
Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases

1

VoronoiVoronoi--Based K Nearest Based K Nearest
Neighbor Search for Spatial Neighbor Search for Spatial
Network DatabasesNetwork Databases

1

Ugur Demiryurek

Mohammad R. Kolahdouzan & Cyrus Shahabi
University of Southern California

Dept. of Computer Science
Los Angeles, CA 90089-0781

shahabi@usc.edu
http://infolab.usc.edu

Agenda

Problem Definition
Related Work
Voronoi Diagrams

2

Voronoi Diagrams
Voronoi Based Network Nearest
Neighbor (VN3)

Experiments
Discussion

Problem Definition

kNN Problem:
Given a set of objects P
and query point q, find
h k bj i P h

3
3

the k objects in P that
are closest to q

q

Related Work
Spatial Database

kNN Query Processing

4

NN Query: Roussopoulos et al., SIMGOD 1995

K-NN for moving query point: Zong et al., SSTD 2001

Time-parameterized queries : Tao et al., SIMGOD 2002

Continuous NN Search: Tao et al,. VLDB 2002

Euclidean Space Road Networks

Object Based

Related Work
Spatial Database

kNN Query Processing

5

Sina-Continuous querying: Mokbel et al., SIGMOD 2004

Sea-CNN queries: Xiong et al., ICDE 2005

Monitoring kNN on moving objects: Yu et al., ICDE 2005

Conceptual partitioning: Mouratidis et al., SIGMOD 2005

Euclidean Space Road Networks

Space Based

Example 1:
Finding the 3 closest shopping centers

6

Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases

2

Example 2:
Finding the 3 closest restaurants to USC with Yahoo

7

Related Work
Spatial Database

kNN Query Processing

8

Query processing in SNDB : Papadias et al., VLDB 2003

Voronoi-based kNN in SNDB: Shahabi et al., VLDB 2004

Euclidean Space Road Networks

Related Work
Query processing in SNDB : Papadias et al., VLDB 2003

Incremental Network Expension (INE)
• Blind expansion hence redundant node access

9

Related Work
Query processing in SNDB : Papadias et al., VLDB 2003

Incremental Network Expansion

10

Preliminaries: Voronoi Diagram
Given set of sites (POI), a Voronoi diagram partitions
the plane into disjoint Voronoi polygons (cells), one
for each site
The region including a site p includes all locations

q is closer to the
generator of the
Voronoi Polygon than
any other generator

11

g g p
which are closer to p than to any other object p’.

Site (Generator)

Voronoi Polygon

any other generator

p

q

Preliminaries: Voronoi
Properties

p

Voronoi Polygon

12

Property 1: Voronoi diagram is unique
Property 2: Voronoi edges are

shared by two generators
in equal distance to neighboring generators

Property 3: Nearest generator of p is among the
generators whose VP shares similar edges with p
Property 4: Average number of Voronoi edges per
VP is at most 6

Vornoi Edge

Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases

3

Network Voronoi Diagram

Node

Border Point: equal
network distance to
adjacent generators

p2p1

13

Node

Network Edge

Network
Voronoi
Polygon

p3

VN3 Approach

Offline Index Generation
1. Network Voronoi Construction
2 Index Generation (R-tree)

14

2. Index Generation (R tree)
3. Distance Precomputation

Online Query Processing
1. Find 1st NN
2. Find k NN-> Filter & Refine

Offline Step
Compute Network Voronoi Polygons (NVP)
Index NVPs with R-Tree
Precompute the intra (accross polygons) and inter (within polygons)
network distances for each NVP

1. Precompute the
Shortest Path distance
from each generator to
its border point

2. Precompute the
Shortest Path between
border points

15

P2

P3P4

P5

P6

P7

P8

P9

P1 b9

P14

P13

P12 P11 P10

b8

b7b6

b5

b4

b3
b2

b1
b15

b14

b13

b12

b11

b10

b26

b20 b19

b18 b17

b16

b25
b24

b23

b22

b21

b30
b29

b28b27

b33

b31

b32

b37

b36

b35

b34

b40

b39

b38

n1

n2 n3

b34 P9 dn (b34, P9)

b35 P9 dn (b35, P9)

b36 P9 dn (b36, P9)

… … ……

b1 b2 dn (b1, b2)

b1 b15 dn (b1, b15)

b1 b13 dn (b1, b13)

… … ……

Example: dn(q, P9) = min(dn(q,b34)+dn(b34,P9),
dn(q,b35)+dn(b35,P9), dn(q,b36)+dn (b36,P9))

q

dn(q,b34)= min (dn(q,b1)+dn(b1,b34), dn(q,b2)+dn(b2,b34),..
,dn(q,b8)+dn(b8,b34))

Online Step
Find 1st NN

Search R-Tree to find the NVP that overlaps q
Report the generator of the NVP as the 1st NN;
Cost: O(logn)

16

P8
P2

P3P4

P5

P6

P7

P9

P1 b9

P14

P13

P12 P11 P10

b8

b7b6

b5

b4

b3 b2
b1

b15

b14

b13

b12

b11

b10

b26

b20 b19

b18 b17

b16

b25
b24

b23

b22

b21

b30
b29

b28b27

b33

b31

b32

b37

b36

b35

b34

b40

b39

b38

n1

n2 n3 q

Online Step
Find k NN Filter & Refine
1st NN = P1
2nd NN ∈ { Neighbors(P1) }

(e.g., P3)

3rd NN ∈ { Neighbors(P1) ∪ Neighbors(P3) }
(P)

NOOOO! it is to much computation if
you have many candidates
GOOD NEWS! In theory average #
of neighbors= O(5k+1)=O(k)

17

P8
P2

P3P4

P5

P6

P7

P9

P1

P14

P13

P12 P10

b1

q

(e.g., P2)

Performance of VN3

Data set:
Road network in Los Angeles (from NavTeq)

110,000 streets, 79,800 intersections
Different points of interest:

18

restaurants, auto services, schools, parks, shopping
centers, hospitals

Measured:
Query response time and CPU

Comparison with INE [Papadias et al. (vldb03)]

Size of candidate set of VN3 filter
Comparison with R-tree-based KNN [Seidl et al. (sigmod98)
and Hjaltason et al. (tods99)]

Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases

4

VN3 vs INE
VN3 finds the 1st NN using R-Tree
INE needs to expand the
network around q

CPU Time:
INE uses a queue
which is incrementally
updated

19

VN3: Performance of Filter Step

Ratio of size of candidate set to K decreases as K

20

Ratio of size of candidate set to K decreases as K
increases

Some of the new neighbors are already explored!

VN3’s filter behaves independently from the
density/distribution of points of interest
As k increases ratio of number of candidate decreases

Some of the new neighbors are already explored!

Conclusion
A novel approach for KNN queries in SNDB
Based on:

Pre-calculating the solution space (first order
Voronoi diagrams)

21

o o o d ag a s)
Pre-computing some distances (from borders to
points inside each polygon)

Outperforms the only other solution for SNDB
Independent from object distribution
Outperforms the solutions for Euclidean space
in “filtering”

Discussion

What if the edge weights are changing?
What if the both query and data objects
are moving?

22

are moving?
What if you like to find the nearest
hotel and gas station at the same time?

