmost point qiL of q: (i) TiRE=m, if o.Via=q.ViL, and 
(ii) TiRL=(OiR--qiL)/(q.ViL--o.V~R) otherwise. Thus in the general 
case, the time Tis that o and q, will start intersecting on dimension 

2 TPR-trees also employ a method (narrower in focus and based 
on different concepts) to compute the intersection period before 
some designated future time [SJLL00]. 
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i is Tit =min(TiLR,TiRL), provided of course that o and q do not 
disappear before (in which case Ti~=co). 

o.V iL= 1 o.V iR = 1 
----i1, 

q'Vi~=2 q'ViR;3 °iL=0 °iR =lO 

qiL =-5 qiR =-2 
(a) o to the right ofq  

o~_.~=1 o V.~ =-1 OiL =0 °iR = 10 
, ~ o~_.~= I o.ViR~ =-I 
°iL=-10 °iR =0 , - 

q'4ViL=-2 q'Vi~:l q~.~b =1 q.ViR =-1 

qiL =2 qiR =5 qiL =8 qiR =11 
(b) o to the left ofq  (c) o and q intersect 

Figure 3.3: Examples of intersection period 

Next we will compute the time Tie that o and q that will stop 
intersecting on the i-th dimension. In order for [oiL,OtR] and 
[qiL,q~] to stop intersecting, object o must move entirely to the 
right or to the left of  the query. Continuing the example of Figure 
3.3a, o and q will keep intersecting from the time (TiLR=l) that OiL 
meets qtR, till the time (TiRE=15) that otR meets qiL. On the other 
hand, in Figure 3.3b, o and q will keep intersecting from the time 
(TIRE=2) that o~ meets qiL, till the time (TIER =oo) that oil meets q~. 
Thus, Tie is the maximum of TiER and TIRE, except for the case that 
the intersection of period is terminated before due to the object or 
query disappearance. In general, Tie = min(max(TiLR,TiRL), o.TosP, 
q.TosP). In the example of Figure 3.3b, although TiER =co, 
T i e=o .  T iDsP =5. 

From Tis and Tie we can compute the intersection period on all 

dimensions: [Ts,Te) = ~[T, ,~ , ) .  The influence time TINF(O,q) of 
i=l.n 

an object o not currently intersecting the query, is the earliest time 
that it will start intersecting, i.e., Tmr(o,q)=T~. 

For the case where o and q intersect at the current time, Tit=0 for 
all dimensions, so it remains to derive the end of the intersection 
period Tie- This is straightforward, based on the observation that o 
and q will stop intersecting at the first time that either oil meets 
qiR, or otR meets qiL, provided again the query or the object will 
not disappear before, i.e., Ti~=min(TiLR, TIRE, O.TDsP, q.TDsp). In 
Figure 3.3c, for instance, TiLR=5.5, TiRE=l, O.TDsp=5, q.Tosp=l.5, 
and Tie=TiRE=I. The end of the intersection period Te on all 
dimensions is the minimum Tie, which is also the influence time 
Tn, rF(o,q) of an object o, currently intersecting the query: 
TiNF(O,q)=Te =rain(Tie). Figure 3.4 presents the pseudo-code for 
computing the intersection period of an object, taking into 
account disappearance times. 

Next we consider TiNv(E,q) for an intermediate entry E, which 
corresponds to the minimum possible influence time of any object 
in the subtree of E. If the MBR of E does not currently intersect q, 
T~NF(E,q) is the time in the future that E starts to intersect q, 
because it is also the earliest time when any of the objects inside E 
can intersect (influence) q. I f E  intersects q at the current time, we 
need to distinguish two cases where (i) E is contained in q, or (ii) 
E partially intersects q. Figure 3.5 illustrates these two cases with 
static objects u, v, their parent entry E (also static), and a dynamic 
query q. For the first case (Figure 3.5a), TiNF(E,q) is set to the 
time (=1) that E starts to partially intersect q because, before this 
time, all objects in E are always contained in q, and hence do not 

influence the query result (1 is also the influence time of u). For 
the second case (Figure 3.5b), however, TiN~(E,q) must be set to 0 
because some object inside E (e.g., v) may influence the result as 
soon as the query moves. 

