
11/24/2009

1

Blind Evaluation of Nearest Blind Evaluation of Nearest
Neighbor Queries Using Space Neighbor Queries Using Space

Transformation to Preserve Location PrivacyTransformation to Preserve Location Privacy

Ali Khoshgozaran and Cyrus Shahabi
University of Southern California

Los Angeles, CA 90089-0781
[jafkhosh, shahabi]@usc.edu

http://infolab.usc.edu

Privacy in Location Based Services

POI

Where's the
nearest ?

2 /42

Which
is nearby?

MotivationMotivation
Problem DefinitionProblem Definition
Related WorkRelated Work

IntroductionIntroduction
Our WorkOur Work
Proposed WorkProposed Work

Location
Server (LS)

Sensitive information obtained by Sensitive information obtained by
anonymous location dataanonymous location data

•• BarabaBaraba´́si et al., Nature’08si et al., Nature’08

Isn’t Confidentiality Enough?
Office

Residence

Identity

3 /42

•• Anonymous queries leak informationAnonymous queries leak information
Location Queries Affiliations (political, religious, etc.)Location Queries Affiliations (political, religious, etc.)

Human Mobility Spatial Probability DistributionHuman Mobility Spatial Probability Distribution

Church
Abortion

Clinic

Objects S = {o1, o2, …, on}

kNN Query
kNN with respect to query point Q:
S' ⊆ S of k objects where for any object o'∈ S' and o∈ S - S'
D(o',Q) ≤ D(o,Q)

Problem Definition

Q
R

Prevalent Spatial Queries in Location-based Services

4 /42

What is required to make these queries “Privacy Aware”?

Range with respect to query window R:
S' ⊆ S of objects where for any object o' ∈ S' o' is within R

When querying LS, the location of the querying user should
not be revealed to untrusted entities through R, Q, or the
query result set.

Blind Evaluation Criteria

Range (Window) Query

Trust and Threat Model
•• Users subscribe to LS’s servicesUsers subscribe to LS’s services

–– LS owns a publicly available POI database DBLS owns a publicly available POI database DB
•• LS is LS is honesthonest but but curiouscurious

–– Database software is trustedDatabase software is trusted
–– LS might passively exploit sensitive informationLS might passively exploit sensitive information

5 /42

g p y pg p y p
•• Any entity in the system can be adversarialAny entity in the system can be adversarial

–– The LS and other clientsThe LS and other clients
–– Slightly different for querying other usersSlightly different for querying other users

•• Secure client/server communication channelSecure client/server communication channel
–– Any privacy violation should have included LSAny privacy violation should have included LS
–– We focus on LS as the most powerful adversaryWe focus on LS as the most powerful adversary

Privacy/Efficiency Dilemma
••PrivacyPrivacy: Hiding knowledge of object & query : Hiding knowledge of object & query
locations locations from LSfrom LS

••EfficiencyEfficiency: LS requiring this knowledge for : LS requiring this knowledge for
efficient query processingefficient query processing

6 /42

Server knowing all Server knowing all
information about information about
queries and object queries and object
locationslocations
•• No user location No user location
privacy possible privacy possible

PrivacyPrivacy EfficiencyEfficiency

InformationInformation--theoretic secrecy theoretic secrecy
•• Privacy against an adversary Privacy against an adversary
with unbounded computational with unbounded computational
resources and infinite timeresources and infinite time
•• Lower communication & Lower communication &
computation bound: linear w.r.t. computation bound: linear w.r.t.
database sizedatabase size

Our ContributionOur Contribution

11/24/2009

2

Cryptographic Techniques
–– S. Zhong et al., TR’04S. Zhong et al., TR’04
–– Indyk et al. TCC’06Indyk et al. TCC’06
–– G. Zhong et al., PET’07G. Zhong et al., PET’07
No spatial query processing (MPC schemes)No spatial query processing (MPC schemes)
O(n) computation and/or communicationO(n) computation and/or communication

Related Work

DBOur Goal: Avoiding a linear scan of the entire DB

Pr
iv

ac
y

Pr
iv

ac
y

Anonymizer

LS

7 /42

KK--anonymity/Cloaking Approachesanonymity/Cloaking Approaches
––Gruteser et al. MobiSys’Gruteser et al. MobiSys’0303
––Gedik et al. ICDCS’Gedik et al. ICDCS’0505
––Mokbel et al. VLDB’Mokbel et al. VLDB’0606
Trusting an Anonymizer Trusting an Anonymizer
Single point of failure/attackSingle point of failure/attack
Sensitive to number of subscribed usersSensitive to number of subscribed users

