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Isn’t Confidentiality Enough?

Problem Definition
Sensitive information obtained by | o\
anonymous location data ‘.

« Baraba’si et al., Nature’08

Objects S = {04, 0y, ..., 0} °
_ KNN Query o2,
4 fdentt Prevm&g\%\ W@W}&Q%PQ&E@/’SWC%
Human Mobility == Spatial Probability Distribution ”

S' S of k objects where for any object o'e S' and o€ S-S'
D(0',Q) <D(0,Q)
20 200

L]
L]
Range (Window) Query
O B i e

Range with respect to query window R:

« Anonymous queries leak information

S' < S of objects where for any object o' € S' 0'is within R
Location Queries —=) Affiliations (political, religious, etc.)

What is required to make these queries “Privacy Aware”?
Blind Evaluation Criteria

et When querying LS, the location of the querying user should
Church [t c‘.}m‘é’“ not be revealed to untrusted entities through R, Q, or the
T query result set.
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Trust and Threat Model Privacy/Efficiency Dilemma
« Users subscribe to LS’s services *Privacy: Hiding knowledge of object & query
— LS owns a publicly available POI database DB locations from LS
: Lsésthé’”eSt tf’t“:’t C“_”‘:“st g g‘ «Efficiency: LS requiring this knowledge for
— Database sortware Is truste . e i
— LS might passively exploit sensitive information o e.ffICIent query processing .
Any entity in the system can be adversarial . *"2¥ Privacy Our Contribution Efficiency
— The LS and other clients -- - Information-theoretic secrecy
— Slightly different for querying other users « Privacy against an adversary
Secure client/server communication channel
— Any privacy violation should have included LS

information about
with unbounded computational queries and object
resources and infinite time
« Lower communication &

locations
computation bound: linear w.r.t.
database size

Server knowing all

— We focus on LS as the most powerful adversary

« No user location
privacy possible
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Related Work

Cryptographic Techniques
—S. Zhong et al., TR'04
— Indyk et al. TCC'06
—G. Zhong et al., PET'07
No spatial query processing (MPC schemes)
O(n) computation and/or communication = "

L

[Our Goal: Avoiding a linear scan of the entire DB | 'E's"‘"
K-anonymity/Cloaking Approaches
—Gruteser et al. MobiSys’03 —Kido et al. ICPS'05
—Gedik et al. ICDCS’05 —Chow et al. GIS'06
—Mokbel et al. VLDB'06 —Ghinita et al. WWW'07& SSTD'07
Trusting an Anonymizer Assuming all users are trustworthy
Single point of failure/attack Dependence on other user locations
Sensitive to number of subscribed users No query processing
IOur Goal: Complete cloaking and anonymity |

Privacy

Efficiency
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Space Encoding

Offline Process Data Owner

Space Encoded Locations T
Encoder/Decoder Space

[Transformation Properties:

Efficiency (locality preserving)

Privacy (irreversible)

Space-Filling Curves
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Background: Space Filling Curves

« Passing through (indexing) all T emidwmo
points without crossing itself N S |
* Example: <a,b,c,d,e> 2 <0,4,7,9,13> o
H-values 1 2 ]
« Proximity & distance preserving 09 3 (2] e
LI - N=2 H:0-15
=

N=1 N=2 N=3 N=4

H = ¢(P):[0,2N-1]¢ = [0,2Nd-1]
d=2: H = #(P)[0,2N-1]2 & [0,22N-1]
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Hilbert Curves: Proximity Preserving

» Proximity in Hilbert space o
¢ Example: <a,b,c,d,e> > <0,4,7,9,13>
I
H-values

* 2NN(Q)=e because D(Q,e)< D(Q,b)

Approximate distance preservation
Complexity: Constant computation and communication

*Each node visited contains at least one object

15 12 11 10
mmis  sn@9
N2 79/6
09.\ 3 4 5
N=22 H:0-15
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Hilbert Curves: One-wayness

» Five parameters decide how points are traversed (indexed)
* Possible when curve parameters are unknown
— Space Decoding Key

SDK={X,,Y,, O, I; N}
220

Starting Point|Orientation|Scaling|Order

* Ex nentlal co
B2

|exnty for LS to reverse the transformation
dldend SR e 19,3.0, 55,5, L5 iright

1142

2-Phase kNN Query Processmg

» Offline Space Encoding

— Encoding points of original space
* Trent chooses SDK
« Trent constructs a lookup table DB
» DB={<a,0>,<b,4>,<c,7>,<d,9>,<e,13>}
« Trent encrypts objects identifiers

— Trent uploads DB to LS

¢ Online Query Processing

— H=2,k=3 2*RS*={0,4,7}={¢(X,
— Knowing SDK, Alice gets RS ={

1B 12

Trent=Data Owner
LS= Location Server
Alice=User

— Alice encodes her query point Q: [ ={(X.Ys)
— Knowing H and k, LS computes the result set
a Ya) £ (X Yp) £(Xo, Y,
(Xa! Ya)r(xb! Yb)r(xc

Yo}
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Curve Rotation & kNN Search