Compute_Intersection_Period (o, q) 
1. [Ts,Te)=[0,oo] 
2. for each dimension i 
2. compute disappearance time o.TiDse, q.TiDsP 
3. TDse=min(o.TDsP, q.TDsP) 
4. TiLR=(OiL--q iR) / (q .ViR--O.ViL)  

5. if TiLR<0 then TiLR =oo/*they never meet*/ 
6. TiRL=(OiR--q iL) / (q .ViL- -O.ViR)  

7. if TiRL<0 then TIRE=0/* they never meet*/ 
8. if [OiL,OiR] does not intersect [qiL,qiR] 
9. if max(TiLR,TiRL)-<TDsP 
10. Ti~=min(TiLR,TiRL); Tie=max(TiLR,TiRL) 
1 1. elseif min(TiLR,TiRL)_<TDsP_< max(TiLR,TiRL) 
12. T~=min(TiLR,TiRL); Tie = TDSP 
13. else Tis=Tie =oo 

14. else/*[OiL,OiR] intersects [qiL,qiR]*/  

15. Tis=0 
16. Tie=min(TiLR,TiRL,TDsP) 
17. [T~,Te)= [Ts,Te)n[Tis,Tie) 
18. return [Ts,Te) 
end Compute_Intersection_Period 
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Figure 3.4: Algorithm for computing [Ts,Te) 
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(b) E partially intersects q 
Figure 3.5: Deriving TiNF(E,q) when E intersects q 

Summarizing, given the intersection period [Ts,Te) of E and q, 
which can be computed by the algorithm in Figure 3.4, we define 
TiNF(E,q) as follows: 

• T~NF(E,q)=Ts, if q does not intersect E at the current time 
(i.e., Zs#0), or 

• TiNF(E,q)=0, if q intersects, but does not contain, E at the 
current time, or 

• TiNF(E,q)=Tpi(E,q), i f  q contains E at the current time, where 
Tp~(E,q) is the time that E starts to partially intersect q in the 
future. 

In order to compute Tpi(E,q), observe that the containment 
relation will change to partial intersection at the earliest time Tip i 
(Tipie[Ts,Te)) such that [EIL,EiR] starts to partially intersect 
[qiL,qtR] on any dimension i. This transition will happen at the 
time TiL L when the leftmost point EIL of E meets the leftmost point 
qiL of q, or at the time TiRR when ErR meets qiR- The computations 
of TiLL and T~,R are similar to those of TILR and TiRE (e.g., TiLL =cO, 
if E.VIL_>q.VIL, or TILL=(EIL-qiL)/(q.VIL-E.VIL), otherwise). In the 
example of Figure 3.6, TILL=2, TtRa=l and Ttpi = TiRR- The partial 
intersection time TiPi is the minimum of TiL L and T~,R, provided 
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that o and q do not disappear before. The algorithm for computing 
Tp~ is given in Figure 3.7. 

~L~4 ~R~s 

qiL=0 qiR=10 

Figure 3.6: Example of partial intersection time 

Compute PI Time (E, q, [Ts,Te)) 
/*call this fimction ifq contains E at the current time; thus Ts=0*/ 
1. Tpt=oo 
2. for each dimension i 
3. T~.L=(Eu~-qtL)/(q.VtL-E.VuL) 
4. Tipa~=(EtR-qiR)/(q.V~R-E.ViR) 
5. if TiLL~ [Ts,Te) and TiR.R~ [Ts,Te) 
6. Tipi=min(TiLL, TUtR) 
7. if TiLLE [Ts,Te) and TiRR~ [Ts,Te) 
8. T~= TiLL 
9. if TiLL~ [Ts,Te) and TutR~ [Ts,Te) 
10. TiPi = Tiaa 
11. if TiLLS [Ts,T¢) and TiRR~ [Ts,T¢) 
12. TiPi= .o 
13. Tpt=min(Tpi,Ttpi) 
14. return Tpi 
end Compute PI Time 

Figure 3.7: Algorithm for computing Tpi 

Having defined Tnw for leaf and intermediate entries, we can 
employ any BaB algorithm to find the objects o with the minimum 
influence time Tn~(o,q), which is exactly the expiry time of the 
TP query. Next we address TP KNN queries. 

3.2 The TP K Nearest Neighbor Query 
We first consider single nearest neighbor (TP NN) queries before 
extending the solution to an arbitrary number of neighbors. To 
facilitate understanding, we present our solution for point data in 
2D space, although the discussion extends to rectangle objects 
(where the rationale is the same but the equations more complex). 
Our analysis focuses on deriving TiNF(o,q) and Tn~(E,q). 

Let P~r~ be the current nearest neighbor of q. The influence time 
Tl~(o,q) of an object o is the earliest time t in the future such that 
o(t) starts to get closer to q(t) than P~ov(t), where PRy(t), o(t), q(t) 
are the positions of P/cm o, q at time t respectively. In general, 
T~(o,q) is the minimum t that satisfies the following conditions3: 
IIo(t),q(t)ll-<l[Pm~(t),q(t)[] and t_>O. If (ol ..... o~) are the coordinates, 
and (O.Vl,...o.V~) the velocities of a moving point o on 
dimensions i=1 .... ,n, the above inequality can be transformed into 
the standard form Afl+Bt+C_<0, where: 

A= =~[(o.Vi-q.Vi)2-(p~v~.Vi-q.Vi)2] ' 

C 2 2 and = o,-q,)  - ( P ~ , - q ,  ' 
= 

n 

B = Z 2[(o,-qi)(o.V i -q.V,)-(Pure--qi)(PNN.Vi -- q.V,)] 
i=l 

3 ila,b[ I denotes the distance between points a and b. Although we 
use Euclidean distance throughout the paper, other metrics can be 
applied. 

