
Time-Parameterized Queries in Spatio-Temporal Databases
Yufei Tao

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

h t tp : / /www.cs .us t .hk /~ taoyf /

Dimitfis Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

http ://www.cs.ust.hk/~dimitris/

A B S T R A C T

Time-parameterized queries (TP queries for short) retrieve (i) the
actual result at the time that the query is issued, (ii) the validity
period of the result given the current motion of the query and the
database objects, and (iii) the change that causes the expiration of
the result. Due to the highly dynamic nature of several spatio-
temporal applications, TP queries are important both as
standalone methods, as well as building blocks of more complex
operations. However, little work has been done towards their
efficient processing. In this paper, we propose a general
framework that covers time-parameterized variations of the most
common spatial queries, namely window queries, k-nearest
neighbors and spatial joins. In particular, each of these TP queries
is reduced to nearest neighbor search where the distance functions
are defined according to the query type. This reduction allows the
application and extension of well-known branch and bound
techniques to the current problem. The proposed methods can be
applied with mobile queries, mobile objects or both, given a
suitable indexing method. Our experimental evaluation is based
on R-trees and their extensions for dynamic objects.

Keywords
Spatio-temporal databases, nearest neighbor queries

1. INTRODUCTION

As opposed to traditional, "instantaneous", queries that are
evaluated only once to return a single result, continuous queries
may require constant evaluation and update of the results as the
query conditions or database contents change [TGNO92,
CDTW00]. Such queries are especially relevant to spatio-temporal
databases, which are inherently dynamic and the result of any
query is strongly related to the temporal context. An example of a
continuous spatio-temporal query is: "based on my current
direction and speed of travel, which will be my nearest two gas
stations for the next 5 minutes?". A result of the form
<{A,B},[0,1)>, <{B,C},[1,5)> would imply that A,B will be the
two nearest neighbors during interval [0,1), and B, C afterwards.
Notice that the corresponding instantaneous query ("which are my
nearest gas stations now?") is usually meaningless in highly
dynamic environments; if the query point or the database objects
move, the result may be invalidated immediately.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSIGMOD'2002, June 4-6, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06... $5.00.

Any spatial query has a continuous counterpart whose termination
clause depends on the user or application needs. Consider, for
instance, a window query, where the window (and possibly the
database objects) moves/changes with time. The termination
clause may be temporal (for the next 5 minutes), a condition on
the result (e.g., until exactly one object appears in the query
window, or until the result changes three times), a condition on
the query window (until the window reaches a certain point in
space) etc. A major difference from continuous queries in the
context of traditional databases, is that in case of spatio-temporal
databases, the object's dynamic behavior does not necessarily
require updates, but can be stored as a fimction of time using
appropriate indexes [BJSS98, TUW98, KGT99, AAE00,
SJLL00]. Furthermore, even if the objects are static, the results
may change due to the dynamic nature of the query itself (i.e.,
moving query window), which can be also represented as a
function of time. Thus, a spatio-temporal continuous query can be
evaluated instantly (i.e., at the current time) using time-
parameterized information about the dynamic behavior of the
query and the database objects, in order to produce several results,
each covering a validity period in the future.

The building block of most continuous spatio-temporal queries is
what we call the time-parameterized (TP) query. A TP query
returns: (i) the objects that satisfy the corresponding spatial query,
(ii) the expiry time of the result, and (iii) the change that causes
the expiration of the result. As an example, consider that a moving
user wants to find all hotels within a 5kin range from his/her
current position. In addition to a set of hotels (lets say A,B,C)
currently within the 5kin range, the result contains the time (e.g.,
1 minute) that this answer set is valid (given the direction and the
speed of the user's movement), as well as the new answer set after
the change (e.g., at 1 minute hotel D will start to be within 5krn).
In the previous example we assume that the query window is
dynamic and the database objects are static. In other cases the
opposite may be true, e.g., find all cars that are within a 5kin
range from hotel A. It is also possible that both the query and the
objects are dynamic, if for instance, the query and the database
objects are points denoting moving airplanes. The same concept
can be applied to other common query types, e.g., nearest
neighbors and spatial joins (find all major residential areas
currently covered by typhoons, together with the earliest time that
the situation is expected to change).

TP queries, as standalone methods, are crucial in applications
involving dynamic environments (e.g., location-based commerce
for mobile communications, air-traffic control systems), where
any result should be accompanied by an expiry period in order to
be effective in practice. In addition, they constitute the primitive
components based on which complex continuous queries can be
constructed. In this paper we propose a general framework for TP
queries in spatio-temporal databases, which can be applied for any

334

query type, and any query/object mobility combination (i.e.,
dynamic queries, dynamic objects, or both). In particular, we
show that all time-parameterized queries can be reduced to some
form of nearest neighbor search and processed accordingly. The
various query types are differentiated by the definitions of
distance functions used in each case. As a second step we extend
our techniques to solve general continuous and other queries.

The rest of the paper is organized as follows: section 2 surveys
related work, while section 3 discusses TP variations of spatial
queries and their transformations to nearest neighbor search.
Section 4 extends our approach to continuous and "earliest event"
queries. Section 5 presents an extensive experimental evaluation,
while section 6 concludes with directions for future work.

2. R E L A T E D W O R K

Despite the importance of continuous queries in spatio-temporal
databases, and the bulk of research that has been carried out on
traditional queries (e.g., nearest neighbors, spatial joins), there is
limited work on the efficient processing of spatio-temporal
continuous queries. In [SWCD97], the authors focus on modeling
and query languages but do not propose access or processing
methods. Song and Roussopoulos [SR01] process moving nearest
neighbor queries in R-trees by employing sampling. That is, they
incrementally compute the results at pre-determined positions,
using previous results to avoid total re-computation. This
approach is limited in scope (only applicable to nearest neighbors,
and static objects). Furthermore, it suffers from the usual
drawbacks of sampling, i.e., if the sampling rate is low the results
will be incorrect, otherwise there is a significant computational
overhead; in any case there is no accuracy guarantee since even a
high sampling rate may miss some results. Zheng and Lee [ZL01]
discuss an even more restricted version of the problem (moving
query, static objects indexed by R-trees) for a single nearest
neighbor, using Voronoi diagrams. In addition to the NN of the
query point, they return the valid period of the result, which is a
conservative approximation obtained by assuming that the query
can have a maximum speed. Neither approach can deal with
dynamic objects or other types of queries.

The proposed techniques significantly extend previous work, both
in terms of effectiveness and applicability to far more general
problems. Although our methods can be employed with any data-
partition structure, we consider that the underlying indexes are
based on R-tree variants, due to their popularity. In particular
static objects are indexed by R*-trees [BKSS90], and dynamic
objects by TPR-trees [SJLL00]. Assuming that the reader is
familiar with R*-trees, in section 2.1 we describe the TPR-tree.
Section 2.2 outlines branch and bound algorithms, which
constitute the core of our query processing techniques.

2.1 The Time Parameterized R-tree (TPR-tree)
The TPR-tree [SJLL00] is an extension of the R-tree that can
answer prediction queries on dynamic objects. A dynamic object
is represented with (i) a minimum bounding rectangle (MBR) that
bounds its extents at the current time, and (ii) a velocity vector.
Figure 2.1a shows the representation of two objects u and v, and
that of the node that contains them. The arrows indicate the
velocity directions for each edge, while the numbers correspond
to their values. Velocities towards the negative direction of a
coordinate axis are negative. Notice that different edge velocities

will cause an object to grow or shrink with time (object v).
Similarly, an intermediate entry also stores an MBR and its
velocity vector. As in traditional R-trees, the extents are such that
the MBR tightly encloses all entries in the node at the current time
(see entry E in Figure 2.1 a).

d ~ axis ~ query window '

8 [[6

',TV:
6 6

' I 2 J,-1 ~-i 2

. x ax is , x,axis.
0 2 4 6 8 10 2 4 6 8 10

(a) Boundaries at current time 0 (b) Boundaries at future time 1
Figure 2.1: Representation of entries in the TPR-tree

The velocity vector of the (intermediate) MBR is determined as
follows: (i) the velocity of the upper (right) edge is the maximum
of all velocities on this dimension in the sub-tree; (ii) the velocity
of the lower (left) edge is the minimum of all velocities on this
dimension. This ensures that the MBR always encloses the
underlying objects, but it is not necessarily tight. Figure 2.1b
shows u, v and enclosing node E at time 1 (observe how the
extents and positions of u, v, E change). Since the upper edge of E
moves with speed 2 (the speed of the upper edge of v) the MBR of
E is not tight. Future MBRs (e.g., in Figure 2. lb) are not stored
explicitly, but are computed based on the current extents and
velocity vectors.