* Issue: Approximation due to dimension reduction
— Hilbert curves widely used for dimension reduction

* Indexing data with a rotated dual Hilbert curve

» Drawbacks of using a single curve:
— 1. N 1 (linear) = Missed Sides 1 (exponential)

AH=3 AH=15 AH=63
— 2. Reducing number of neighbors from 4 to 2
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Dual Curve Indexing

* We use a dual curve which is a replication
of the original curve rotated and shifted

— Rotation improves kNN search precision with
no effect on range search
— Translation reduces server throughput in

processing range queries with positive effect
on kNN search
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Accuracy Metrics

°
. ® Actual Query Results
® - L [ 4
B | i R={04,05 ..., 04
o ‘l"] x ® o Approximated Query Results
o I o @ °® R ={0", 0% ..., 0%}
Lo Sl o ) . ® RN R'= Common Results

Metric 1: The Resemblance: ~ 1 =

Metric 2: The Displacement:

Accuracy vs. Displacement
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Dual Curve Query Resolution (DCQR)

* Trent indexes objects using both curves
(SDK/SDK")

* Queries are evaluated on both curves

* kNN Search:
— Alice computes H =(Xq.Y,) & H =t xq. vy for Q

— LS runs two separate queries and returns 2k points
to Alice

— Alice sorts the result sets and pick the top k
* Query complexity is not affected by DCQR
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Performance Evaluation

« Methodology: issuing 1000 kNN queries with random origin
« Datasets (10000 data points):
— Uniform Distribution
— Real-world
« Restaurants from NAVTEQ in a 26 by 26 mile area in Los Angeles
— Skewed
« Four clusters of points: 99% Gaussian with (6=0.05 and Random p) and 1% uniform
« Eval
-Q : ¥
- A . &
« Parar
- Ct -
- D
« Assu

(@) Uniform (b)) Real-world () Skewed
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Effect of the Curve Order (N)
10000

=a= Liniorm
- =-Real-word
Skewed

it

Ideally p<1

Uniform (skewed):
First (last) to hit p=1

1T 3 &8 7 8 11 13 15
Oncder (N}
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Single Curve Approach Vs. DCQR

018 9 Me12 N=12
£ o184 R - i & -
g o4 B0% e e
§ o] 8 2o "
BE 014 3 0%
= ! — a
'55'“&_ 1 E 0%
& oo £ 20w
§ 004 Single Curve g Singla Curve
& o024 - DCOR - BCOR
o+
12 3 4|5 6 7 8 %0 12 3 4|5 6 8 9 10
K L3

Displacement doesn’t change much with K ‘
I
Resemblance improves with K ‘
DCQR improves the quality of overall results significantly:
Higher Resemblance (14% on average)
Smaller Displacement (0.06 mile/96 meters on average)
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Single Curve Approach Vs. DCQR

Ke=3 S K=3
Sing. Curve 70%
- DCaR 60%
£ sow
3 40%
\ E 30%
L & 20%
I . oy © Singiefourve
5 vl
0%

5§ 67 8 9101112130415
Curve Ordor {N) Curve Ordar (N)

78 9101112131415

Displacement reduces as N grows

Resemblance improves as N grows ‘

DCQR improves resemblance around 15% and displacement
around 0.05 mile (80 meters) on average.

Location Privacy through Information Hiding

* Achieving Location Privacy by
 Hiding user identity

—Who'’s accessing? (orthogonal to our work)
* What is being accessed?

— Developing a secure and privacy aware
spatial index

» Developing such privacy index reduces to
—1. secure index navigation
— 2. private object retrieval
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Private Information Retrieval

Q.
N DBI] .
Alice: i Bob: DB[1..N]
Examples: Variations:
« Patent Database « Information Theoretic PIR
« Gold Mines « Chor et al. 1998

« Location Privacy « Computational PIR
« Kushilevitz et al. 1997
« Hardware-based

« Asonov et al. 2003 22/42

Discussion

 Strengths?
— Computation/Communication Cost
— Lightweight client overhead

* Weaknesses?
— Approximate

— Prior Knowledge
* Object distributions
* Correlation queries

Privacy Efficiency
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Attacking SDK: Encrypting H-values

SDKtrent
e o, [#Hh
at — O | btttz (Order Preserving) Encrypting H-values
= o, | &)
: O, | )

. SDKguess=SDKtrent
H =i(Xq.Yo)=>Q
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Attacking SDK: Random Translation

» Before indexing, points are first
translated using a random vector

<g, &>
— Analogous to the notion of salt
in cryptography Ao
. )
. 1 J
L]
e
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LS & External Adversary Collusion

We assume unmolested program execution on
users’ client devices that prevents adversaries
from breaching into a client device

— Running code securely on an untrusted client is an
open problem

* 100% utilization of server
— Hard to map an H-value request to an external
adversary’s location
» Using SALT, makes it impossible for the attacker
and LS to find the entire mapping
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Range Queries

EEEEEEEEEEEEEN

A window (range) query LJ LJ
................................... 111 [ 1L
Querying objects O such that ( ((®)) |1: 3 T l L

belongs to the set RS={8, 9, 10, 11,

12,13, 17, 30, 31} el | I

__13 rs“‘Jg I__| LI
[

anilas-i==il=s
jjammaypummnyy
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Approximating SDK

* Assume LS knows precise values of N, O,
I"and X, and wants to guess Y, by Y',

* LS indexes objects with SDKes and
compares DB with DB

105 mile ~ 1.6cm
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End to End Architecture
B
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Steps to Answer a Range Query

The Hilbert space is recursively | | 1
decomposed into each piece is fully _| ’_ _|

contained in the range. |__| |_

Result: maximal quad-tree blocks

Property: H-values inside
a maximal block form a continuously
increasing sequence.