The solution is straaightforward and omitted. If no t satisfies the 
inequality, T~NF(O,q) is set to o0. In case of intermediate entries, 
T1NF(E,q) indicates the earliest time when some object in the 
subtree of E may start to be closer to q (than PUN). This is 
illustrated in Figure 3.8a, where PUN and MBR E are static and q 
is moving east. At time 2, the mindist of E to q becomes shorter 
than I[Puu, q][, which implies that some object in E may start to get 
closer to q (i.e., TiNF(E,q)=2). More formally, Tjr~v(E,q) is the 
minimum t that satisfies the condition: mindist(E(t),q(t)) _< 
][Puu(t),q(t)]] and t_>0. This inequality requires rather complicated 
case-by-case discussion because the computation of 
mindist(E(t),q(t)) depends on the relative positions of E and q. 
Figure 3.8b illustrates an example where the MBR E (corner 
points a, b, c, d) is static and the query point is moving along line 
I. Before q reaches point e, mindist(E,q) should be calculated with 
respect to point a. When q is on the line segment ef mindist is the 
distance from q to edge ab of E. Similarly, after q passes points f, 
g, and h, mindist should be computed with respect to point b, edge 
be, and point c respectively. The situation can be even more 
complex when, in addition to the query, MBR E is also dynamic, 
especially in higher dimensional spaces. 
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(a) Example of Tn~F(E,q) (b) Different cases of mindist 
Figure 3.8: TrNF for intermediate entries 

Instead, we follow a simpler (but still efficient as shown in the 
experiments) conservative approach that underestimates mindist 
(to ensure the correctness of BaB algorithms). In particular, we 
approximate mindist with the perpendicular distance from q to a 
selected edge (or a plane in high-dimensional space) of MBR E. 
The edge of E is chosen as follows: (i) If the mindist at the current 
time between E and q is with respect to a corner point of E (e.g., 
point b in Figure 3.9a), then the selected edge (among the two 
edges connected to the corner point) is the more distant from q 
(e.g., edge ab is farther to q than be); (ii) If the mindist is 
computed with respect to an edge (e.g., edge bc in Figure 3.9b), 
then we select this edge. In this case, the distance from the query 
point to the edge is exactly the mindist at the current time. The 
pseudocode for the algorithm that applies to arbitrary 
dimensionality is shown in Figure 3.10; the algorithm returns a 
(hyper) plane of dimensionality n- 1. 

, a x i s  ~.y ax i s  

actual  and  I 
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computed  P~N 
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(a) Underestimation (b) Accurate estimation 
Figure 3.9: Approximate mindist 
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SelPlane_Approx_mindist (E, q) 
1. if q is contained in E at the current time 
2. return NIL/*no edge selected since TiNF(E,q)=O*/ 
3. seldim=nil/*dimension selected plane is perpendicular to*/ 
4. coord=velocity=nil /*the coordinate and velocity of the selected 

plane on dimension sel_dim*/ 
5. plane_dist=-oo /*the distance from q to the selected plane at the 

current time*/ 
6. for each dimension i 
7. if qi<EiL/*[EiL,EiR] is the extent of E on dimension i*/ 
8. if (EiL-qi>plane_dist) /*q is further to the plane on this 

dimension than previous dimensions*/ 
9. sel dim=i; plane_dist=EiL-qi 
10. coord=EiL; velocity=E.ViL 
11. elseif qi>EiR 
12. if (qi-EiR>plane_dist) /*q is further to the plane on this 

dimension than previous dimensions*/ 
13. sel dim=i; plane_dist=qi-EiR 
14. coord=Eig; velocity=E. V ig 
15. return the selected plane (at position coord on dimension sel_dim, 

moving at velocity) 
end Sel_Plane_Approx_mindist 

Figure 3.10: Selecting a plane to approximate mindist 

Without loss of generality, assume that the plane I returned by the 
pseudo-code of Figure 3.10, is perpendicular to the ith dimension 
at point li, and moves along the dimension at speed l.Vi. TiNF(E,q) 
is the minimum t that satisfies the condition mindist(l(t),q(t)) _< 
]lPNlv(t),q(t)][ and t_>0. Using the usual notation for q, the above 
inequality is equivalent to: 