The TPR-tree answers instantaneous queries at some future time,
e.g., retrieve the objects that will intersect the query window at
time 1. Such queries are processed in exactly the same way as in
the R-tree, except that the extents of the MBRs at the query time
are first calculated dynamically and then compared with the query
window. Node E must be visited because its computed MBR (and
entry u) intersects the query, although its MBR at the current time
does not.

2.2 Branch-and-bound (BaB) Algorithms
The first R-tree BaB algorithm was proposed in [RKV95] for
nearest neighbor (NN) queries. The algorithm introduces two
distance metrics (both defined on intermediate entries) for pruning
the search space. The first metric, mindist, is the minimum
distance between the query object q and any object that can be in
the subtree of entry E. The second metric, minmaxdist, refers to
the minimum distance from q within which an object in the
subtree of E is guaranteed to be found. Figure 2.2a illustrates
these two metrics on the MBRs of E1 and E2 with respect to a
point query q.

, y axis

i ~ i m a x d i s t (q , El)

4 L ~ f T ~ / m i n d i s t (q ' E 2)

' ' ' ' ~ I I i i . , Ta . x j s I

0 2 4 6 8 10 "0
(a) mindist & minmaxdist

y ax/s

2 4 6 8 IO
(b) mindist of two rectangles

Figure 2.2: Pruning metrics

335

The algorithm of [RKV95] answers a NN query by traversing the
R-tree in a depth-first (DF) manner. Specifically, starting from the
root, all entries are sorted according to their mindist from the
query point, and the entry with the lowest value is visited first.
The process is repeated recursively until the leaf level where the
first potential nearest neighbor is found. During backtracking to
the upper levels, the algorithm only visits entries whose mindist is
smaller than the distance of the nearest neighbor already found.
As an example consider the R-tree of Figure 2.3, where the
number in each entry refers to the mindist (for intermediate
entries) or the actual distance (for point objects) from the query
point (these numbers are not stored but computed dynamically
during query processing). DF would first visit the node of root
entry E~ (since it has the minimum mindist), and then the node of
E4, where the first candidate object (a) is retrieved. When
backtracking to the previous level, entry E6 is excluded since its
mindist is greater than the distance of a, but E~ has to be visited
before backtracking again at the root level. Minmaxdist (and other
similar bounds) can be applied to further prune search.

The performance of DF was shown to be suboptimal in [PM97],
which reveals that an optimal NN search algorithm only needs to
visit those nodes whose MBRs intersect the so-called "search
region", i.e., a circle centered at the query point with radius equal
to the distance between the query and its nearest neighbor (shaded
circle in Figure 2.3). Based on this, [CPZ98, WSB98, BBK+01]
investigate cost models for performing NN queries in high-
dimensional space.

A best-first (BF) algorithm for KNN query processing using R-
trees is proposed in [HS99]. BF keeps a heap with the entries of
the nodes visited so far. Initially the heap contains the entries of
the root sorted according to their mindist. In Figure 2.3 when Et is
visited, it is removed from the heap and the entries of its node (E4,
E~, Er) are added together with their mindist. The next entry
visited is E2 (it has the minimum mindist in the heap), followed by
E8, where the actual result (h) is found and the algorithm
terminates. BF is optimal in the sense that it only visits the nodes
necessary for obtaining the nearest neighbor. Its performance in
practice, however, may suffer from buffer thrashing if the
available memory is not enough for the required heap. In this case
part of the heap must be migrated to the disk, which may incur
frequent disk accesses.

' is

E

follow E 1 ~2~-~4~-~ j~ -F3~-~61 /~ - I [] {empty}

Ej I I x axis Report h and terminate

2 4 6 8 10 "

Root

e, I i i E~

1212121 I 1}1)1
II II l,

E~ e~ ~8
Figure 2.3: Example of BaB algorithms

The BaB framework also applies to closest pair queries that find
the pair of objects from two datasets, such that their distance is the
minimum among all pairs. Corral et al, [CMTV00] propose
various algorithms based on the concepts of DF and BF traversal.
The difference from NN is that the algorithms access two index
structures (one for each data set) simultaneously. Mindist is now
defined as the minimum distance between two objects that can lie
in the subtrees of two intermediate entries (see Figure 2.2b). If the
mindist of two intermediate entries El and E2 (one from each R-
tree) is already greater than the distance of the closest pair of
objects found so far, the sub-trees of El and E2 cannot contain a
closest pair. Other non-BaB based methods for nearest neighbor
search can be found in [KSF+96, SK98, CG99, BEK÷98,
YOTJ01].

3 . T I M E - P A R A M E T E R I Z E D (TP) Q U E R I E S

The output of a spatio-temporal TP query has the general form
<R,T,C>, where R is the set of objects satisfying the
corresponding instantaneous query (i.e., current result), T is the
expiry time of R, and C the set of objects that will affect R at T.
From the set of objects in the current result R, and the set of
objects C that will cause changes, we can incrementally compute
the next result. We refer to R as the conventional, and (T,C) as
the time-parameterized component of the query. Consider, for
instance, the TP window query (shaded window) of Figure 3.1 a,
where objects (rectangle a to e) are static] and query q is moving
east with speed 1. The output should be <{b},l,{b}> meaning that
object b currently intersects the query window, but after 1 time
unit it will stop doing so (therefore, b should be removed from the
result, which will become empty).

A naive way to process the query is to expand its window so that
it includes all the area that the query will cover up to a time t in
the future, and then process this extended window (using a regular
R-tree window query) to find all candidate objects that may
change the result up to time t. In the example of Figure 3. I a, the
extended window (bold rectangle) corresponds to the area that the
query will cover in the next t--4 time units. For all candidate
objects (b,d,e), the interval dunng which they belong to the result
is computed: for b this interval is [0,1), for d it is [2,4), and for e
it is [3,4). Given this information we can determine the
conventional and the TP components of the query. This method,
however, has some serious shortcomings: (i) The estimation t of
how long in the future to extend the query window is ad-hoe. An
under-estimation means that we will not be able to compute the
time-parameterized component, while an over-estimation will
incur significant computational overhead. (ii) The method is not
applicable to other types of queries such as NN.

Observe that the result of a spatial query changes in the future
because some objects "influence" its correctness. For instance, if
an object (e.g., b) satisfies the query at the current time, it may
influence the result when it no longer satisfies it in the future (at
time 1). On the other hand, an object not currently in the result
(e.g., d) may influence the query when it becomes a part of the
result (at time 2). Figure 3.1a shows the influence time of all

For simplicity of illustration, we often use static 2D objects. The
extension to mobile objects and higher dimensions, unless
explicitly stated, is straightforward.