[ I_—I

Tsai et al. A strip-splitting-based optimal :
algorithm for decomposing a query window L
into maximal quadtree blocks, ICDE'04

LI

M
[
L]
| M
|
1
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Steps to Answer a Range Query Example

8-11,17, 13, 12, 30, 31

Arange query is decomposed
11 [1] [T11 [] Into its maximal quad tree blocks
|H || (each of the colored squares is a

maximal quad tree block)

(=

8-11,12, 13,17, 30, 31

| a7 o0f a=31 | | NN
B=17) =30 p=31
8-11, 12-13, 17, 30-31 o The final runs:
i e e as 8] [ ] Each colored part is
[ fadisf BT L] [N a single run (7 runs total)
_ B=13 [ ] ]
Each sequence is called a run |_ J « L1
Chung et al. Space-filing approach for ] ] Range Query Result Set Is Exact but
[ |

I
L]
L]

fast window query on compressed

1

May Contain Excessive Objects
images, Transactions on Image

Processing'00
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Privacy Aware Range Query Search Algorithm Complexity

+ Range algorithm takes O(n, logT) time where
* Packing all runs Ems ] n,; = max(n,,n,) for a query of size n;*n, and T

— The servercan |4 ' = 2N (N is the curve order).

— The cardinality « O(n,) for decomposition

— Number of runs , % « O(n*N) for finding a and B

— Server learns a< 5o « O(n*log n)) for sorting sub runs

|IRS| points '§ 40 « O(n,) for merging runs

* Query runs are £ s, + Search:

—Ifeachrunisqu .4 — Alice performs quadtree decomposition on
— Ixy (run length v both curves and chooses the one with fewer

yOr 3

10

ol- runs and sends runs to LS
O T e By e — LS returns the encoded result set to Alice
Curves Translation & Range Search Range Query Processing

* Arange query maps into many runs

— It is desirable to minimize the number of runs
(quadtree blocks)

« Range queries are exact

* Include excessive objects |,
igher precision for larger selectivity

« Measuring precision #® -

* Indexing the data with a second shifted curve Irelevant/jreturned] :_ o
i . £
can achieve this _ T
g 99
F —a L% Scfecily]
& 0
Precision reaches 100% for :: = LG Mcleualy
ﬂ N=13 for real-world data 10 =0 5% Galecthdny
] T

HOE ¥ OB OS OWMMOI2 YW
Couree: Dweler )
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Range Query Processing

Average of 21% reduction in number of runs

(a3 0035 Seleuti B 00 Seleviviny 0 Selectivity
Average number of runs Mnear\y proporl\onal to query side length

e of R V. Hilber Onder fo a Oy

with Dffercat Selectiv
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Attacks on Cloaking and Anonymity

 Center of the cloaked region

+ Single point of failure and attack

+ Cloaking failure under certain distributions
* Availability of all user locations to LS in

anonymity approaches

» Huge performance penalty for privacy-

paranoid users.

selectivity AT select 1) 04 selectiviy
Margma\ DCQR Overhead (around 6 ms on average)
Rumning Times Ve Curve Onder (N) for Diffesent Query Selecivie
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i & % X Points of Interest o;
B Users u;
4 f ¥ Data S ={o;, 05 ..., 0}
© Q UsersU={u, uy, ..., upd
X O Q = Query Point
i X e O Result Set RS
I i [ Pali)
For each query Q:
Definition 1. u-anonymity: Po(u;) = 1/M
Po(u;) is the probability that query Q is issued by a user u;
3042
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o Bt 15 1/A A
I F'_ "
1 X Points of Interest o;
llArea x B Users Ui
XE b4 T Y7 Data S ={o,, 0, ..., 0}
| Q UsersU={uy, uy ..., uy}
—. O = auery Point
W O Result Set RS
[ Pt
X 4
For each query Q
Definition 2. a-anonymity: P'o(l))= 1/area(A)
P'o(l;) = probability that query Q is issued from any point inside A
40142

Result Set Anonymity

.
g X Points of Interest o;

i B Users u;

T n Data S = {04, 0, ..., 0}

= Q UsersU={uy, u, ..., uy}
O Q = Query Point

.. O Result Set RS

] Palo)

For each query Q:
Definition 3. Result set anonymity: po(0)) = k/nforj =1 ... n and k=|RS|
Paf0;) =probability that o; is a member of the result set for query Q
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