/ I , o  I(q,-l,)+t.(q.V~-l.V~)l _< , -q ,  +t. .V~-q. 
,= 

which can be transformed to the standard (and easily solvable) 
form At2+Bt+C_<0, where 

n 2 
A = (q.V, -I.V, ) 2 - ~ (P~v.V, - q.V,) 2 " C=(q,-1,) --~(PNN,--q,) 

i=1 /=1 

and 

n 

B = 2(0,-q,)(o.V,  - q . V , ) - ~ 2  (P~,--q,)(PNN.V, -- q.V,) 
/=1 

The extension to TP KNN queries is straightforward. The only 
difference is that now the influence time of an object o 
corresponds to the earliest time that o starts to get closer to q than 
any of  the K current neighbors. Specifically, assuming that the K 
current neighbors are P~m, PNNe ..... PNNK, we first compute the 
influence time Tmg~ of o with respect to each PN~ (j=l,2 .... ,K) 
following the previous approach. Then, TINF(O,q) is set to the 
minimum of TiNF1 , TiNF2 . . . .  , TiNFK. Similarly, for Ti~F(E,q) we 
first compute the T~NFj of E with respect to each Puuj and then set 
TiNF(E,q) to the minimum ofTl~vl, Tiyw, ..., T1NFK. 

3.3 The TP Join Query 
A join query returns all pairs of objects from two datasets that 
satisfy some spatial condition (e.g., intersection). The join result 
changes in the future when: (i) a pair of  objects in the current 
result, ceases to satisfy the join condition, or (ii) a pair not in the 
result starts to satisfy the condition. Figure 3.1 l a shows an 
example of TP join. Objects A3 and BE, which do not intersect at 
the current time, will start intersecting at time 1, hence influencing 
the result. In general, we denote the influence time of a pair of 

objects (01,02) as TiNF(Oi,02). Figure 3.11b lists the TrsF for all 
pairs of  objects. The influence time is 0% if  a pair will never 
change the join result (e.g., (Ae,B2)). The expiry time is the 
minimum influence time (i.e., TnqF(A3,B2)=I). As in the other 
types of  TP queries, by adding or deleting the pair(s) of  objects 
(A3,Bz) that cause(s) the change, the join result is updated 
incrementally. 
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(a) A TP window join example (b) Influence time of  all pairs 
Figure 3.11: Influence time of object pairs 

A TP join can be regarded as a closest pair (CP) query (see 
section 2.2) by treating TrNF(O1,O2) as the distance metric between 
objects ol and Oz. In addition, we need to define TiNF(E1,Ee) to 
replace mindist(Et,E2) (see Figure 2.2b), where TiNy(El,E2) is the 
minimum Tnw(ol,o2) of  all pairs formed by any two objects ol and 
o2 in the subtrees of E1 and E2 respectively. The analysis is very 
similar to that for TP window queries. We simply summarize the 
definitions: 

• Tr~(Ol,O2)=Te, if Ts =0 (i.e., ol and 02 currently satisfy the 
join condition), or TiNF(Ol,O2) = Ts, ifTs >0 (i.e., ol and Oe do 
not satisfy the condition), where [Ts,Te) is the intersection 
period of objects ol and o2 

• TrNr(Et,E2)=T~, where T~ is the starting point of  the 
intersection period [T~,Te) of E1 and E2 (unlike TP window 
queries, this case also includes containment) 

The intersection period [T~,Te) for object and intermediate entry 
pairs is computed by the algorithm of Figure 3.4. 

3.4 Query Processing 
Both depth- and best-first search (as discussed in section 2) can be 
used for processing TP queries. Figure 3.12 (DF) and 3.13 (BF) 
show the pseudo-code for window queries. The algorithms use 
three global variables R, T and C to store the three outcomes of  a 
query. In order to obtain the current result (R), both algorithms 
visit entries that intersect the original window although the TnqF of  
these entries maybe greater than the minimum influence time (T). 
Furthermore, we need to distinguish between (i) TiNF(O,q)<T and 
(ii) TiNF(O,q)=T. In the first case, o becomes the only object that 
influences the result so far, while in the second case o is added to 
the set of  influencing objects C (it is possible that multiple objects 
will enter or exit the query window at the same time). The 
algorithms for TP joins are similar to those of  CP queries. In 
particular, they traverse the R- (or TPR-) trees of the two datasets 
simultaneously, following pairs of intermediate entries (El,E2), i f  
one of the following conditions holds: (i) the MBRs of  El and E2 
intersect (so some objects may satisfy the join condition in their 
subtrees), or (ii) TiNF(E1,E2) is less than the minimum influence 
time of all object pairs seen so far (in this case their subtrees may 
contain object pairs that trigger the next result change). 
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Depth-first TP Window_Query (current node N) 
/*invoke by passing the root of R-tree*/ 
/*initially: T=oo, R=O, C = 0 */ 
1. ifN is a leaf 
2. for each object o 
3. if TINF(o,q)<T 
4. C={o} 
5. T = TINF(O,q) 
6. else ifTiNF(O,q)=T 
7. C=CU{o} 
8. ifo intersects q then R=R u{o} 