DBg

––Kido et al. ICPS'Kido et al. ICPS'0505
––Chow et al. GIS'Chow et al. GIS'0606
––Ghinita et al. WWW'Ghinita et al. WWW'0707& SSTD'& SSTD'0707
Assuming all users are trustworthyAssuming all users are trustworthy
Dependence on other user locationsDependence on other user locations
No query processingNo query processing

Our Goal: Complete cloaking and anonymityEf
fic

ie
nc

y
Ef

fic
ie

nc
y

LS

Space Encoding
Offline Process

Points of InterestOriginal
Space

Space
Encoder/Decoder

Data Owner

Original
Space

Query
Encoder/Decoder

Client

Encoded Locations

Encoded Query

Encoded Query Results

User Query

Actual Query Results
Transformed

Space

Transformed
Space

Transformation Key
Query Time

8 /42

Transformation Properties:

Efficiency (locality preserving)

Privacy (irreversible)

Space Encoder/Decoder yQ y Space

•• Passing through (indexing) all Passing through (indexing) all
points without crossing itselfpoints without crossing itself

•• Example: <a,b,c,d,e> Example: <a,b,c,d,e> <0,4,7,9,13><0,4,7,9,13>

PP i it & di t ii it & di t i

Background: Space Filling Curves

1

14

2

13

7

8

6

9

10111215

0

13
7

9

4

13

b

d

e

H-values

a

c

9 /42

•• PProximity & distance preservingroximity & distance preserving 0 3 4 5
0 4b

N=2 H:0-15

N=1 N=2 N=3 N=4

Hilbert Curves

a

:[:[00,,22NN--11]]dd [[00,,22NdNd--11]]
d=d=22: :[: :[00,,22NN--11]]22 [[00,,2222NN--11]]

•• Proximity in Hilbert spaceProximity in Hilbert space
•• Example: <a,b,c,d,e> Example: <a,b,c,d,e> <<00,,44,,77,,99,,1313>>

22NN(Q) b D(Q)< D(Q b)NN(Q) b D(Q)< D(Q b)

Hilbert Curves: Proximity Preserving

1

14

2

13

7

8

6

9

10111215

0

13
7

9

4

13

b

d

e

H-values
Q1

a

c

1

10 /42

•• 22NN(Q)=e because D(Q,e)< D(Q,b)NN(Q)=e because D(Q,e)< D(Q,b) 0 3 4 5
0 4b

N=2 H:0-15

a

Approximate distance preservation

Complexity: Constant computation and communication

•Each node visited contains at least one object

•• Five parameters decide how points are traversed (indexed)Five parameters decide how points are traversed (indexed)
•• Possible when curve parameters are unknown Possible when curve parameters are unknown

–– Space Decoding KeySpace Decoding Key

Hilbert Curves: One-wayness

Starting Point|Orientation|Scaling|Order

ΧΧ00,Y,Y00, , ΘΘ, , ΓΓ, N, NSDK={ }SDK={ }

11 /42

•• Linear increase in N results in exponential increase in HLinear increase in N results in exponential increase in H--valuesvalues
–– 33**2222NN increase in possible Hincrease in possible H--valuesvalues

•• Exponential complexity for LS to reverse the transformation Exponential complexity for LS to reverse the transformation
without the knowledge of SDKwithout the knowledge of SDK

Starting Point|Orientation|Scaling|Order

•• Offline Space EncodingOffline Space Encoding
–– Encoding points of original spaceEncoding points of original space

•• Trent chooses SDKTrent chooses SDK
•• Trent constructs a lookup table DBTrent constructs a lookup table DB
•• DB={DB={<<a,a,00>>,,<<b,b,44>>,,<<c,c,77>>,,<<d,d,99>>,,<<e,e,1313>>}}

T t t bj t id tifiT t t bj t id tifi 0a 4b

7c

2-Phase kNN Query Processing

1

14

2

13

7

8

6

9

10111215

13

9

13

d

e

Q2

12 /42

•• Trent encrypts objects identifiersTrent encrypts objects identifiers
–– Trent uploads DB to LSTrent uploads DB to LS

•• Online Query ProcessingOnline Query Processing
–– Alice encodes her query point Q:Alice encodes her query point Q:
–– Knowing Knowing HH and k, LS computes the result setand k, LS computes the result set
– H=2,k=3 RS*={0,4,7}={ (Xa,Ya), (Xb,Yb), (Xc,Yc)}
–– Knowing SDK, Alice gets Knowing SDK, Alice gets RSRS ={={(Xa,Ya),(Xb,Yb),(Xc,Yc)}}