336

objects. Some objects, such as a and c, may never change the
result, in which case the influence time is set to oo.

d

I0

8

axis

a a ~ influences at o o

influences at 2

i n f l u e n ~ : ~ _ ~
at 1 ~-1-'~1"~?: " 6 i a [~(, | ,]movmgeas t I

[] \ t 1 ' 4
influences the query q influences

a t 3
at oo at current t ime

I I I i I I t I I x l a x i $,

2 4 6 8 10 "t

(a) TP window query
Figure 3.1: The

d , axis

10'

influences at ~ influences at 3

8' O a O g

influences at 1.5
influences the query q • f
at ~a b at current time

0 ~ moving east
• d at speed 1

influences oo

influences at o o

2 • c • e
influences at 4.5

. ~ tax~
"o 2 4 6 8 1o

(b) TP NN query
influence time

The concept of "influence time" also applies to other types of
queries. Figure 3. lb shows a TP NN, where objects (points a to g)
are static and query point q is moving east with speed 1. Point d is
the current nearest neighbor of q. In this case, the influence time
of an object should be interpreted as the time that it starts to get
closer to the query than the current nearest neighbor. For example,
the influence time of point g is 3, because at this time g will come
closer to q than d. Notice that a non-infinite (i.e., different from
oo) influence time does not necessarily mean that the object will
change the result; g will influence the query at time 3, only if the
result does not change before due to another object (actually at
time 3 the nearest neighbor is object ft. The influence time of
points a, b, c is oo because they can never be closer to q than its
current nearest neighbor d (observe that the influence time o f d is
also set to oo).

We denote the influence time of an object o with respect to a
query q as TINF(O,q). The expiry time of the current result is the
minimum influence time of all objects. Therefore, the time-
parameterized component of a TP query can be reduced to a
nearest neighbor problem by treating TrNF(O,q) as the distance
metric: the goal is to find the objects (C) with the minimum TiN F
(T). These are the candidates that may generate the change of the
result at the expiry time (by adding to or deleting from the
previous answer set). TiN F for intermediate entries E is defined in
a way similar to mindist in NN search: TiNF(E,q) is the minimum
influence time TiNF(O,q) of any object o that may lie in the subtree
of E. The above discussion serves as a high-level abstraction that
establishes the close connection between the TP retrieval and NN
search. In the sequel we derive suitable T1NF(O,q) and TtNF(E,q)
metrics for various query types.

3 .1 T h e T P W i n d o w Q u e r y

In order to find the influence time TiNF(O,q) of an object o with
respect to a query window q, we need the intersection period
[Ts,Te) during which o will intersect q. Figure 3.2a illustrates an
example with a dynamic query q, and three dynamic objects u, v,
w (without loss of generality, assume the current time is 0).
Figures 3.2b and c show the situations at time 1 and 3
respectively. The intersection period of object u is [0,1), of v is
[1,3), while the intersection period of w is [~,oo). Notice that
depending on the values of the two different velocities on a
dimension, it is possible that some objects (e.g., w) may disappear
(i.e., two opposite sides of the rectangle will meet) in the future

(time 1). Such objects should be taken into account during query
processing, since they may not affect the result after their
disappearance.

y ax l s

H

. 1 ~ "l
I ! I
query q '-1

w

I ~ r t
~ , , ~ ~ ~ , ~ t x q . x i s

0 2 4 6 8 10 "

(a) The current time 0
, , ax i s V ax i s

10 II

8

4

u(t)
2 w dissappears u(3)

[]
i i i i i i i i i i x q x i s i t i i i i i , i i x ~ Xis

2 4 6 8 10 " 0 2 4 6 8 10

(b) At time 1 (c) At time 3
Figure 3.2: Deriving TINF(O,q)

We denote the MBR and velocity vector of an object o as
{[OiL,Ore] [OnL,O~R] } and { [o.ViE,O.ViR] [o.V~L,O.VnR] }
respectively, where [OuL,O~] ([o.VuL,o.V~]) corresponds to the
extents (velocities) along the ith dimension (i=1 n). The i-th
projection of an object o, will disappear at time o.T~sp computed
as: (i) o.TiDsP = ~, if o.ViR -> o.ViL (ii) o.TiDsP =
(OiR--OIL)/(o.VIL--o.ViR), otherwise. The disappearance time O.TDsP,
is the minimum o.TiDsP of all dimensions. The influence time
T~Nv(o,q) of every object o should be no later than
min(o.Tosp,q.TDsP), after which time either o or q will have
disappeared, thus automatically terminating the intersection
period.

Object o and query q intersect if and only if they intersect along
all dimensions. Next we present a method 2 for computing the
intersection period [Tis,Tie) along the ith dimension, starting with
the case where [oiL,otR] does not intersect [qiL,q~R] at the current
time (i.e., o is either totally to the right, or totally to the left of q).
If o is to the right of q (Figure 3.3a), then o and q will start
intersecting at the time TiE R (=1) when the leftmost point OiL of o,
meets the rightmost point q~R ofq. TiE R is computed as follows: (i)
TiER=e% if o.ViL->q.ViR, (i.e., they never meet), and (ii) TiE R =
(oiL--qiR)/(q.ViR--o.ViL), otherwise. Now consider that o is to the
left of q as in Figure 3.3b. In this case, o and q, will start
intersecting at the time TiRE (=2), when the rightmost point OiR of
o, meets the leftmost point qiL of q: (i) TiRE=m, if o.Via=q.ViL, and
(ii) TiRL=(OiR--qiL)/(q.ViL--o.V~R) otherwise. Thus in the general
case, the time Tis that o and q, will start intersecting on dimension

2 TPR-trees also employ a method (narrower in focus and based
on different concepts) to compute the intersection period before
some designated future time [SJLL00].

337

i is Tit =min(TiLR,TiRL), provided of course that o and q do not
disappear before (in which case Ti~=co).

o.V iL= 1 o.V iR = 1
----i1,

q'Vi~=2 q'ViR;3 °iL=0 °iR =lO

qiL =-5 qiR =-2
(a) o to the right ofq

o~_.~=1 o V.~ =-1 OiL =0 °iR = 10
, ~ o~_.~= I o.ViR~ =-I
°iL=-10 °iR =0 , -

q'4ViL=-2 q'Vi~:l q~.~b =1 q.ViR =-1

qiL =2 qiR =5 qiL =8 qiR =11
(b) o to the left ofq (c) o and q intersect

Figure 3.3: Examples of intersection period

Next we will compute the time Tie that o and q that will stop
intersecting on the i-th dimension. In order for [oiL,OtR] and
[qiL,q~] to stop intersecting, object o must move entirely to the
right or to the left of the query. Continuing the example of Figure
3.3a, o and q will keep intersecting from the time (TiLR=l) that OiL
meets qtR, till the time (TiRE=15) that otR meets qiL. On the other
hand, in Figure 3.3b, o and q will keep intersecting from the time
(TIRE=2) that o~ meets qiL, till the time (TIER =oo) that oil meets q~.
Thus, Tie is the maximum of TiER and TIRE, except for the case that
the intersection of period is terminated before due to the object or
query disappearance. In general, Tie = min(max(TiLR,TiRL), o.TosP,
q.TosP). In the example of Figure 3.3b, although TiER =co,
T i e=o . T iDsP =5.

From Tis and Tie we can compute the intersection period on all

dimensions: [Ts,Te) = ~[T, ,~ ,) . The influence time TINF(O,q) of
i=l.n

an object o not currently intersecting the query, is the earliest time
that it will start intersecting, i.e., Tmr(o,q)=T~.

For the case where o and q intersect at the current time, Tit=0 for
all dimensions, so it remains to derive the end of the intersection
period Tie- This is straightforward, based on the observation that o
and q will stop intersecting at the first time that either oil meets
qiR, or otR meets qiL, provided again the query or the object will
not disappear before, i.e., Ti~=min(TiLR, TIRE, O.TDsP, q.TDsp). In
Figure 3.3c, for instance, TiLR=5.5, TiRE=l, O.TDsp=5, q.Tosp=l.5,
and Tie=TiRE=I. The end of the intersection period Te on all
dimensions is the minimum Tie, which is also the influence time
Tn, rF(o,q) of an object o, currently intersecting the query:
TiNF(O,q)=Te =rain(Tie). Figure 3.4 presents the pseudo-code for
computing the intersection period of an object, taking into
account disappearance times.