/*o satisfies the original window query*/ 
9. else/*Nis an intermediate entry*/ 
10. sort all the entries E by their TjNF(E,q) 
1 1. for each entry E 
12. if (TiNE(E,q)_<T) or (E.MBR intersects q) 
13. TP Window_Query (e.childnode) 
end Depth-first TP Window_Query 

Figure 3.12: DF algorithm for TP window queries 

Best-flrst_TP Window_Query ( ) 
1. initialize a heap H that accepts <key,entry> 
2. retrieve the root node R 
3. for each entry E in R insert <TiNE(E,q),E> to H 
4. while (H is not empty) 
5. de-heap<key,E>/*E has the minimum key in H*/ 
6. if E points to a leaf node 
7. for each object o in E.childnode 
8. if TiNF(O,q)<T 
9. C={o} 
10. T = TINF(O,q) 
1 1. else if T~NF(o,q)=T 
12. C = Cu{o} 
13. ifo intersects q then R=R u{o} 
14. else/*E points to an intermediate node*/ 
15. if TiNz(E,q) _<T 
16. for each entry E' in E.childnode 
17. insert <TjN~(E',q),E% to H 
18. else /*TiNF(E,q)>T*/ 
19. search E.subtree for objects that intersect q 
end Best-first_TP_Window_Query 

Figure 3.13: BF algorithm for TP window queries 

Although for TP windows and joins the conventional and the 
time-parameterized components of a query can be obtained in one 
pass, TP KNN processing requires the retrieval of R before T and 
C, since the validity period and the objects that influence the 
result depend on the current nearest neighbors. Thus, while TP 
window queries should have about the same cost as their 
traditional counterparts, TP KNN are expected to be more 
expensive. 

Notice that in dynamic databases, object updates may change the 
time-parametefized component of the query result. In this case, 
instead of re-evaluating the query for each update, we can 
compute the new influence time of the updated object o. If the 
new T]NF(O) is before the expiry time of the current query result, 
we set the validity time to TiNt(o) and object o as the next result 
change. On the other hand, if TiNF(O) is later than the expiry t ime,  
we ignore this update. 

Finally, the reduction framework facilitates performance analysis 
by utilizing previous findings on nearest neighbor search. Recall 
from section 2.2, that an optimal NN algorithm only needs to visit 

those nodes, whose MBRs intersect the "search region" around 
the query point. Such search regions also apply for processing the 
time-parameterized component (retrieval of  T and C) of TP 
queries. Assuming that O ~  is the object with the minimum 
influence time, all entries E to be visited by an optimal algorithm 
should satisfy the condition: Tn~(E,q)~T~(Ol~,q).  Based on 
this, Figures 3.14a and b demonstrate the corresponding search 
regions (shaded areas) of TP window and NN queries for static 
datasets (for dynamic datasets, the search region changes with 
time). The white areas do not belong to the search regions. 

the position o f  the query 
at the expiry time 

/ 
q(t) 

21 
q ~ the originalposition 

o f  the query 3~ a x i s  
i 1 i i i t i i i L i i i i i i i 

2 4 6 8 10"  0 ; 4 6 8 

(a) TP window query (b) TP NN query 
Figure 3.14: Search regions for static data sets 
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The general concept of TP queries and the associated processing 
mechanisms are directly relevant to several other types of queries. 
Section 4.1 discusses continuous spatio-temporal queries with 
arbitrary terminating clauses, while section 4.2 focuses on earliest 
event queries that find the first future time that a specific event 
may happen (e.g., "towards which direction should I move to 
catch the first moving bus?"). 

4 .1  C o n t i n u o u s  S p a t i o - t e m p o r a l  Q u e r i e s  

A continuous query returns a set of  <R,T> tuples, where each R 
corresponds to a result satisfying the query, and T its validity 
period. The termination clause determines (explicitly or 
implicitly) a future time up to which the query should be 
evaluated. An example is shown in Figure 4.1, where the goal is 
to "find my NNs (i.e., gas stations) during my trip from s to e, 
through intermediate point p". The result should be <{a}, [s, pl)>, 
<{b}, [Pl, P2) >, <{c}, [P2, e)>, meaning that a will be my NN 
during [s, Pl), b during [Pl, Pc) and so on. The only existing way 
to process this query, is by executing numerous incremental NN 
queries at pre-defined sample points [SR01]. The shortcomings of 
this approach are discussed in section 2. 

e 

NN changes from a to b 

Figure 4.1 Example of continuous NN query 

On the other hand, our framework provides a more natural and 
efficient method: execute a time pararneterized NN query at point 
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s, to get the first NN (R={a}), the validity period of the result (T 
corresponds to point Pl) and the next nearest neighbor (C={b}). 
Then, retrieve the TP component (i.e., C and T) at the points 
where there is a change in the result (i.e., Pl and P2), or the points 
where is a change in the query direction (i.e., p). That is, t h e  
processing of the query involves one (regular) NN search, and 
four (including the point of origin) computations of the TP 
component. This repetitive approach can be applied for any query 
type and terminating conditions, such as "stop when the result 
changes n times", "stop when the result contains n objects", "stop 
when the query reaches a certain point in space", etc. 