0a 4b
0 3 4 5

Trent=Data Owner
LS= Location Server
Alice=User

11/24/2009

3

Curve Rotation & kNN Search
•• Issue: Approximation due to dimension reductionIssue: Approximation due to dimension reduction

–– Hilbert curves widely used for dimension reductionHilbert curves widely used for dimension reduction
•• Indexing data with a Indexing data with a rotatedrotated dual Hilbert curvedual Hilbert curve
•• Drawbacks of using a single curve:Drawbacks of using a single curve:

11 NN ↑↑ (li)(li) Mi d SidMi d Sid ↑↑ (ti l)(ti l)

13 /42

–– 11. N . N ↑↑ (linear) (linear) Missed Sides Missed Sides ↑↑ (exponential)(exponential)

∆H=∆H=3 3 ∆H=∆H=15 15 ∆H=∆H=6363
–– 22. Reducing number of neighbors from . Reducing number of neighbors from 4 4 to to 22

Dual Curve Query Resolution (DCQR)

•• Trent indexes objects using both curves Trent indexes objects using both curves
(SDK/SDK')(SDK/SDK')

•• Queries are evaluated on both curvesQueries are evaluated on both curves
kNN S hkNN S h

14 /42

•• kNN Search:kNN Search:
–– Alice computes Alice computes && for Qfor Q
–– LS runs two separate queries and returns LS runs two separate queries and returns 22k points k points

to Alice to Alice
–– Alice sorts the result sets and pick the top kAlice sorts the result sets and pick the top k

•• Query complexity is not affected by DCQRQuery complexity is not affected by DCQR

' '

Dual Curve Indexing

•• We use a dual curve which is a replication We use a dual curve which is a replication
of the original curve of the original curve rotated and shifted rotated and shifted
–– Rotation improves kNN search precision with Rotation improves kNN search precision with

no effect on range searchno effect on range search

15 /42

no effect on range searchno effect on range search
–– Translation reduces server throughput in Translation reduces server throughput in

processing range queries with positive effect processing range queries with positive effect
on kNN searchon kNN search

Performance Evaluation
•• Methodology: Methodology: issuing issuing 1000 1000 kNN queries with random originkNN queries with random origin
•• Datasets (Datasets (10000 10000 data points):data points):

–– Uniform DistributionUniform Distribution
–– RealReal--worldworld

•• Restaurants from NAVTEQ in a Restaurants from NAVTEQ in a 26 26 by by 26 26 mile area in Los Angeles mile area in Los Angeles
–– SkewedSkewed

•• Four clusters of points: Four clusters of points: 9999% Gaussian with (% Gaussian with (σσ==00..05 05 and Random µ) and and Random µ) and 11% uniform% uniform

16 /42

pp ((µ)µ)
•• Evaluating LAPSE for kNN SearchEvaluating LAPSE for kNN Search

–– Query response time (CPU cost)Query response time (CPU cost)
–– Approximation Error (kNN)Approximation Error (kNN)

•• ParametersParameters
–– Curve Order (N), KCurve Order (N), K
–– Data DistributionData Distribution

•• Assumption:Assumption: PrePre--built Hbuilt H--values for all objectsvalues for all objects

Accuracy Metrics

q

Actual Query Results

R = {o1, o2, …, oK}
Approximated Query Results

R' = {o'1, o'2, …, o'K}

17 /42

Metric 1: The Resemblance:

Metric 2: The Displacement:

R ∩ R' = Common Results

Accuracy vs. Displacement

Effect of the Curve Order (N)

18 /42

Ideally Ideally ρρ≤≤11

Uniform (skewed): Uniform (skewed):
First (last) to hit First (last) to hit ρρ==11

11/24/2009

4

Single Curve Approach Vs. DCQR

Resemblance improves with K

Displacement doesn’t change much with K

DCQR improves the quality of overall results significantly:
Higher Resemblance (14% on average)
Smaller Displacement (0.06 mile/96 meters on average)

Single Curve Approach Vs. DCQR

Resemblance improves as N grows

Displacement reduces as N grows

DCQR improves resemblance around 15% and displacement
around 0.05 mile (80 meters) on average.

Location Privacy through Information Hiding

•• Achieving Location Privacy byAchieving Location Privacy by
•• Hiding user Hiding user identityidentity

–– Who’s accessing? (orthogonal to our work) Who’s accessing? (orthogonal to our work)
•• What is being accessed?What is being accessed?