Next we consider TiNv(E,q) for an intermediate entry E, which
corresponds to the minimum possible influence time of any object
in the subtree of E. If the MBR of E does not currently intersect q,
T~NF(E,q) is the time in the future that E starts to intersect q,
because it is also the earliest time when any of the objects inside E
can intersect (influence) q. I f E intersects q at the current time, we
need to distinguish two cases where (i) E is contained in q, or (ii)
E partially intersects q. Figure 3.5 illustrates these two cases with
static objects u, v, their parent entry E (also static), and a dynamic
query q. For the first case (Figure 3.5a), TiNF(E,q) is set to the
time (=1) that E starts to partially intersect q because, before this
time, all objects in E are always contained in q, and hence do not

influence the query result (1 is also the influence time of u). For
the second case (Figure 3.5b), however, TiN~(E,q) must be set to 0
because some object inside E (e.g., v) may influence the result as
soon as the query moves.

Compute_Intersection_Period (o, q)
1. [Ts,Te)=[0,oo]
2. for each dimension i
2. compute disappearance time o.TiDse, q.TiDsP
3. TDse=min(o.TDsP, q.TDsP)
4. TiLR=(OiL--q iR) / (q .ViR--O.ViL)

5. if TiLR<0 then TiLR =oo/*they never meet*/
6. TiRL=(OiR--q iL) / (q .ViL- -O.ViR)

7. if TiRL<0 then TIRE=0/* they never meet*/
8. if [OiL,OiR] does not intersect [qiL,qiR]
9. if max(TiLR,TiRL)-<TDsP
10. Ti~=min(TiLR,TiRL); Tie=max(TiLR,TiRL)
1 1. elseif min(TiLR,TiRL)_<TDsP_< max(TiLR,TiRL)
12. T~=min(TiLR,TiRL); Tie = TDSP
13. else Tis=Tie =oo

14. else/*[OiL,OiR] intersects [qiL,qiR]*/

15. Tis=0
16. Tie=min(TiLR,TiRL,TDsP)
17. [T~,Te)= [Ts,Te)n[Tis,Tie)
18. return [Ts,Te)
end Compute_Intersection_Period

6

4

2

0

Figure 3.4: Algorithm for computing [Ts,Te)

' ax i s A

1o

8

6

4

query q
at the current time 2

i i a , I i i i i x l ax (s
2 4 6 8 10 " 0

(a) E is contained in q

, ax i s

E

~ L ~ - - ~ v i n g n o r t h

I T'I
query q
at the current time

I I I I I I I ' , x , a x / ~ s
2 4 6 8 10 "

(b) E partially intersects q
Figure 3.5: Deriving TiNF(E,q) when E intersects q

Summarizing, given the intersection period [Ts,Te) of E and q,
which can be computed by the algorithm in Figure 3.4, we define
TiNF(E,q) as follows:

• T~NF(E,q)=Ts, if q does not intersect E at the current time
(i.e., Zs#0), or

• TiNF(E,q)=0, if q intersects, but does not contain, E at the
current time, or

• TiNF(E,q)=Tpi(E,q), i f q contains E at the current time, where
Tp~(E,q) is the time that E starts to partially intersect q in the
future.

In order to compute Tpi(E,q), observe that the containment
relation will change to partial intersection at the earliest time Tip i
(Tipie[Ts,Te)) such that [EIL,EiR] starts to partially intersect
[qiL,qtR] on any dimension i. This transition will happen at the
time TiL L when the leftmost point EIL of E meets the leftmost point
qiL of q, or at the time TiRR when ErR meets qiR- The computations
of TiLL and T~,R are similar to those of TILR and TiRE (e.g., TiLL =cO,
if E.VIL_>q.VIL, or TILL=(EIL-qiL)/(q.VIL-E.VIL), otherwise). In the
example of Figure 3.6, TILL=2, TtRa=l and Ttpi = TiRR- The partial
intersection time TiPi is the minimum of TiL L and T~,R, provided

338

that o and q do not disappear before. The algorithm for computing
Tp~ is given in Figure 3.7.

~L~4 ~R~s

qiL=0 qiR=10

Figure 3.6: Example of partial intersection time

Compute PI Time (E, q, [Ts,Te))
/*call this fimction ifq contains E at the current time; thus Ts=0*/
1. Tpt=oo
2. for each dimension i
3. T~.L=(Eu~-qtL)/(q.VtL-E.VuL)
4. Tipa~=(EtR-qiR)/(q.V~R-E.ViR)
5. if TiLL~ [Ts,Te) and TiR.R~ [Ts,Te)
6. Tipi=min(TiLL, TUtR)
7. if TiLLE [Ts,Te) and TiRR~ [Ts,Te)
8. T~= TiLL
9. if TiLL~ [Ts,Te) and TutR~ [Ts,Te)
10. TiPi = Tiaa
11. if TiLLS [Ts,T¢) and TiRR~ [Ts,T¢)
12. TiPi= .o
13. Tpt=min(Tpi,Ttpi)
14. return Tpi
end Compute PI Time

Figure 3.7: Algorithm for computing Tpi

Having defined Tnw for leaf and intermediate entries, we can
employ any BaB algorithm to find the objects o with the minimum
influence time Tn~(o,q), which is exactly the expiry time of the
TP query. Next we address TP KNN queries.

3.2 The TP K Nearest Neighbor Query
We first consider single nearest neighbor (TP NN) queries before
extending the solution to an arbitrary number of neighbors. To
facilitate understanding, we present our solution for point data in
2D space, although the discussion extends to rectangle objects
(where the rationale is the same but the equations more complex).
Our analysis focuses on deriving TiNF(o,q) and Tn~(E,q).

Let P~r~ be the current nearest neighbor of q. The influence time
Tl~(o,q) of an object o is the earliest time t in the future such that
o(t) starts to get closer to q(t) than P~ov(t), where PRy(t), o(t), q(t)
are the positions of P/cm o, q at time t respectively. In general,
T~(o,q) is the minimum t that satisfies the following conditions3:
IIo(t),q(t)ll-<l[Pm~(t),q(t)[] and t_>O. If (ol o~) are the coordinates,
and (O.Vl,...o.V~) the velocities of a moving point o on
dimensions i=1 ,n, the above inequality can be transformed into
the standard form Afl+Bt+C_<0, where:

A= =~[(o.Vi-q.Vi)2-(p~v~.Vi-q.Vi)2] '

C 2 2 and = o,-q,) - (P ~ , - q , '
=

n

B = Z 2[(o,-qi)(o.V i -q.V,)-(Pure--qi)(PNN.Vi -- q.V,)]
i=l

3 ila,b[I denotes the distance between points a and b. Although we
use Euclidean distance throughout the paper, other metrics can be
applied.

The solution is straaightforward and omitted. If no t satisfies the
inequality, T~NF(O,q) is set to o0. In case of intermediate entries,
T1NF(E,q) indicates the earliest time when some object in the
subtree of E may start to be closer to q (than PUN). This is
illustrated in Figure 3.8a, where PUN and MBR E are static and q
is moving east. At time 2, the mindist of E to q becomes shorter
than I[Puu, q][, which implies that some object in E may start to get
closer to q (i.e., TiNF(E,q)=2). More formally, Tjr~v(E,q) is the
minimum t that satisfies the condition: mindist(E(t),q(t)) _<
][Puu(t),q(t)]] and t_>0. This inequality requires rather complicated
case-by-case discussion because the computation of
mindist(E(t),q(t)) depends on the relative positions of E and q.
Figure 3.8b illustrates an example where the MBR E (corner
points a, b, c, d) is static and the query point is moving along line
I. Before q reaches point e, mindist(E,q) should be calculated with
respect to point a. When q is on the line segment ef mindist is the
distance from q to edge ab of E. Similarly, after q passes points f,
g, and h, mindist should be computed with respect to point b, edge
be, and point c respectively. The situation can be even more
complex when, in addition to the query, MBR E is also dynamic,
especially in higher dimensional spaces.

y ax i s

~ q % l i n e I

° I° 1 d PNN

equals mindist(E,q) 2

. x, ax is , ~ e i s

2 4 6 8 10 I" 2 4 6 8 1

(a) Example of Tn~F(E,q) (b) Different cases of mindist
Figure 3.8: TrNF for intermediate entries

Instead, we follow a simpler (but still efficient as shown in the
experiments) conservative approach that underestimates mindist
(to ensure the correctness of BaB algorithms). In particular, we
approximate mindist with the perpendicular distance from q to a
selected edge (or a plane in high-dimensional space) of MBR E.
The edge of E is chosen as follows: (i) If the mindist at the current
time between E and q is with respect to a corner point of E (e.g.,
point b in Figure 3.9a), then the selected edge (among the two
edges connected to the corner point) is the more distant from q
(e.g., edge ab is farther to q than be); (ii) If the mindist is
computed with respect to an edge (e.g., edge bc in Figure 3.9b),
then we select this edge. In this case, the distance from the query
point to the edge is exactly the mindist at the current time. The
pseudocode for the algorithm that applies to arbitrary
dimensionality is shown in Figure 3.10; the algorithm returns a
(hyper) plane of dimensionality n- 1.