More efficient methods are possible for continuous queries where 
the influence time of an object does not depend on the other 
objects, but remains constant throughout the lifespan of the query 
(e.g., TP windows, joins). Consider for instance, a variation of the 
previous example where the goal is to "find the points within lkm 
range during my route from s to e, through intermediate point p" 
(see Figure 4.2). The result (<0, [s, p~)>, <{a}, [Pl, P2) >, < 0, [P2, 
p3)>, <{b}, [P3, P4) > . . . .  ) Can be determined by applying twice a 
slightly modified version of the BF TP_Window algorithm. The 
first application will retrieve all objects intersecting Wi (all the 
area that the query range will cover from s to p), while the second 
application will cover WE (the area covered from p to e). When an 
object is encountered, two influence times (the beginning and end 
of its satisfaction period) are inserted into the heap until the 
termination condition holds. The result is then easily obtained by 
the order of the objects in the heap. This continual approach can 
also be modified for various terminating conditions, but is not 
applicable to queries (e.g., NN) where the influence times change 
during the query. 

point a starts to belong in the result 

Figure 4.2 Example of continuous window query 

4.2 Earliest Event Queries 
An earliest event query retrieves the first future time that a certain 
"event" can happen in some dynamic environment. Although such 
queries can not be characterized as continuous (they return a 
single result with no validity period), their processing is directly 
related to TP queries. Figure 4.3a shows an example, where the 
goal is to decide a movement direction for the query point q 
(whose maximum speed is 1) such that q can "catch" one of the 
points as soon as possible (e.g., a person trying to catch a bus). In 
this example, if q moves towards Dr, 02, and D3, the first points 
that it will encounter are e,f, and b (at time 3, 3, 2) respectively. It 
can be easily verified that direction D3 is indeed the direction 
towards which q can catch the earliest point. 

Earliest event queries can also be reduced to nearest neighbor 
search by defining appropriate TmF. At any future time t, all the 
possible positions that can be reached by the query point q 
constitute a vicinity circle centered at q(0) (i.e., the initial position 
of query q) with radius t.q.V (q.V is the maximum velocity of q). 
Figure 4.3b demonstrates the vicinity circle of q at time 2. The 

earliest time TINF(O,q) that an object o can be caught by q (i.e., o 
falls into the vicinity circle of q) is the minimum t for which: 
IIo(t),q(O)ll_<rq.V and t_>0. For intermediate entries, TiNF(E,q) 
corresponds to the earliest time that q can catch any point covered 
by the MBR of E, which is the earliest time t such that E intersects 
the vicinity circle of q at t (Figure 4.3c shows a case where 
TiNF(E,q)=2). Thus, TiNF(E,q) is the minimum t that satisfies the 
conditions mindist(E,q)_<rq.V and t_>0. Both these inequalities can 
be solved as shown in section 3. 
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(b) T,NF(O,q)=2 (C) TiN~(E,q)=2 
Figure 4.3: An earliest event problem 

5.  E X P E R I M E N T A L  E V A L U A T I O N  

In this section, we evaluate the efficiency of the proposed 
methods through extensive experimentation with static and 
dynamic datasets (queries are always dynamic). As static datasets 
we use the LA file [Tiger], which contains 130K MBRs, and the 
CA file [Sequoia] that contains 64K points. Due to limited 
availability of real datasets of moving objects, we generated 
dynamic datasets (density=0.5) where all velocity components of 
objects distribute uniformly in [-0.1, 0.1]. The cardinality ranges 
between 10K and 100K, while the distribution of objects at the 
current time can be Gaussian or uniform in a unit universe. In the 
sequel, we refer to a synthetic rectangle dataset a s  RDDisT ' CARD, 
where DIST and CARD are its distribution and cardinality. 
Similarly, synthetic point datasets are denoted as PDDIsT, CARD" 

The R- and TPR-tree implementations are based on [BKSS90] 
and [SJLL00], respectively. The disk page is set to 1K bytes. With 
this size, the node capacity in R- (TPR-) trees is 48 (26). Unless 
stated otherwise, an LRU buffer with 50 pages is assumed. 
Performance is measured by the average number of disk accesses 
in performing workloads of 200 dynamic queries. The positions of 
queries in a workload conform to the distribution of the queried 
dataset in order to avoid queries in empty space. The query 
velocities range uniformly in [-0.1, 0.1]. All window queries in a 
workload have the same side length, denoted as a percentage of 
the universe extent. We first present the results for R-trees on 
static datasets, followed by TPR-trees on dynamic datasets. 
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5.1 Static Datasets 
The first set of experiments evaluates the performance of TP 
window queries using LA dataset. Since a TP query retrieves 
more information than its conventional component, it is at least as 
expensive. In order to assess the additional cost, we perform TP 
window queries with extents ranging from 2% to 10% (i.e., 
covering up to 1% of the spatial universe). Figure 5.1 a compares 
the number of page accesses using the BF and DF approach, with 
that of  the regular queries. Both DF and BF incur marginal 
overhead (2-3 I/Os). This is expected because in case of TP 
windows (and joins) the conventional and TP components are 
processed in a single pass. The objects with the minimum 
influence time, are most oRen inside nodes that intersect the query 
window now, and therefore will be retrieved by the conventional 
component anyway. 