21 /42

•• What is being accessed?What is being accessed?
–– Developing a secure and Developing a secure and privacy aware privacy aware

spatial index spatial index
•• Developing such privacy index reduces toDeveloping such privacy index reduces to

–– 11. secure index navigation . secure index navigation
–– 22. private object retrieval . private object retrieval

Private Information Retrieval

DB

Bob: DB[1..N]Alice: i

Qi*

DB[i]

22 /42

Examples:

•• Patent DatabasePatent Database

•• Gold MinesGold Mines

•• Location PrivacyLocation Privacy

Variations:

•• Information Theoretic PIRInformation Theoretic PIR

• Chor et al. 1998

•• Computational PIRComputational PIR

•• Kushilevitz et al. Kushilevitz et al. 19971997

•• HardwareHardware--basedbased

•• Asonov et al. Asonov et al. 20032003

Discussion

•• Strengths?Strengths?
–– Computation/Communication Cost Computation/Communication Cost
–– Lightweight client overheadLightweight client overhead

W k ?W k ?•• Weaknesses?Weaknesses?
–– ApproximateApproximate
–– Prior KnowledgePrior Knowledge

•• Object distributionsObject distributions
•• Correlation queriesCorrelation queries

23 /42

PrivacyPrivacy EfficiencyEfficiency

Attacking SDK: Encrypting H-values
SDKSDKtrenttrent

O1

O2

Oi

On

H1

H2

Hi

Hn

e(H1)

e(H2)

e(Hi)

e(Hn)

(Order Preserving) Encrypting H-values

24 /42

SDKSDKguessguess O1

O2

Oi

On

H'1
H'2

H'n

H'i

==

SDKSDKguessguess=SDK=SDKtrenttrent

11/24/2009

5

Attacking SDK: Random Translation

•• Before indexing, points are first Before indexing, points are first
translated using a random vector translated using a random vector
<<εε,,έέ>>

Analogous to the notion of saltAnalogous to the notion of salt

25 /42

–– Analogous to the notion of saltAnalogous to the notion of salt
in cryptographyin cryptography

Approximating SDK

•• Assume LS knows precise values of N, Assume LS knows precise values of N, ΘΘ, ,
ΓΓ and and ΧΧ00 and wants to guess Yand wants to guess Y0 0 byby Y'Y'00

•• LS indexes objects with SDKLS indexes objects with SDKguessguess and and
compares DBcompares DB with DBwith DB

26 /42

compares DBcompares DBguessguess with DBwith DB

10-5 mile ~ 1.6cm

|Y|Y00--Y'Y'00||

NN

Γ/Γ/ΓΓ''

NN

LS & External Adversary Collusion

We assume unmolested program execution on We assume unmolested program execution on
users’ client devices that prevents adversaries users’ client devices that prevents adversaries
from breaching into a client devicefrom breaching into a client device
–– Running code securely on an untrusted client is an Running code securely on an untrusted client is an

27 /42

open problemopen problem
•• 100100% % utilization of server utilization of server

–– Hard to map an HHard to map an H--value request to an external value request to an external
adversary’s locationadversary’s location

•• Using SALT,Using SALT, makes it impossible for the attacker makes it impossible for the attacker
and LS to find the entire mappingand LS to find the entire mapping

End to End Architecture
Query Time

U LS

28 /42

Trent

One time
offline process

User LS

A window (range) query

Range Queries

Q i bj t O h th t (O)

29 /42

POI

0

1 2

3 4 5

6

1011

30 31

12

17

9813

7

Querying objects O such that (O)
belongs to the set RS={8, 9, 10, 11,
12, 13, 17, 30, 31}

Steps to Answer a Range Query

The Hilbert space is recursively
decomposed into each piece is fully
contained in the range.

Result: maximal quad-tree blocks

Property: H values inside

30 /42

Property: H-values inside
a maximal block form a continuously
increasing sequence.

Tsai et al. A strip-splitting-based optimal
algorithm for decomposing a query window
into maximal quadtree blocks, ICDE’04

11/24/2009

6

17 α 30 α 31

8-11, 17, 13, 12, 30, 31

8-11, 12, 13, 17, 30, 31

Steps to Answer a Range Query

S
ort

M
e

31 /42

α=13
β=13

α=12
β=12

α=17
β=17

α=30
β=30

α=31
β=31

α=08
β=11

8-11, 12-13, 17, 30-31

Each sequence is called a run

erge

Chung et al. Space-filling approach for
fast window query on compressed
images, Transactions on Image
Processing’00

Example
A range query is decomposed
Into its maximal quad tree blocks
(each of the colored squares is a
maximal quad tree block)

32 /42

The final runs:
Each colored part is
a single run (7 runs total)