, a x i s ~.y ax i s

actual and I
- - actualmindist computed " ~ l

q . mindist • q

computed P~N
1 mindist

i i i i i i I I I xla¢~ t i i i i i i i i x lax l?
2 4 6 8 10 l" " 2 4 6 8 10

(a) Underestimation (b) Accurate estimation
Figure 3.9: Approximate mindist

339

SelPlane_Approx_mindist (E, q)
1. if q is contained in E at the current time
2. return NIL/*no edge selected since TiNF(E,q)=O*/
3. seldim=nil/*dimension selected plane is perpendicular to*/
4. coord=velocity=nil /*the coordinate and velocity of the selected

plane on dimension sel_dim*/
5. plane_dist=-oo /*the distance from q to the selected plane at the

current time*/
6. for each dimension i
7. if qi<EiL/*[EiL,EiR] is the extent of E on dimension i*/
8. if (EiL-qi>plane_dist) /*q is further to the plane on this

dimension than previous dimensions*/
9. sel dim=i; plane_dist=EiL-qi
10. coord=EiL; velocity=E.ViL
11. elseif qi>EiR
12. if (qi-EiR>plane_dist) /*q is further to the plane on this

dimension than previous dimensions*/
13. sel dim=i; plane_dist=qi-EiR
14. coord=Eig; velocity=E. V ig
15. return the selected plane (at position coord on dimension sel_dim,

moving at velocity)
end Sel_Plane_Approx_mindist

Figure 3.10: Selecting a plane to approximate mindist

Without loss of generality, assume that the plane I returned by the
pseudo-code of Figure 3.10, is perpendicular to the ith dimension
at point li, and moves along the dimension at speed l.Vi. TiNF(E,q)
is the minimum t that satisfies the condition mindist(l(t),q(t)) _<
]lPNlv(t),q(t)][and t_>0. Using the usual notation for q, the above
inequality is equivalent to:

/ I , o I(q,-l,)+t.(q.V~-l.V~)l _< , -q , +t. .V~-q.
,=

which can be transformed to the standard (and easily solvable)
form At2+Bt+C_<0, where

n 2
A = (q.V, -I.V,) 2 - ~ (P~v.V, - q.V,) 2 " C=(q,-1,) --~(PNN,--q,)

i=1 /=1

and

n

B = 2(0,-q,)(o.V, - q . V ,) - ~ 2 (P~,--q,)(PNN.V, -- q.V,)
/=1

The extension to TP KNN queries is straightforward. The only
difference is that now the influence time of an object o
corresponds to the earliest time that o starts to get closer to q than
any of the K current neighbors. Specifically, assuming that the K
current neighbors are P~m, PNNe PNNK, we first compute the
influence time Tmg~ of o with respect to each PN~ (j=l,2 ,K)
following the previous approach. Then, TINF(O,q) is set to the
minimum of TiNF1 , TiNF2 , TiNFK. Similarly, for Ti~F(E,q) we
first compute the T~NFj of E with respect to each Puuj and then set
TiNF(E,q) to the minimum ofTl~vl, Tiyw, ..., T1NFK.

3.3 The TP Join Query
A join query returns all pairs of objects from two datasets that
satisfy some spatial condition (e.g., intersection). The join result
changes in the future when: (i) a pair of objects in the current
result, ceases to satisfy the join condition, or (ii) a pair not in the
result starts to satisfy the condition. Figure 3.1 l a shows an
example of TP join. Objects A3 and BE, which do not intersect at
the current time, will start intersecting at time 1, hence influencing
the result. In general, we denote the influence time of a pair of

objects (01,02) as TiNF(Oi,02). Figure 3.11b lists the TrsF for all
pairs of objects. The influence time is 0% if a pair will never
change the join result (e.g., (Ae,B2)). The expiry time is the
minimum influence time (i.e., TnqF(A3,B2)=I). As in the other
types of TP queries, by adding or deleting the pair(s) of objects
(A3,Bz) that cause(s) the change, the join result is updated
incrementally.

4~y a x i s

1o[A1 [----IB1 B3

m Bi

A 2 B 2

A3 B2 A5 B3
D-B

Ai A2 A3 A4 A5

3 ~ ~ ~

~ ~ 4 2

0 2 4 6 8 10 "

(a) A TP window join example (b) Influence time of all pairs
Figure 3.11: Influence time of object pairs

A TP join can be regarded as a closest pair (CP) query (see
section 2.2) by treating TrNF(O1,O2) as the distance metric between
objects ol and Oz. In addition, we need to define TiNF(E1,Ee) to
replace mindist(Et,E2) (see Figure 2.2b), where TiNy(El,E2) is the
minimum Tnw(ol,o2) of all pairs formed by any two objects ol and
o2 in the subtrees of E1 and E2 respectively. The analysis is very
similar to that for TP window queries. We simply summarize the
definitions:

• Tr~(Ol,O2)=Te, if Ts =0 (i.e., ol and 02 currently satisfy the
join condition), or TiNF(Ol,O2) = Ts, ifTs >0 (i.e., ol and Oe do
not satisfy the condition), where [Ts,Te) is the intersection
period of objects ol and o2

• TrNr(Et,E2)=T~, where T~ is the starting point of the
intersection period [T~,Te) of E1 and E2 (unlike TP window
queries, this case also includes containment)

The intersection period [T~,Te) for object and intermediate entry
pairs is computed by the algorithm of Figure 3.4.

3.4 Query Processing
Both depth- and best-first search (as discussed in section 2) can be
used for processing TP queries. Figure 3.12 (DF) and 3.13 (BF)
show the pseudo-code for window queries. The algorithms use
three global variables R, T and C to store the three outcomes of a
query. In order to obtain the current result (R), both algorithms
visit entries that intersect the original window although the TnqF of
these entries maybe greater than the minimum influence time (T).
Furthermore, we need to distinguish between (i) TiNF(O,q)<T and
(ii) TiNF(O,q)=T. In the first case, o becomes the only object that
influences the result so far, while in the second case o is added to
the set of influencing objects C (it is possible that multiple objects
will enter or exit the query window at the same time). The
algorithms for TP joins are similar to those of CP queries. In
particular, they traverse the R- (or TPR-) trees of the two datasets
simultaneously, following pairs of intermediate entries (El,E2), i f
one of the following conditions holds: (i) the MBRs of El and E2
intersect (so some objects may satisfy the join condition in their
subtrees), or (ii) TiNF(E1,E2) is less than the minimum influence
time of all object pairs seen so far (in this case their subtrees may
contain object pairs that trigger the next result change).