, , 

o 2% 4% 6% S% 10% 
query 

(a) Cost of TP window queries 

I 
l l  wi~do~ query [-~ 

0 2% 4% 6% 8% 10% 
query siz* 

(b) Cost o f  TP component 
Figure 5.1: TP window query evaluation for static datasets 

In order to further analyze TP window queries, we evaluate the 
same workloads with only the time-parameterized components, 
i.e., we retrieve the expiry time and change, but not the current 
result. As shown in Figure 5.1b, processing the TP component is 
usually cheaper than regular spatial queries, and the difference 
increases with the query window. This is explained by the fact 
that the search area of a TP window query (Figure 3.14a) is 
usually very small, especially when the object triggering the 
change is close. 

The exclusive retrieval of the TP component may be performed by 
the repetitive approach (as discussed in section 4.1) during the 
evaluation of  complex continuous queries. In case of window 
queries however, the continual approach (also discussed in 
section 4.1) is obviously more efficient since it only performs one 
query (provided that the velocity vector of the query remains 
constant). Figure 5.2 demonstrates the page accesses of the 
continual approach for window queries (extent 6%) as a function 
of  the number of result changes retrieved. 

disk accesses 

42 

38 

34 - - l - -  BF 

30 I I I I 

50 100 150 200 
number of changes 

Figure 5.2: Continual window queries for static datasets 

We now proceed to evaluate TP KNN queries, using point dataset 
CA. Recall that processing a TP KNN query is always divided 
into an ordinary KNN query (the first pass), followed by the TP 
component (the second pass). Figure 5.3a compares the 
performance of the two passes (for TP 10-NN queries) as a 

fimction of number of (LRU) buffer pages. When there is no 
buffer, the second pass requires more disk accesses; however, the 
performance of the second step improves fast even with a very 
small buffer. This is because the two passes have similar access 
patterns, and pages loaded for the conventional component are 
later available for TP processing. This is further confirmed in 
Figure 5.3b, which shows the cost of a complete TP query versus 
that of an ordinary KNN query (costs are shown as a fimction of  
K). Notice that, when there is no buffer, a TP query is 
significantly more expensive than the corresponding KNN query. 
The addition of a buffer with C=50 pages, reduces this difference 
considerably; the cost of a BF TP KNN is only 10%-20% higher 
than that of the regular query. 

10 ~ -  c = c a c n e  

0 20 40 60 80 100 1 5 10 15 20 
number of buffer pages K-NN 

(a) Cost of TP component (b) Cost ofTP KNN queries 
Figure 5.3: TP KNN query evaluation for static datasets 

Figure 5.4 evaluates the performance of continuous (single) NN 
queries (similar to the example of Figure 5.1a) as a function of the 
result changes (e.g., how many times the NN neighbor will be 
updated during the life span of  the query). The cost of the 
repetitive approach grows linearly with the number of query 
changes retrieved. In comparison to Figure 5.2, the growth is 
faster because now each change triggers a new TP query, while in 
the continual approach the number of  changes only affects 
performance implicitly by increasing the extents of the query 
window in the future. Nevertheless, as discussed before, the 
continual approach is not applicable for TP NN. 

300  " disk accesses  

250 ~ D F  

200 []  BF  

150 

I00 

3~3 3~  

1 50 100 150 200 
n u m b e r  o f  changes  

Figure 5.4: Performance of continuous KNN queries 

TP joins are meaningless for static datasets, since at least one 
dataset must be dynamic in order to change the result. Dynamic 
datasets are evaluated in the next section. 

5.2 Dynamic Datasets 
In order to test the validity and generality of our observations, we 
repeated the experiments of the previous section using dynamic 
datasets DS6Au.100K and PScAu,~00K (with 100K rectangles and 
points respectively) indexed by TPR-trees. Figures 5.5 to 5.8 
correspond to the diagrams in Figures 5.1 to 5.4. The results are 
very similar (with dynamic datasets being, in general, more 
expensive to process) and we simply outline the conclusions: (i) 
TP windows involve almost the same cost as their traditional 
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counterparts, since they, more or less, access the same nodes, (ii) 
TP KNN are more expensive than regular KNN queries, but the 
cost difference is insignificant if a (small) buffer is used, (iii) BF 
outperforms DF, but the gain is important only for continual 
queries that extend far into the future (iv) the continual approach, 
whenever applicable, is preferable to the repetitive method of 
processing continuous queries. 