Range Query Result Set Is Exact but
May Contain Excessive Objects

•• Packing all runs into a single request leaks informationPacking all runs into a single request leaks information
–– The server can gain overall POI distributionThe server can gain overall POI distribution
–– The cardinality of the result set is known by the serverThe cardinality of the result set is known by the server
–– Number of runs and range query side length are correlatedNumber of runs and range query side length are correlated

Server learns a range W with approximate size s*s containsServer learns a range W with approximate size s*s contains

rXY=0.88

Privacy Aware Range Query Search

33 /42

–– Server learns a range W with approximate size s*s contains Server learns a range W with approximate size s*s contains
|RS| points|RS| points

•• Query runs are decomposed into smaller setsQuery runs are decomposed into smaller sets
–– If each run is queried separatelyIf each run is queried separately
–– rrXYXY (run length vs. query side length) is (run length vs. query side length) is 00..0808

Algorithm Complexity
•• RangeRange algorithm takes algorithm takes OO((nnll loglogTT) time where) time where

nnll = = maxmax((nn11,n,n22) for a query of size) for a query of size nn11*n*n22 and and T T
= = 22NN ((N N is the curve order).is the curve order).

•• O(nO(nll) for decomposition) for decomposition
•• O(nO(nll*N) for finding *N) for finding αα and and ββ
•• O(nO(n *log n*log n) for sorting sub runs) for sorting sub runs

34 /42

•• O(nO(nll log nlog nll) for sorting sub runs) for sorting sub runs
•• O(nO(nll) for merging runs) for merging runs

•• Search:Search:
–– Alice performs quadtree decomposition on Alice performs quadtree decomposition on

both curves and chooses the one with fewer both curves and chooses the one with fewer
runs and sends runs to LSruns and sends runs to LS

–– LS returns the encoded result set to AliceLS returns the encoded result set to Alice

Curves Translation & Range Search
•• A range query maps into many runsA range query maps into many runs

–– It is desirable to minimize the number of runs It is desirable to minimize the number of runs
(quadtree blocks)(quadtree blocks)

•• Indexing the data with a second Indexing the data with a second shiftedshifted curve curve

35 /42

can achieve this can achieve this

Range Query Processing
•• Range queries are exactRange queries are exact

•• Include excessive objectsInclude excessive objects

•• Measuring precisionMeasuring precision

|relevant|/|returned||relevant|/|returned|

Higher precision for larger selectivity

36 /42

|relevant|/|returned||relevant|/|returned|

Precision reaches 100% for
N≥13 for real-world data

11/24/2009

7

Range Query Processing

Average number of runs linearly proportional to query side length

Average of 21% reduction in number of runs

37 /42

Average number of runs linearly proportional to query side length

Marginal DCQR Overhead (around 6 ms on average)

Attacks on Cloaking and Anonymity

•• Center of the cloaked regionCenter of the cloaked region
•• Single point of failure and attackSingle point of failure and attack
•• Cloaking failure under certain distributionsCloaking failure under certain distributions

38 /42

•• Availability of all user locations to LS in Availability of all user locations to LS in
anonymity approachesanonymity approaches

•• Huge performance penalty for privacyHuge performance penalty for privacy--
paranoid users.paranoid users.

Points of Interest oi

Users ui

Data S = {o1, o2, …, on}

Users U = {u1, u2, …, uM}

Q = Query Point

u-anonymity

1/M

1/M

1/M
1/M

1/M

39 /42

Q = Query Point

Result Set RS

PQ(ui)

1/M

1/M

For each query Q:
Definition 1. u-anonymity: PQ(ui) = 1/M
PQ(ui) is the probability that query Q is issued by a user ui

Points of Interest oi

Users ui

Data S = {o1, o2, …, on}

Users U = {u1, u2, …, uM}

Q = Query Point

a-anonymity

1/Area(A)

1/Area(A)

1/Area(A)
1/Area(A)

1/Area(A)

1/Area(A)

40 /42

Q = Query Point

Result Set RS

P'Q(li)

A

1/Area(A)

1/Area(A)

1/Area(A) 1/Area(A)

For each query Q:
Definition 2. a-anonymity: P'Q(li)= 1/area(A)
P'Q(li) = probability that query Q is issued from any point inside A

Points of Interest oi

Users ui

Data S = {o1, o2, …, on}

Users U = {u1, u2, …, uM}

Q = Query Point

Result Set Anonymity

K/n
K/n

K/n

K/

K/n

K/n

K/n

41 /42

Q = Query Point

Result Set RS

pQ(oj)

K/n

K/n

K/n

For each query Q:
Definition 3. Result set anonymity: pQ(oj) = k/n for j = 1 … n and k=|RS|
pQ(oj) =probability that oj is a member of the result set for query Q