340

Depth-first TP Window_Query (current node N)
/*invoke by passing the root of R-tree*/
/*initially: T=oo, R=O, C = 0 */
1. ifN is a leaf
2. for each object o
3. if TINF(o,q)<T
4. C={o}
5. T = TINF(O,q)
6. else ifTiNF(O,q)=T
7. C=CU{o}
8. ifo intersects q then R=R u{o}

/*o satisfies the original window query*/
9. else/*Nis an intermediate entry*/
10. sort all the entries E by their TjNF(E,q)
1 1. for each entry E
12. if (TiNE(E,q)_<T) or (E.MBR intersects q)
13. TP Window_Query (e.childnode)
end Depth-first TP Window_Query

Figure 3.12: DF algorithm for TP window queries

Best-flrst_TP Window_Query ()
1. initialize a heap H that accepts <key,entry>
2. retrieve the root node R
3. for each entry E in R insert <TiNE(E,q),E> to H
4. while (H is not empty)
5. de-heap<key,E>/*E has the minimum key in H*/
6. if E points to a leaf node
7. for each object o in E.childnode
8. if TiNF(O,q)<T
9. C={o}
10. T = TINF(O,q)
1 1. else if T~NF(o,q)=T
12. C = Cu{o}
13. ifo intersects q then R=R u{o}
14. else/*E points to an intermediate node*/
15. if TiNz(E,q) _<T
16. for each entry E' in E.childnode
17. insert <TjN~(E',q),E% to H
18. else /*TiNF(E,q)>T*/
19. search E.subtree for objects that intersect q
end Best-first_TP_Window_Query

Figure 3.13: BF algorithm for TP window queries

Although for TP windows and joins the conventional and the
time-parameterized components of a query can be obtained in one
pass, TP KNN processing requires the retrieval of R before T and
C, since the validity period and the objects that influence the
result depend on the current nearest neighbors. Thus, while TP
window queries should have about the same cost as their
traditional counterparts, TP KNN are expected to be more
expensive.

Notice that in dynamic databases, object updates may change the
time-parametefized component of the query result. In this case,
instead of re-evaluating the query for each update, we can
compute the new influence time of the updated object o. If the
new T]NF(O) is before the expiry time of the current query result,
we set the validity time to TiNt(o) and object o as the next result
change. On the other hand, if TiNF(O) is later than the expiry t ime,
we ignore this update.

Finally, the reduction framework facilitates performance analysis
by utilizing previous findings on nearest neighbor search. Recall
from section 2.2, that an optimal NN algorithm only needs to visit

those nodes, whose MBRs intersect the "search region" around
the query point. Such search regions also apply for processing the
time-parameterized component (retrieval of T and C) of TP
queries. Assuming that O ~ is the object with the minimum
influence time, all entries E to be visited by an optimal algorithm
should satisfy the condition: Tn~(E,q)~T~(Ol~,q). Based on
this, Figures 3.14a and b demonstrate the corresponding search
regions (shaded areas) of TP window and NN queries for static
datasets (for dynamic datasets, the search region changes with
time). The white areas do not belong to the search regions.

the position o f the query
at the expiry time

/
q(t)

21
q ~ the originalposition

o f the query 3~ a x i s
i 1 i i i t i i i L i i i i i i i

2 4 6 8 10" 0 ; 4 6 8

(a) TP window query (b) TP NN query
Figure 3.14: Search regions for static data sets

4. EXTENSIONS

the position o f the query
at the expiry time

l ~ p t e r e d at q(t) and
th the radius

NN "q(t)H

entered at q and
/ ~ ~ vdth the radiu.~

the original position lIP NN 'qff
of the query point

j X l a X ~

1o

The general concept of TP queries and the associated processing
mechanisms are directly relevant to several other types of queries.
Section 4.1 discusses continuous spatio-temporal queries with
arbitrary terminating clauses, while section 4.2 focuses on earliest
event queries that find the first future time that a specific event
may happen (e.g., "towards which direction should I move to
catch the first moving bus?").

4 .1 C o n t i n u o u s S p a t i o - t e m p o r a l Q u e r i e s

A continuous query returns a set of <R,T> tuples, where each R
corresponds to a result satisfying the query, and T its validity
period. The termination clause determines (explicitly or
implicitly) a future time up to which the query should be
evaluated. An example is shown in Figure 4.1, where the goal is
to "find my NNs (i.e., gas stations) during my trip from s to e,
through intermediate point p". The result should be <{a}, [s, pl)>,
<{b}, [Pl, P2) >, <{c}, [P2, e)>, meaning that a will be my NN
during [s, Pl), b during [Pl, Pc) and so on. The only existing way
to process this query, is by executing numerous incremental NN
queries at pre-defined sample points [SR01]. The shortcomings of
this approach are discussed in section 2.

e

NN changes from a to b

Figure 4.1 Example of continuous NN query

On the other hand, our framework provides a more natural and
efficient method: execute a time pararneterized NN query at point

341

s, to get the first NN (R={a}), the validity period of the result (T
corresponds to point Pl) and the next nearest neighbor (C={b}).
Then, retrieve the TP component (i.e., C and T) at the points
where there is a change in the result (i.e., Pl and P2), or the points
where is a change in the query direction (i.e., p). That is, t h e
processing of the query involves one (regular) NN search, and
four (including the point of origin) computations of the TP
component. This repetitive approach can be applied for any query
type and terminating conditions, such as "stop when the result
changes n times", "stop when the result contains n objects", "stop
when the query reaches a certain point in space", etc.

More efficient methods are possible for continuous queries where
the influence time of an object does not depend on the other
objects, but remains constant throughout the lifespan of the query
(e.g., TP windows, joins). Consider for instance, a variation of the
previous example where the goal is to "find the points within lkm
range during my route from s to e, through intermediate point p"
(see Figure 4.2). The result (<0, [s, p~)>, <{a}, [Pl, P2) >, < 0, [P2,
p3)>, <{b}, [P3, P4) >) Can be determined by applying twice a
slightly modified version of the BF TP_Window algorithm. The
first application will retrieve all objects intersecting Wi (all the
area that the query range will cover from s to p), while the second
application will cover WE (the area covered from p to e). When an
object is encountered, two influence times (the beginning and end
of its satisfaction period) are inserted into the heap until the
termination condition holds. The result is then easily obtained by
the order of the objects in the heap. This continual approach can
also be modified for various terminating conditions, but is not
applicable to queries (e.g., NN) where the influence times change
during the query.

point a starts to belong in the result

Figure 4.2 Example of continuous window query

4.2 Earliest Event Queries
An earliest event query retrieves the first future time that a certain
"event" can happen in some dynamic environment. Although such
queries can not be characterized as continuous (they return a
single result with no validity period), their processing is directly
related to TP queries. Figure 4.3a shows an example, where the
goal is to decide a movement direction for the query point q
(whose maximum speed is 1) such that q can "catch" one of the
points as soon as possible (e.g., a person trying to catch a bus). In
this example, if q moves towards Dr, 02, and D3, the first points
that it will encounter are e,f, and b (at time 3, 3, 2) respectively. It
can be easily verified that direction D3 is indeed the direction
towards which q can catch the earliest point.

Earliest event queries can also be reduced to nearest neighbor
search by defining appropriate TmF. At any future time t, all the
possible positions that can be reached by the query point q
constitute a vicinity circle centered at q(0) (i.e., the initial position
of query q) with radius t.q.V (q.V is the maximum velocity of q).
Figure 4.3b demonstrates the vicinity circle of q at time 2. The

earliest time TINF(O,q) that an object o can be caught by q (i.e., o
falls into the vicinity circle of q) is the minimum t for which:
IIo(t),q(O)ll_<rq.V and t_>0. For intermediate entries, TiNF(E,q)
corresponds to the earliest time that q can catch any point covered
by the MBR of E, which is the earliest time t such that E intersects
the vicinity circle of q at t (Figure 4.3c shows a case where
TiNF(E,q)=2). Thus, TiNF(E,q) is the minimum t that satisfies the
conditions mindist(E,q)_<rq.V and t_>0. Both these inequalities can
be solved as shown in section 3.

d v~is

10

CLe'
c

l,
I J i 61 I 81 l]olXa~is"