3(~ [ ] OF ~ 300 [ ]  DF 

H1 I[I o., ] i o ~ r  • . . . .  aery 2001 UWindowquery 

ioo I ~  

2% 4% 6% 8% 1o% [~I , ~ . . . .  2% 4% 6% 8% liP/* q~cr 7 sizes quc~,  ~z~  

(a) Cost of TP window queries (b) Cost of TP component 
Figure 5.5: TP window query evaluation for dynamic datasets 
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Figure 5.6: Continual window queries for dynamic datasets 
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Figure 5.7: TP KNN query evaluation for dynamic datasets 
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Figure 5.8: Performance of continuous KNN queries 

For testing TP Joins, we generated several dynamic rectangle 
datasets with different distributions and cardinalities: DScAu,10K, 
DSGAu,50K, DSuNI,10K, DStmLsoK, DSuNI,100K. The first experiment 
(Figure 5.9a) performs TP joins on uniform and Ganssian datasets 
of the same cardinality, and compares the costs (page accesses) 
with that of ordinary spatial joins (implemented based on 
[BKS93]) as a function of cardinality. TP joins are slightly more 
expensive because: (i) some extra nodes should be accessed for 
objects producing the next result change, and (ii) TP joins deploy 
different visiting orders from ordinary joins, which involve 

several heuristics to improve the access locality and utilize the 
buffer [BKS93]. 

An interesting observation is that, unlike TP window and KNN 
queries, for TP joins BF is outperformed by DF. This is due to the 
fact that best-first traversal leads to worse access locality; thus, it 
is favored less by buffers (recall that we use a buffer of 50 pages). 
The same phenomenon was observed in [CMTV00] for closest 
pair queries. Figure 5.9b further confirms this by illustrating the 
costs of the two approaches under various buffer sizes (for joining 
DSGAu.50K, DStn~n.50~- For zero buffer, DF and BF have almost the 
same cost, but the addition of a small buffer is more beneficial to 
DF. 
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(a) TP join cost vs. cardinality (b) TP join cost vs. buffer size 
Figure 5.9: TP join evaluation for dynamic datasets 

Next we study continuous joins, where we retrieve the current 
result and the subsequent 1,..,200 changes. Figure 5.10a shows 
the number of page accesses as a fimction of  the number of  result 
changes. The cost is almost constant, even if up to 200 changes 
are retrieved. This is explained by the fact that the most import~t 
factor in the total cost is the conventional component (i.e., 
retrieval of the current result). The TP component is minimal in 
comparison and does not affect the result significantly. Finally, we 
join a dynamic dataset (DScAu.100Q with a static one (LA). The 
results are similar to that of Figure 5.10a and in both cases DF 
outperforms BF. 
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Figure 5.10: Continuous TP joins 

6 .  C O N C L U S I O N  

Regular spatial queries are of limited use in dynamic 
environments, unless the results are accompanied by an expected 
validity period. In this paper we propose a general framework for 
transforming any spatial query to a time-parameterized version 
which, in addition to the current result, returns its expiry time and 
the changes. As shown in the experimental evaluation, the extra 
information is obtained at zero or minimal cost. We believe that 
our techniques are crucial for many emerging applications that 
deal with spatio-temporal data, such as mobile communications 
and weather prediction. The contributions of the paper are 
summarized as follows: 
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• Introduction of the novel concept of time-parametefized 
queries. 

• Techniques for transforming the most common spatial 
queries to their TP counterparts. 

• Development of efficient processing methods. 
• Application to other query types such as continuous and 

earliest event queries. 
Although we tried to cover several issues, there still exist 
numerous challenging problems and directions for future work. 
An obvious one is the extension to other query types. For 
example, a TP closest pair (TP CP) query identifies future 
changes in the closest pairs of objects from two dynamic datasets 
(e.g., "inform a set of customers about when their nearest cabs 
will change"). As with TP KNN queries, the influence time of a 
pair of objects (customer, cab) in the TP CP problem depends on 
the closest pair now. Thus, an efficient definition for TMiN(Ei,E2) 
is difficult, because it requires the knowledge of nearest cabs of 
all customers. 

Furthermore, notice that several queries discussed in this paper 
can be formulated as computational geometry problems. 
Continuous KNN, for example, can be defined as follows: given a 
set of points and a query trajectory, retrieve all points that are 
among the K nearest neighbors of any point on the trajectory. Our 
solution (based on the repetitive approach) is output-sensitive. 
There may exist other methods (e.g., extensions of Voronoi 
diagrams?) where the result is independent of the number of 
changes and, therefore, they may be preferable for long 
trajectories. In any case, it would be interesting to obtain 
theoretical bounds for the performance of TP and continuous 
spatio-temporal queries. 
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