(a) An example
oxis

of q at time 2
I I I i , , 1 , l i x ~ is

(b) T,NF(O,q)=2 (C) TiN~(E,q)=2
Figure 4.3: An earliest event problem

5. E X P E R I M E N T A L E V A L U A T I O N

In this section, we evaluate the efficiency of the proposed
methods through extensive experimentation with static and
dynamic datasets (queries are always dynamic). As static datasets
we use the LA file [Tiger], which contains 130K MBRs, and the
CA file [Sequoia] that contains 64K points. Due to limited
availability of real datasets of moving objects, we generated
dynamic datasets (density=0.5) where all velocity components of
objects distribute uniformly in [-0.1, 0.1]. The cardinality ranges
between 10K and 100K, while the distribution of objects at the
current time can be Gaussian or uniform in a unit universe. In the
sequel, we refer to a synthetic rectangle dataset a s RDDisT ' CARD,
where DIST and CARD are its distribution and cardinality.
Similarly, synthetic point datasets are denoted as PDDIsT, CARD"

The R- and TPR-tree implementations are based on [BKSS90]
and [SJLL00], respectively. The disk page is set to 1K bytes. With
this size, the node capacity in R- (TPR-) trees is 48 (26). Unless
stated otherwise, an LRU buffer with 50 pages is assumed.
Performance is measured by the average number of disk accesses
in performing workloads of 200 dynamic queries. The positions of
queries in a workload conform to the distribution of the queried
dataset in order to avoid queries in empty space. The query
velocities range uniformly in [-0.1, 0.1]. All window queries in a
workload have the same side length, denoted as a percentage of
the universe extent. We first present the results for R-trees on
static datasets, followed by TPR-trees on dynamic datasets.

342

5.1 Static Datasets
The first set of experiments evaluates the performance of TP
window queries using LA dataset. Since a TP query retrieves
more information than its conventional component, it is at least as
expensive. In order to assess the additional cost, we perform TP
window queries with extents ranging from 2% to 10% (i.e.,
covering up to 1% of the spatial universe). Figure 5.1 a compares
the number of page accesses using the BF and DF approach, with
that of the regular queries. Both DF and BF incur marginal
overhead (2-3 I/Os). This is expected because in case of TP
windows (and joins) the conventional and TP components are
processed in a single pass. The objects with the minimum
influence time, are most oRen inside nodes that intersect the query
window now, and therefore will be retrieved by the conventional
component anyway.

, ,

o 2% 4% 6% S% 10%
query

(a) Cost of TP window queries

I
l l wi~do~ query [-~

0 2% 4% 6% 8% 10%
query siz*

(b) Cost o f TP component
Figure 5.1: TP window query evaluation for static datasets

In order to further analyze TP window queries, we evaluate the
same workloads with only the time-parameterized components,
i.e., we retrieve the expiry time and change, but not the current
result. As shown in Figure 5.1b, processing the TP component is
usually cheaper than regular spatial queries, and the difference
increases with the query window. This is explained by the fact
that the search area of a TP window query (Figure 3.14a) is
usually very small, especially when the object triggering the
change is close.

The exclusive retrieval of the TP component may be performed by
the repetitive approach (as discussed in section 4.1) during the
evaluation of complex continuous queries. In case of window
queries however, the continual approach (also discussed in
section 4.1) is obviously more efficient since it only performs one
query (provided that the velocity vector of the query remains
constant). Figure 5.2 demonstrates the page accesses of the
continual approach for window queries (extent 6%) as a function
of the number of result changes retrieved.

disk accesses

42

38

34 - - l - - BF

30 I I I I

50 100 150 200
number of changes

Figure 5.2: Continual window queries for static datasets

We now proceed to evaluate TP KNN queries, using point dataset
CA. Recall that processing a TP KNN query is always divided
into an ordinary KNN query (the first pass), followed by the TP
component (the second pass). Figure 5.3a compares the
performance of the two passes (for TP 10-NN queries) as a

fimction of number of (LRU) buffer pages. When there is no
buffer, the second pass requires more disk accesses; however, the
performance of the second step improves fast even with a very
small buffer. This is because the two passes have similar access
patterns, and pages loaded for the conventional component are
later available for TP processing. This is further confirmed in
Figure 5.3b, which shows the cost of a complete TP query versus
that of an ordinary KNN query (costs are shown as a fimction of
K). Notice that, when there is no buffer, a TP query is
significantly more expensive than the corresponding KNN query.
The addition of a buffer with C=50 pages, reduces this difference
considerably; the cost of a BF TP KNN is only 10%-20% higher
than that of the regular query.

10 ~ - c = c a c n e

0 20 40 60 80 100 1 5 10 15 20
number of buffer pages K-NN

(a) Cost of TP component (b) Cost ofTP KNN queries
Figure 5.3: TP KNN query evaluation for static datasets

Figure 5.4 evaluates the performance of continuous (single) NN
queries (similar to the example of Figure 5.1a) as a function of the
result changes (e.g., how many times the NN neighbor will be
updated during the life span of the query). The cost of the
repetitive approach grows linearly with the number of query
changes retrieved. In comparison to Figure 5.2, the growth is
faster because now each change triggers a new TP query, while in
the continual approach the number of changes only affects
performance implicitly by increasing the extents of the query
window in the future. Nevertheless, as discussed before, the
continual approach is not applicable for TP NN.

300 " disk accesses

250 ~ D F

200 [] BF

150

I00

3~3 3~

1 50 100 150 200
n u m b e r o f changes

Figure 5.4: Performance of continuous KNN queries

TP joins are meaningless for static datasets, since at least one
dataset must be dynamic in order to change the result. Dynamic
datasets are evaluated in the next section.

5.2 Dynamic Datasets
In order to test the validity and generality of our observations, we
repeated the experiments of the previous section using dynamic
datasets DS6Au.100K and PScAu,~00K (with 100K rectangles and
points respectively) indexed by TPR-trees. Figures 5.5 to 5.8
correspond to the diagrams in Figures 5.1 to 5.4. The results are
very similar (with dynamic datasets being, in general, more
expensive to process) and we simply outline the conclusions: (i)
TP windows involve almost the same cost as their traditional

343

counterparts, since they, more or less, access the same nodes, (ii)
TP KNN are more expensive than regular KNN queries, but the
cost difference is insignificant if a (small) buffer is used, (iii) BF
outperforms DF, but the gain is important only for continual
queries that extend far into the future (iv) the continual approach,
whenever applicable, is preferable to the repetitive method of
processing continuous queries.

3(~ [] OF ~ 300 [] DF

H1 I[I o.,] i o ~ r • aery 2001 UWindowquery

ioo I ~

2% 4% 6% 8% 1o% [~I , ~ 2% 4% 6% 8% liP/* q~cr 7 sizes quc~, ~z~

(a) Cost of TP window queries (b) Cost of TP component
Figure 5.5: TP window query evaluation for dynamic datasets

170 disk accesses

165 + DF

155

150

145

140 , I , ,
50 100 150 200

n m n b e r o f c h a n g e s

Figure 5.6: Continual window queries for dynamic datasets

disk
- disk ar .ceue l a e c e s ~ DF(C-50) ~ BF~C-50) n K-NN(C-50)

30 - 4 - - - DF(NC) 4 - - - BF(NC) ~ KNN(NC)

25 NC=m utche

10

i i i ~ J
2O 40 60 80 IOO

number of Ipaffa plges I 5 I0 15 20
K-bIN

(a) Cost of TP component (b) Cost ofTP KNN queries
Figure 5.7: TP KNN query evaluation for dynamic datasets

500 disk accesses

4 0 0 [] DF [--L__

0 BF

300

0 ~.al ~ S3 I i i q i

1 50 100 150 200

Figure 5.8: Performance of continuous KNN queries

For testing TP Joins, we generated several dynamic rectangle
datasets with different distributions and cardinalities: DScAu,10K,
DSGAu,50K, DSuNI,10K, DStmLsoK, DSuNI,100K. The first experiment
(Figure 5.9a) performs TP joins on uniform and Ganssian datasets
of the same cardinality, and compares the costs (page accesses)
with that of ordinary spatial joins (implemented based on
[BKS93]) as a function of cardinality. TP joins are slightly more
expensive because: (i) some extra nodes should be accessed for
objects producing the next result change, and (ii) TP joins deploy
different visiting orders from ordinary joins, which involve

several heuristics to improve the access locality and utilize the
buffer [BKS93].

An interesting observation is that, unlike TP window and KNN
queries, for TP joins BF is outperformed by DF. This is due to the
fact that best-first traversal leads to worse access locality; thus, it
is favored less by buffers (recall that we use a buffer of 50 pages).
The same phenomenon was observed in [CMTV00] for closest
pair queries. Figure 5.9b further confirms this by illustrating the
costs of the two approaches under various buffer sizes (for joining
DSGAu.50K, DStn~n.50~- For zero buffer, DF and BF have almost the
same cost, but the addition of a small buffer is more beneficial to
DF.

20000 "disk a c c e n e s

• DF

15000 [] BF

• J o i n

1 0 0 0 0

5O0O

~ - / 1 ,
0

lOk 50k

15000

15000

10000

50oo

IOOk

"ditk ~
DF

i i i i i

20 4O 60 80 I00
nmbln" o f bttffc¢ ! x l t ~

(a) TP join cost vs. cardinality (b) TP join cost vs. buffer size
Figure 5.9: TP join evaluation for dynamic datasets

Next we study continuous joins, where we retrieve the current
result and the subsequent 1,..,200 changes. Figure 5.10a shows
the number of page accesses as a fimction of the number of result
changes. The cost is almost constant, even if up to 200 changes
are retrieved. This is explained by the fact that the most import~t
factor in the total cost is the conventional component (i.e.,
retrieval of the current result). The TP component is minimal in
comparison and does not affect the result significantly. Finally, we
join a dynamic dataset (DScAu.100Q with a static one (LA). The
results are similar to that of Figure 5.10a and in both cases DF
outperforms BF.

8800 " d i s k a c c u s e s

8600 = ~-

84OO

8200

8OOO

78OO

76OO

74OO

160GO d i r t "-'~',"-~'~

15000

14000

13000

DF -41-- BF - - ~ - - D F - - I - - B F
i i i r i 12000 I I i I

I 50 100 150 200 1 50 100 150 200
n u m b e r o f c h a n g e s n u m b e r o f c h a n g e s

(a) Dynamic datasets (b) Dynamic/static dataset
Figure 5.10: Continuous TP joins

6 . C O N C L U S I O N

Regular spatial queries are of limited use in dynamic
environments, unless the results are accompanied by an expected
validity period. In this paper we propose a general framework for
transforming any spatial query to a time-parameterized version
which, in addition to the current result, returns its expiry time and
the changes. As shown in the experimental evaluation, the extra
information is obtained at zero or minimal cost. We believe that
our techniques are crucial for many emerging applications that
deal with spatio-temporal data, such as mobile communications
and weather prediction. The contributions of the paper are
summarized as follows:

344

• Introduction of the novel concept of time-parametefized
queries.

• Techniques for transforming the most common spatial
queries to their TP counterparts.

• Development of efficient processing methods.
• Application to other query types such as continuous and

earliest event queries.
Although we tried to cover several issues, there still exist
numerous challenging problems and directions for future work.
An obvious one is the extension to other query types. For
example, a TP closest pair (TP CP) query identifies future
changes in the closest pairs of objects from two dynamic datasets
(e.g., "inform a set of customers about when their nearest cabs
will change"). As with TP KNN queries, the influence time of a
pair of objects (customer, cab) in the TP CP problem depends on
the closest pair now. Thus, an efficient definition for TMiN(Ei,E2)
is difficult, because it requires the knowledge of nearest cabs of
all customers.

Furthermore, notice that several queries discussed in this paper
can be formulated as computational geometry problems.
Continuous KNN, for example, can be defined as follows: given a
set of points and a query trajectory, retrieve all points that are
among the K nearest neighbors of any point on the trajectory. Our
solution (based on the repetitive approach) is output-sensitive.
There may exist other methods (e.g., extensions of Voronoi
diagrams?) where the result is independent of the number of
changes and, therefore, they may be preferable for long
trajectories. In any case, it would be interesting to obtain
theoretical bounds for the performance of TP and continuous
spatio-temporal queries.

A C K N O W L E D G E M E N T S

This work was supported by grants HKUST 6081/01Eand
HKUST 6070/00E from Hong Kong RGC.

REFERENCES
[AAE00] Agarwal, P.K., Arge, L., Erickson, J. Indexing

Moving Points. ACM SIGMOD, 2000.

[BBKK97] Berchtold, S., Bohm, C., Keim, D.A., Kriegel, H. A
Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space. A CM PODS, 1997.

[BEK+98] Berchtold, S., Ertl, B., Keim, D., Kriegel, H., Seidl, T.
Fast Nearest Neighbor Search in High-Dimensional
Space. IEEE ICDE, 1998.

[BBK+01] Berchtold, S., Bohm, C., Keim, D., Krebs, F., Kriegel,
H.P. On Optimizing Nearest Neighbor Queries in
High-Dimensional Data Spaces. ICDT, 2001.

[BJSS98] Bliujute, R., Jensen, C.S., Saltenis, S., Slivinskas, G.
R-tree Based Indexing of Now-Relative Bitemporal
Data. VLDB 1998.

[BKS93] Brinkhoff, T., Kriegel, H.P., Seeger, B. Efficient
Processing of Spatial Joins Using R-trees. ACM
SIGMOD, 1993.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. ACM SIGMOD,
1990.

[CDTW00] Chen, J., DeWitt, D.J., Tian, F., Wang, Y. NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. ACM SIGMOD, 2000.

[CG99] Chaudhuri, S., Gravona, L. Evaluating Top-K
Selection Queries. VLDB, 1999.

[CMTV00] Corral, A., Manolopoulos, Y., Theodofidis, Y.,
Vassilakopoulos, M. Closest Pair Queries in Spatial
Databases. ACM SIGMOD, 2000.

[CPZ98] Ciaccia, P., Patella, M., Zezula, P. A Cost Model for
Similarity Queries in Metric Spaces. ACM PODS,
1998.

[HS99] Samet, H., Hjaltason, G. Distance Browsing in Spatial
Databases. ACM TODS, 1999.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing
Mobile Objects. A CM PODS, 1999.

[KSF+96] Kom, F., Sidiropoulos, N., Faloutsos, C., Siegel, E,
Protopapas, Z. Fast Nearest Neighbor Search in
Medical Image Databases. VLDB, 1996.

[PM97] Papadopoulos, A., Manolopoulos, Y. Performance of
Nearest Neighbor Queries in R-trees. ICDT, 1997.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. ACM S1GMOD, 1995.

[Sequoia] http://dias.cti.gr/-ytheod/research/datasets/
spatial.html.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.
Indexing the Positions of Continuously Moving
Objects. A CM SIGMOD, 2000.

[SK98] Seidl, T., Kriegel, H. Optimal Multi-Step K-Nearest
Neighbor Search. ACMSIGMOD, 1998.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor
Search for Moving Query Point. SSTD, 2001.

[SWCD97]Sistla, P., Wolfson, O., Chamberlain, S., Dao, S.
Modeling and Querying Moving Objects. IEEE ICDE,
1997.

[TGNO92] Terry, D., Goldberg, D., Nichols, D., Oki, B.
Continuous Queries over Append-Only Databases.
ACM SIGMOD, 1992.

[Tiger] http://dias.cti.gr/-ytheod/research/datasets/
spatial.html.

[TUW98] Tayeb, J., Ulusory, O., Wolfson, O. A Quadtree Based
Dynamic Attribute Indexing Method. The Computer
Journal, Vol. 41(3), pp., 185-200, 1998.

[WSB98] Weber, R., Schek, H., Blott, S. A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces. VLDB, 1998.

[YOTJ01] Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V. Indexing
the Distance: An Efficient Method to KNN
Processing. VLDB, 2001.

[ZL01] Zheng, B., Lee, D. Semantic Caching in Location-
Dependent Query Processing. SSTD, 2001.

345

